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ON CLASSIFICATIONS OF MULTI-VALUED

FUNCTIONS USING MULTI-HOMOTOPY

Ismet Karaca, Hatice Sevde Denizalti, and Gokhan Temizel

Abstract. In this work, we extend properties for single-valued

functions especially in homotopy theory to multi-valued functions. We present
new definitions for multi-valued functions such as m-pathwise
connected, m-homotopy equivalence, m-contractibility and (deformation)
m-retraction. We apply some topological properties from algebraic

topology to the multi-valued functions.

1. Introduction

Multi-valued functions are functions that image of at least one element in their
domain set is a set. Therefore, we can say that multi-valued functions are a gen-
eralization of single-valued functions. So the algebraic properties of functions are
similar to those of single-valued functions. In some researches, single-valued func-
tions are inadequate. For this reason, the notion of the multi-valued function has
emerged. Multi-valed functions have a lot of applications in many fields such as
optimal control theory, calculus of variation, probability, statistics and economy.

The concept of a continuous function is a fundamental thought to the study
of topological spaces and help to generalize a considerable part of the homotopy
theory. The idea of continuity for multi-valued functions has put forward for spe-
cial cases by [9], [10] and [25]. Later, more general definitions have given by [3]
and [13]. Various equivalent definitions of continuity of single-valued functions are
discussed separately for multi-valued functions. In this reason, Kurotowski [13] has
described notions of semi continuity (lower semi-continuity, upper semi-continuity).
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The concept of continuity has later defined in many different ways for multi-valued
functions and Strother [24] has studied the relationship that exists between differ-
ent definitions of continuity. There are lots of papers about multi-valued functions
in the literature. Kakutani’s work [11] is one of the most important ones because
he has given a generalization of Brouwer’s Fixed Point Theorem in this paper.
Choquet [5] has studied the lower semi-continuity and upper semi-continuity of
multi-valued functions by the concepts of limit on set families. Michael [14] has
described a topology on the collection of non-empty closed subsets of a topological
space. Then he has applied this topology to the study of multi-valued functions
and adapted some properties of single-valued functions to the multi-valued func-
tions. Strother [22] introduced fixed point theory for multi-valued functions. The
definition of homotopy for functions is an important notion in algebraic topology.
Strother’s work [23] is one of the main papers in this field. Strother introduced a
multi-valued version of homotopy. Moreover, Kruse [12] and Hahn [8] have been
extensively studied on multi-valued functions. Ponomarev in [16], [17] and [18]
has investigated the basic properties of multi-valued functions and answered the
question which properties of topological spaces are preserved under multi-valued
functions. Furthermore, Rhee [19] worked on homotopy theorems which can be
applied to the study of multi-valued functions.

In this work, we first give some background for multi-valued functions that we
need to prove the theorems which are already known for single-valued functions.
We apply some properties from algebraic topology to the multi-valued functions,
then give multi-valued versions of some important properties such as homotopy
equivalence, pathwise connectedness, contractibility, and retraction for some special
classes of spaces.

2. Preliminaries

In this paper, we assume that all spaces are Hausdorff. Multi-valued
functions will be denoted by uppercase letters such as F, G, H. Let X ̸= ∅, Y be any
topological spaces. We say that F : X ⇒ Y is a multi-valued function if for each
x ∈ X, F (x) is a subset of Y .

Remark 2.1. 1) Single-valued functions are just special cases of multi-valued
functions.

2) A multi-valued function F : X ⇒ Y can be considered as a single-valued
function from X to the set P(Y ) of all subsets of Y .

Let F : X ⇒ Y be a multi-valued function. The range of F is

R(F ) =
∪
x∈X

F (x)

by [1]. For each A ⊂ X we have

F (A) =
∪
x∈A

F (x)
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from [2]. The multi-valued function F is called one-to-one if for any x, x
′ ∈ X,

x ̸= x
′
, we have F (x) ∩ F (x

′
) = ∅ and F is surjective (onto) if R(F ) = Y , [1].

The multi-valued function F is called closed valued if for each x ∈ X, F (x)
is closed in Y , by [6]. Let F1, F2 : X ⇒ Y be multi-valued functions. The
union of the functions F1 and F2 is a function denoted by F1 ∪ F2 : X ⇒ Y
given by (F1 ∪ F2)(x) = F1(x) ∪ F2(x), the intersection of F1 and F2 is a func-
tion denoted by F1 ∩ F2 : X ⇒ Y given by (F1 ∩ F2)(x) = F1(x) ∩ F2(x),
the cartesian product of F1 and F2 is a function denoted by
F1 × F2 : X ⇒ Y × Y given by (F1 × F2)(x) = F1(x) × F2(x), the composi-
tion of F : X ⇒ Y , G : Y ⇒ Z is a function denoted by G ◦ F : X ⇒ Z given
by (G ◦ F )(x) = G(F (x)) =

∪
y∈F (x) G(y) and the graph grF of a multi-valued

function F : X ⇒ Y is the set

grF = {(x, y) ∈ X × Y |y ∈ F (x) and x ∈ X},
by [1].

Now, we have the following lemma for the continuity of multi-valued functions
due to Strother:

Lemma 2.1 ([23]). A closed valued function F : X ⇒ Y is continuous if and
only if statements (1) and (2) hold:

(1) If x0 ∈ X, V is open in Y and if F (x0)∩V ̸= ∅, then there exists an open
set U of X with x0 ∈ U such that F (x) ∩ V ̸= ∅ for all x ∈ U .

(2) If x0 ∈ X and F (x0) ⊂ V , where V is open in Y , then there exists an
open set U containing x0 such that F (U) ⊂ V .

In the Lemma 2.1, the first statement is called lower semi-continuity (lsc) of
a multi-valued function F and second is called upper semi-continuity (usc) of a
multi-valued function F .

The inverse of the multi-valued function F : X ⇒ Y is the function denoted
by F− : Y ⇒ X and given by F−(B) = {x ∈ X|F (x) ⊂ B ̸= ∅} for each B ⊂ Y
[2]. Geletu has given useful properties [6, Proposition 5.3.5] and [6, Proposition
5.3.14] regarding semi-continuities of multi-valued functions which are gathered in
the following proposition.

Proposition 2.1 ([6]). Let F : X ⇒ Y be a multi-valued function. Then the
following statements are hold:

(i) F is usc if and only if for each closed set W ⊂ Y , F−(W ) is closed set in
X;

(ii) F is lsc if and only if for each open set V ⊂ Y , F−(V ) is open set in X.

In the following definition, Borges defined a multi-valued quotient function
F : X ⇒ Y in such a way that F is either a usc-function or lsc-function.

Definition 2.1. ([2]) Let X and Y be topological spaces and F : X ⇒ Y
an onto multi-valued function. Then F is said to be a us-quotient (ls-quotient)
function provided that a subset U of Y is closed (open) if and only if F−(U) is
closed subset of X (open subset of X). F is said to be a quotient function whenever
F is both a us-quotient function and ls-quotient function.
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We define the following new continuous multi-valued function with the help of
two continuous multi-valued functions.

Lemma 2.2. Let F : X ⇒ Z and G : Y ⇒ W be two continuous multi-valued
functions. Then the function defined by

H : X × Y ⇒ Z ×W

(x, y) 7→ F (x)×G(y)

is continuous.

Proof. Assume that V is an open set such that

H(x, y) = F (x)×G(y) ⊂ V ⊂ Z ×W

for all (x, y) ∈ X × Y .
Case 1. Let the open set V be a base element of product topology on Z ×W .

Then, there exist two open sets VZ ⊂ Z and VW ⊂ W such that V = VZ × VW .
Since F is upper semi-continuous multi-valued function, for all F (x) ⊂ VZ , where
VZ is open in Z, there exists an open set Ux containing x such that

F (x
′
) ⊂ VZ for all x

′
∈ Ux.

Since G is the upper semi-continuous multi-valued function, for all G(y) ⊂ VW ,
where VW is open in W , there exists an open set Uy containing y such that

G(y
′
) ⊂ VW for all y

′
∈ Uy.

Thus, the set U = Ux × Uy is an base element since Ux and Uy are open sets.
Consequently, there exists an open set U = Ux × Uy containing (x, y) such that

H(x
′
, y

′
) = F (x

′
)×G(y

′
) ⊂ VZ × VW = V for all (x

′
, y

′
) ∈ U.

Case 2. Assume that the open set V is not a base element. Then, V is a union
of basis elements. So, for open sets VZ ⊂ Z and VW ⊂ W we can take VZ×VW ⊂ V .
We know from Case 1, the upper semi-continuity condition is satisfied for all open
sets V in the form VZ×VW . Thus, there exists an open set U = Ux×Uy containing
(x, y) such that

H(x
′
, y

′
) = F (x

′
)×G(y

′
) ⊂ VZ × VW ⊂ V for all (x

′
, y

′
) ∈ U.

Consequently, H is upper semi-continuous.
Similarly, the lower semi-continuity of H can be shown. �

Theorem 2.1 ([1]). The cartesian product F =
∏n

i=1 Fi of a finite family
of the lower semi-continuous (l.s.c.) functions Fi : X ⇒ Yi is a l.s.c. function
F : X ⇒

∏n
i=1 Yi given by F (x) = (F1(x), · · · , Fn(x)) for any x ∈ X.

Theorem 2.2 ([1]). The cartesian product F =
∏n

i=1 Fi of a finite family of
the upper semi-continuous (u.s.c.) and compact valued functions Fi : X ⇒ Yi is a
u.s.c. and compact valued function F : X ⇒

∏n
i=1 Yi, where Fi(xi) is a compact

set for any xi ∈ X, for all i.
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Theorem 2.3 ([1]). The cartesian product F =
∏n

i=1 Fi of a family of closed
functions Fi : X ⇒ Yi is a closed function F : X ⇒

∏n
i=1 Yi.

Let X and Y be compact and let F : X ⇒ Y be continuous. Then F is closed
i.e. F (A) is closed in Y whenever A is closed in X [21].

Proposition 2.2 ([7]). Let F : X ⇒ Y and G : Y ⇒ Z be two closed value
multi-valued functions. Then for any B ⊂ Z we obtain

(G ◦ F )−(B) = F− ◦G−(B).

Lemma 2.3 ([21]). If F1 : X ⇒ Y and F2 : Y ⇒ Z are continuous and if X,
Y and Z are compact, then F = F2 ◦ F1 is continuous.

The restriction of a multi-valued function is defined in [21]. Let F : X ⇒ Y
and let A be a subspace of X. Then the restriction of F to A is defined by
F |A(x) = F (x) for all x ∈ A.

Let F : X ⇒ Y be continuous and let A ⊂ X. Then the restriction of F to A
is continuous [21]. The multi-valued function idX : X ⇒ X, idX(x) = {x} is called
the identical function of the set X [1]. A function F : X ⇒ Y is called constant if
F (x) = C, for all x ∈ X, where C is a fixed subset of Y [1].

Definition 2.2. Let A be a subset of X. Then the m-inclusion function is
defined by

I : A ⇒ X

a 7→ {a}.

Moreover, I(a)∩I(a′
) = ∅ for all a ̸= a

′ ∈ A. Then the m-inclusion function is
one to one. Furthermore, the continuity of the m-inclusion function can be shown
easily by Lemma 2.1.

Lemma 2.4 ([23]). Let Y be a topological space, A and B both open (or both
closed) subsets of a topological space X such that X = A ∪ B. Assume that
F : A ⇒ Y and G : B ⇒ Y be continuous multi-valued functions such that for
all x ∈ A ∩B, F (x) = G(x). Then the multi-valued function defined by

H : X ⇒ Y

x 7→

{
F (x), x ∈ A

G(x), x ∈ B

is continuous.

Proof. Suppose that F : A ⇒ Y is the upper semi-continuous multi-valued
function. If x ∈ A and F (x) ⊂ V , where V is open in Y , then there exists an open
set U containing x such that

F (x
′
) ⊂ V for all x

′
∈ U.

From the definition of a multi-valued function H, we have F (x) = H(x). Since U
is open in A and A is open in X, U is open in X. So, we can consider U as an open
neighborhood.
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Then for H(x) ⊂ V , where V is open in Y there exists an open set U of x such
that

H(x
′
) ⊂ V for all x

′
∈ U.

If x ∈ B, then it can be shown that the multi-valued function H is upper semi-
continuous by taking multi-valued function G instead of F and following the same
way.

Similarly, the lower semi-continuity of H can be shown. As a result, the multi-
valued function H is continuous. �

3. m-Homeomorphisms

Definition 3.1. Let X and Y be topological spaces. Let F : X ⇒ Y be
one-to-one and onto multi-valued function. If both F and its inverse F− : Y ⇒ X
are continuous, then F is called an m-homeomorphism.

Lemma 3.1. Let X, Y and Z be compact topological spaces. If F : X ⇒ Y and
G : Y ⇒ Z are m-homeomorphisms, then G◦F : X ⇒ Z is an m-homeomorphism.

Proof. Let F and G be m-homeomorphisms. Then G ◦ F is continuous. For
all x ̸= x

′ ∈ X, we have

G ◦ F (x) = G(F (x)) =
∪

y∈F (x)

G(y)

G ◦ F (x
′
) = G(F (x

′
)) =

∪
y′∈F (x′ )

G(y
′
).

As F is an m-homeomorphism, it is one-to-one i.e. F (x)∩F (x
′
) = ∅ for x ̸= x

′
. So,

y ∈ F (x) and y
′ ∈ F (x

′
) are different from each other. At the same time, as G is

one-to-one, if y ̸= y
′
, then G(y)∩G(y

′
) = ∅. So, we have G ◦F (x)∩G ◦F (x

′
) = ∅.

It means that G ◦ F is one-to-one.
Since the range of the multi-valued function G ◦ F is

R(G ◦ F ) =
∪
x∈X

G ◦ F (x) =
∪
x∈X

G(F (x))

= G
( ∪

x∈X

F (x)
)
= G(Y ) ∵ F is onto F (X) = Y

=
∪
y∈Y

G(y) = Z ∵ G is onto G(Y ) = Z,

G ◦ F is onto.
From [7, Proposition 13.3.2] we have (G ◦ F )− = F− ◦G−. Since F− and G−

are continuous, their composite is also continuous.
Thus, G ◦ F is an m-homeomorphism. �
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4. m-Pathwise Connectedness

Definition 4.1. ([23]) A space Y is said to be m-pathwise connected if for
closed subsets Y0 and Y1 of Y , there exists a continuous multi-valued function F
from the unit interval I to Y such that F (0) = Y0 and F (1) = Y1.

Lemma 4.1. Let X be a topological space. Asuume that A, B and C are closed
subsets of X. Let A ∼m B denote the relation

A ∼m B :⇔ there is a m-path from A to B in X,

i.e. there is a continuous multi-valued function F : I ⇒ X such that F (0) = A and
F (1) = B.

Proof. For a closed subset A, let F : I ⇒ X be a constant multi-valued
function such that F (t) = A, for all t ∈ I. Since F is constant, it is continuous.
So, there exists a m-path from A to A.

Assume that A ∼m B. Then there exists a continuous multi-valued function
F : I ⇒ X such that F (0) = A and F (1) = B. So, define a continuous
multi-valued function G : I ⇒ X such that G(t) = F (1 − t). We get B ∼m A
by the multi-valued function G.

Suppose now that A ∼m B and B ∼m C. Then there exist continuous
multi-valued function F,G : I ⇒ X such that F (0) = A, F (1) = B and G(0) = B,
G(1) = C. Define a multi-valued function such that

H : I ⇒ X

t 7→ H(t) =

{
F (2t), 0 6 t 6 1

2

G(2t− 1), 1
2 6 t 6 1.

It is continuous from Lemma 2.4. On the other hand, we have

H(0) = F (0) = A and

H(1) = G(1) = C.

So, we get A ∼m C. �

Theorem 4.1. Let X and Y be compact topological spaces. X and Y are
m-pathwise connected if and only if X × Y be a m-pathwise connected space.

Proof. Suppose that X and Y are m-pathwise connected spaces. Since X is
m-pathwise connected, there exists a continuous multi-valued function F : I ⇒ X
such that F (0) = X0 and F (1) = X1, where X0 and X1 are closed subsets of X.
Since Y is m-pathwise connected, there exists a continuous multi-valued function
G : I ⇒ Y such that G(0) = Y0 and G(1) = Y1, where Y0 and Y1 are closed subsets
of Y . So, we have

F ×G : I ⇒ X × Y

such that F×G(0) = F (0)×G(0) = X0×Y0 and F×G(1) = F (1)×G(1) = X1×Y1.
Since X0, X1 are closed in X and Y0, Y1 are closed in Y , X0 × Y0 and X1 × Y1

are closed in X × Y . Moreover, we know that the multi-valued function F × G
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is continuous from Theorem 2.1 and 2.2. Consequently, X × Y is m-pathwise
connected.

Since the space X × Y is m-pathwise connected, there exists a
continuous multi-valued function F : I ⇒ X × Y such that F (0) = (X0, Y0) and
F (1) = (X1, Y1), where X0, X1 are closed subsets of X and Y0, Y1 are closed subsets
of Y . Define a continuous multi-valued function

G : I ⇒ X

t 7→ G(t) = π ◦ F (t),

where π : X × Y ⇒ X, (x, y) 7→ {x} is continuous multi-valued function. Since

π(X0, Y0) =
∪

x∈X0,y∈Y0

π(x, y) =
∪

x∈X0

{x} = X0,

we have

G(0) = π ◦ F (0) = π(X0, Y0) = X0 ⊂ X

G(1) = π ◦ F (1) = π(X1, Y1) = X1 ⊂ X.

Therefore, X is m-pathwise connected. Similarly, it can be shown that Y is
m-pathwise connected. �

Example 4.1. A unit interval I is an m-pathwise connected space.

Proof. Assume that A and B are any closed subsets of I. If there exists a
continuous multi-valued function F : I ⇒ I such that F (0) = A and F (1) = B,
then I is m-pathwise connected. So let define a multi-valued function F such that

F : I ⇒ I

t 7→


A, 0 6 t < 1

2

I, t = 1
2

B, 1
2 < t 6 1.

First, we shall show that the multi-valued function is upper semi-continuous:
For 0 6 t < 1

2 , let V be an open set such that F (t) = A ⊂ V . If we take the

open set [0, 1
2 ) = U , then for all t

′ ∈ U , F (t
′
) = A ⊂ V . For 1

2 < t 6 1, suppose

that V be an open set such that F (t) = B ⊂ V . If we take the open set ( 12 , 1] = U ,

then for all t
′ ∈ U , F (t

′
) = B ⊂ V . For t = 1

2 , let V be an open set such that

F (t) = I ⊆ I = V . If we take the open set such that t = 1
2 ∈ U , then for all t

′ ∈ U ,

F (t
′
) ⊂ I. So, F is upper semi continuous. Similarly, the lower semi-continuity of

F can be shown. Therefore, I is an m-pathwise connected space. �

From Example 4.1 and Theorem 4.1, we conclude that In is
m-pathwise connected.

Theorem 4.2. Let X and Y be compact spaces. If F : X ⇒ Y is a
continuous closed multi-valued function and X is m-pathwise connected, then F (X)
is m-pathwise connected.
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Proof. Assume that X is m-pathwise connected. Then there exists a
continuous multi-valued function G : I ⇒ X such that G(0) = A and G(1) = B,
where A and B are closed subsets of X [23]. Since I, X and Y are compact and
F and G are continuous, the composite function G ◦F is continuous. On the other
hand, we have

F ◦G(0) =
∪

x∈G(0)

F (x) =
∪
x∈A

F (x) = F (A) and

F ◦G(1) =
∪

x∈G(1)

F (x) =
∪
x∈B

F (x) = F (B).

By the definition of a closed multi-valued function, F (A) and F (B) are closed
subsets of F (X) whenever A and B are closed subsets of X.

Thus, F (X) is m-pathwise connected. �

Theorem 4.3. Let X and Y be compact spaces and F : X ⇒ Y be a
multi-valued quotient function. If X is a m-pathwise connected space, then Y is
m-pathwise connected.

Proof. Assume that F : X ⇒ Y is a m-quotient function. Then it is both
upper semi-quotient and lower semi-quotient by Definition 2.1. Since F is
upper semi-quotient, for a closed subset V of Y , F−(V ) is closed in X. So, it is
upper semi-continuous by Proposition 2.1. Similarly, since F is upper semi-quotient,
we have for an open subset U of Y , F−(U) is open in X. So, it is
upper semi-continuous. By Theorem 4.2, F (X) is m-pathwise connected. Since
F is the multi-valued quotient function, it is onto i.e. F (X) = Y . Thus, Y is
m-pathwise connected. �

Lemma 4.2. Let X be a finite topological space and C be a subset of X. If X1

and X2 be m-pathwise connected subsets of X such that C ⊂ X1∩X2, then X1∪X2

is m-pathwise connected.

Proof. Let A and B be subsets of X1 ∪X2. Since X is finite recall that all
spaces are assumed to be Hausdorff, X1 ∪X2 is Hausdorff and finite. So, A and B
are closed subsets of X1 ∪X2. There exists three cases for the subsets A and B:

Case 1: If A and B are subsets of X1, then it is obvious from m-pathwise
connectedness of X1.

Case 2: Similarly, if A and B are subsets of X2, then it is obvious for the
same reason.

Case 3: Let A be a subset of X1 and B be a subset of X2. The set C is closed
since X is finite. Since X1 is m-pathwise connected, there exists a continuous
multi-valued function F : I ⇒ X1 such that F (0) = A ⊂ X1 and F (1) = C ⊂ X1.
As X2 is m-pathwise connected, there exists a continuous multi-valued function
G : I ⇒ X2 such that G(0) = B ⊂ X2 and G(1) = C ⊂ X2. Since m-pathwise
connectedness is an equivalence relation, there exists a m-path between A and B.
Thus, X1 ∪X2 is m-pathwise connected. �
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5. Some Properties of the Multi-valued Function in Homotopy Theory

In this section, some properties of a multi-valued function will be given with
respect to the definition of multi-homotopy [23].

Definition 5.1. ([23]) Let F and G be multi-valued functions from X to
Y . Then F is said to be m-homotopic (multi-homotopic) to G if there exists a
continuous multi-valued function H : X × I ⇒ Y such that H(x, 0) = F (x) and
H(x, 1) = G(x). We write F ≃m G.

Lemma 5.1. The m-homotopy relation is an equivalence relation.

Proof. Let F : X ⇒ Y be the continuous multi-valued function and the
m-homotopy function defined by

H : X × I ⇒ Y

(x, t) 7→ H(x, t) = F (x).

Then it is continuous as F is. Furthermore, because of the equalitiesH(x, 0) = F (x)
and H(x, 1) = F (x) we get F ≃m F .

Assume that F ≃m G. Then there exists an m-homotopy function such that
H(x, 0) = F (x) and H(x, 1) = G(x). If we define an m-homotopy function by

K : X × I ⇒ Y

(x, t) 7→ K(x, t) = H(x, 1− t),

then it is continuous since H is continuous. Since

K(x, 0) = H(x, 1) = G(x) and K(x, 1) = H(x, 0) = F (x)

we have G ≃m F .
Suppose that F ≃m G and G ≃m H. Then there exists an

m-homotopy functions defined by K,W : X × I ⇒ Y such that K(x, 0) = F (x),
K(x, 1) = G(x) and W (x, 0) = G(x), W (x, 1) = H(x). So, in order to show that
F ≃m H we define an m-homotopy function M as follows:

M : X × I ⇒ Y

(x, t) 7→ M(x, t) =

{
K(x, 2t), 0 6 t 6 1

2

W (x, 2t− 1), 1
2 6 t 6 1

and it is continuous from Lemma 2.4. Since M(x, 0) = K(x, 0) = F (x) and
M(x, 1) = W (x, 1) = H(x), we get F ≃m H. �

Theorem 5.1. Let X,Y and Z be compact spaces and F,G : X ⇒ Y be two
continuous multi-valued functions. If F ≃m G and H : Y ⇒ Z are continuous
multi-valued function, then H ◦ F ≃m H ◦G.

Proof. If F ≃m G, then there exists a multi-homotopy function
K : X × I ⇒ Y such that K(x, 0) = F (x) and K(x, 1) = G(x). Define a
multi-valued function W = H ◦ K, where H : Y ⇒ Z is a continuous
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multi-valued function. Since H and K are continuous, W is continuous. On the
other hand, we have

W (x, 0) = H ◦K(x, 0) =
∪

y∈K(x,0)

H(y) =
∪

y∈F (x)

H(y) = H ◦ F (x) and

W (x, 1) = H ◦K(x, 1) =
∪

y∈K(x,1)

H(y) =
∪

y∈G(x)

H(y) = H ◦G(x).

So, H ◦ F ≃m H ◦G is obtained. �

Theorem 5.2. Let X,Y and Z be compact spaces and F,G : X ⇒ Y be two
continuous multi-valued functions. If F ≃m G and H : Z ⇒ X is a continuous
multi-valued function, then F ◦H ≃m G ◦H.

Proof. If F ≃m G, then there exists a multi-homotopy function
K : X×I ⇒ Y between F and G. Define a multi-valued functionW = K◦(H×idI),
where H : Z ⇒ X is a continuous multi-valued function and idI is the identical
function on I. Since K, H and H× idI are continuous, W is continuous. Moreover,
we have

W (z, 0) = K(H(z), 0) = F (H(z)) = F ◦H(z) and

W (z, 1) = K(H(z), 1) = G(H(z)) = G ◦H(z).

So, F ◦H ≃m G ◦H is obtained. �

Theorem 5.3. Let Fi be constant multi-valued functions such that for closed
subsets of X, X0 and X1, Fi : X ⇒ X, x 7→ Xi, where i = 0, 1. Then F0 ≃m F1

if and only if there exists a continuous multi-valued function F : I ⇒ X such that
F (0) = X0 and F (1) = X1.

Proof. Let

F0 : X ⇒ X and F1 : X ⇒ X

x 7→ X0 x 7→ X1

be constant multi-valued functions and F0 ≃m F1. Then there exists a
multi-homotopy function H : X × I ⇒ X such that H(x, 0) = F0(x) = X0 and
H(x, 1) = F1(x) = X1. In this case, if the function F is defined by

F : I ⇒ X

t 7→ F (t) = H(x, t),

we get a continuous multi-valued function F such that F (0) = H(x, 0) = X0 and
F (1) = H(x, 1) = X1.

Let F : I ⇒ X be a continuous multi-valued function such that F (0) = X0 and
F (1) = X1, where X0, X1 ⊂ X. If we define a multi-homotopy function such that

H : X × I ⇒ X

(x, t) 7→ H(x, t) = F (t),
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then H is continuous and for a constant multi-valued function defined by

F0 : X ⇒ X and F1 : X ⇒ X

x 7→ X0 x 7→ X1,

we have H(x, 0) = F (0) = X0 = F0(x) and H(x, 1) = F (1) = X1 = F1(x). Thus,
we obtain F0 ≃m F1. �

Corollary 5.1. Let X be a topological space. X is m-pathwise connected if
and only if any two constant multi-valued function from X to X are m-homotopic
to each other.

Proof. By Teorem 5.3, proof is completed. �

Definition 5.2. ([23]) Two continuous functions F,G : X ⇒ Y are said to
be m-homotopic relative to A contained in X and B contained in Y if there exists
an m-homotopy H connecting F and G such that x ∈ A and t ∈ I imply that
H(x, t) = B

Theorem 5.4. Let X,Y and Z be compact topological spaces and A, B and C
be closed subsets of X, Y and Z respectively. Let F0, F1 : X ⇒ Y be continuous
multi-valued functions such that F0|A = F1|A and for i = 0, 1 Fi(A) ⊂ B. Let
G0, G1 : Y ⇒ Z be a continuous multi-valued function such that G0|B = G1|B. If
F0 ≃m F1 relative to (A,B) and G0 ≃m G1 relative to (B,C), then G0 ◦ F0 and
G1 ◦ F1 are m-homotopic relative to (A,C).

Proof. If F0 ≃m F1 relative to (A,B), then there exists an m-homotopy
function H connecting F0 and F1 such that for x ∈ A and t ∈ I, H(x, t) = B.

Moreover, if G0 ≃m G1 relative to (B,C), then there exists an m-homotopy
function K connecting G0 and G1 such that for x ∈ B and t ∈ I, K(x, t) = C.

Thus, define an m-homotopy function

H × 1 : X × I ⇒ Y × I

(x, t) 7→ H(x, t)× 1(x, t)

using a continuous multi-valued function

1 : X × I ⇒ I

(x, t) 7→ {t}.

First, the continuity of H × 1 and K implies the continuity of K ◦ (H × 1).
Furthermore, we have

K ◦ (H × 1)(x, 0) = K(H × 1(x, 0)) = K(H(x, 0)× 1(x, 0))

= K(F0(x)× {0})
= G0(F0(x)) = G0 ◦ F0(x),



ON CLASSIFICATIONS OF MULTI-VALUED FUNCTIONS USING MULTI-HOMOTOPY 173

where F0(x)× {0} = {(m,n)|m ∈ F0(x), n = 0} and

K ◦ (H × 1)(x, 1) = K(H × 1(x, 1)) = K(H(x, 1)× 1(x, 1))

= K(F1(x)× {1})
= G1(F1(x)) = G1 ◦ F1(x),

where F1(x)× {1} = {(m,n)|m ∈ F1(x), n = 0}.
For x ∈ A and t ∈ I, we know that H(x, t) = B and K(x, t) = C. So, we also have

K ◦ (H × 1)(x, t) = K(H(x, t)× 1(x, t))

= K(B × {t}) = C,

where B × {t} = {(m,n)|m ∈ B,n = t}.
Consequently, G0 ◦ F0 and G1 ◦ F1 are m-homotopic relative to (A,C). �

Strother [23] has given a multi-valued version of null homotopy for single-valued
functions.

Definition 5.3. ([23]) A multi-valued function F is said to be constant if, for
some fixed C0 contained in Y , x ∈ X implies that F (x) = C0. If G is m-homotopic
to a constant function we say that G is null m-homotopic and denote it by G ≃m 0.

Lemma 5.2. Let X, Y and Z be compact topological spaces. If F : X ⇒ Y
is null m-homotopic and G : Y ⇒ Z is a continuous multi-valued function, then
G ◦ F is null m-homotopic.

Proof. Since F is null m-homotopic, there exists a constant multi-valued
function C : X ⇒ Y such that F ≃m C. Then we have the m-homotopy function
H : X × I ⇒ Y , H(x, 0) = F (x) and H(x, 1) = C(x). Consider the multi-valued
function K = G ◦ H. Since G and H are continuous so K is. Let G(Y0) = Z0,
where Z0 ⊂ Z. Then we have

K(x, 0) = G ◦H(x, 0) = G(H(x, 0)) = G(F (x)) = G ◦ F (x) and

K(x, 1) = G ◦H(x, 1) = G(H(x, 1)) = G(C(x)) = G(Y0)

= Z0 = C
′
(x),

where C
′
: X ⇒ Z, x 7→ Z0 is a constant multi-valued function. Thus, K can be

considered as anm-homotopy function between G◦F and the constant multi-valued
function. So, G ◦ F is null m-homotopic. �

Lemma 5.3. If for any topological space Y the multi-valued function
F : S1 ⇒ Y is null m-homotopic, then it can be extended to a continuous
multi-valued function G : D2 ⇒ Y .

Proof. Assume that F : S1 ⇒ Y is null m-homotopic. Then for a constant
multi-valued function C : S1 ⇒ Y , x 7→ Y0, where Y0 is a subset of Y , there
exists an m-homotopy function H : S1 × I ⇒ Y such that H(x, 0) = F (x) and
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H(x, 1) = C(x). Define a function G by

G : D2 ⇒ Y

x 7→

{
Y0, 0 6 ||x|| 6 1

2

H( x
||x|| , 2− 2||x||), 1

2 6 ||x|| 6 1.

It is continuous from Lemma 2.4. Furthermore, for x ∈ S1 ⊂ D2, we get
G(x) = H(x, 0) = F (x). This means that the multi-valued function G is an exten-
sion of a multi-valued function F . �

Theorem 5.5. Let Y be a topological space. If Y is m-pathwise connected, then
an m-homotopy class of continuous multi-valued functions from a unit interval I
to Y has only one element.

Proof. Let F : I ⇒ Y be a continuous multi-valued function such that F (0) =
Y1, F (1) = Y2, where Y1, Y2 are closed in Y and C0 : I ⇒ Y , t 7→ Y0 be a constant
multi-valued function, where Y0 closed in Y . Since Y is m-pathwise connected,
there exists a continuous multi-valued function G : I ⇒ Y such that G(0) = Y1

and G(1) = C0(t) = Y0. If we define a multi-valued function H such that

H : I × I ⇒ Y

(t, s) 7→ H(t, s) =

{
F ((1− 2s)t) 0 6 s 6 1

2

G(2s− 1) 1
2 6 s 6 1,

then it is continuous from Lemma 2.4. As

H(t, 0) = F (t)

H(t, 1) = G(1) = Y0 = C0(t),

we get F ≃m C0. Consequently, any contiuous multi-valued function from I to Y
is m-homotopic to the constant multi-valued function. So, the m-homotopy class
has only one element. �

Strother [23] defined the product F ∗G of F and G.

Definition 5.4. ([23]) For each space Y , a closed subset Y0 of Y , and a positive
integer n we define

MQ(n, Y, Y0) = {F : In ⇒ Y |F is continuous and F (x) = Y0 for all x ∈ Bn−1}.

The subset Bn−1 of In (product unit interval) consisting of points (x1, · · · , xn)
for which some coordinate is zero or one, and is called the boundary of In.

Definition 5.5. ([23]) Let F and G be elements of MQ(n, Y, Y0). Define
H = F ∗G by

H(x1, · · · , xn) =

{
F (2x1, · · · , xn) if 0 6 x1 6 1

2

G(2x1 − 1, · · · , xn) if 1
2 6 x1 6 1.

Denote the class of functions m-homotopic to F relative to (Bn−1, Y0) by [F ].
Define [F ] ∗ [G] to be [F ∗G]
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Moreover, the function H is well-defined and continuous by Lemma 2.4.

Theorem 5.6 ([23]). Let Y be a compact Hausdorff space. Then the m-
homotopy classes of the continuous functions in MQ(n, Y, Y0) form a group
MΠn(Y, Y0) called the n-th m-homotopy group of the space Y with base set Y0.
For x ∈ Bn−1, the zero element in MΠn(Y, Y0) is the constant function F (x) = Y0

and the inverse of a function F is defined by

F−1(x1, · · · , xn) = F (1− x1, · · · , xn),

for (x1, · · · , xn) ∈ Bn−1.

From the definition of a product operation and Theorem 5.6, we will give the
following property about product operation. Suppose that F,G ∈ MQ(n, Y, Y0).
Then for x = (x1, · · · , xn),

G ∗ F−1(x) =

{
G(2x1, x2, · · ·xn) 0 6 x 6 1

2

F−1(2x1 − 1, x2, · · · , xn)
1
2 6 x 6 1

=

{
G(2x1, x2, · · · , xn) 0 6 x 6 1

2

F (1− (2x1 − 1), x2, · · · , xn)
1
2 6 x 6 1

=

{
G(2x1, x2, · · · , xn) 0 6 x 6 1

2

F (2− 2x1, x2, · · · , xn)
1
2 6 x 6 1.

Moreover, when x1 = 1
2 , then G1 = Y0 = F1. Since

(F ∗G)−1(x) = F ∗G(1− x1, x2, · · · , xn)

=

{
F (2(1− x1), x2, · · · , xn) 0 6 1− x 6 1

2

G(2(1− x1)− 1, x2, · · · , xn)
1
2 6 1− x 6 1

=

{
F (2− 2x1, x2, · · · , xn)

1
2 6 x 6 1

G(1− 2x1, x2, · · · , xn) 0 6 x 6 1
2 ,

and

G−1 ∗ F−1(x) =

{
G−1(2x1, x2, · · · , xn) 0 6 x 6 1

2

F−1(2x1 − 1, x2, · · · , xn)
1
2 6 x 6 1

=

{
G(1− 2x1, x2, · · · , xn)

1
2 6 x 6 1

F (1− (2x1 − 1), x2, · · · , xn) 0 6 x 6 1
2

=

{
G(1− 2x1, x2, · · · , xn)

1
2 6 x 6 1

F (2− 2x1, x2, · · · , xn) 0 6 x 6 1
2 .

Then (F ∗G)−1 = G−1 ∗ F−1 is obtained.

Theorem 5.7. Let F0, F1, G0, G1 ∈ MQ(n, Y, Y0). If F0 and F1 are
m-homotopic relative to (Bn−1, Y0) and G0, G1 are m-homotopic relative to
(Bn−1, Y0), then F0 ∗G0 and F1 ∗G1 are m-homotopic relative to (Bn−1, Y0).
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Proof. If F0 and F1 are m-homotopic relative to Bn−1 contained in In and
Y0 contained in Y , then there exists an m-homotopy H : In × I → Y connecting
F0 and F1 such that for x ∈ Bn−1 and t ∈ I, H(x, t) = Y0.

If G0 and G1 are m-homotopic relative to Bn−1 contained in In and Y0

contained in Y , then there exists an m-homotopy K : In × I → Y connecting
G0 and G1 such that for x ∈ Bn−1 and t ∈ I, K(x, t) = Y0.

Therefore, we can define an m-homotopy function between F0 ∗G0 and F1 ∗G1

as follows:

M : In × I → Y

(x1, x2, · · ·xn, t) 7→

{
H(2x1, x2, · · ·xn, t) 0 6 x1 6 1

2

K(2x1 − 1, x2, · · ·xn, t)
1
2 6 x1 6 1,

M(x1, x2, · · ·xn, 0) =

{
H(2x1, x2, · · ·xn, 0) 0 6 x1 6 1

2

K(2x1 − 1, x2, · · ·xn, 0)
1
2 6 x1 6 1

=

{
F0(2x1, x2, · · ·xn) 0 6 x1 6 1

2

G0(2x1 − 1, x2, · · ·xn)
1
2 6 x1 6 1

= F0 ∗G0,

and

M(x1, x2, · · ·xn, 1) =

{
H(2x1, x2, · · ·xn, 1) 0 6 x1 6 1

2

K(2x1 − 1, x2, · · ·xn, 1)
1
2 6 x1 6 1

=

{
F1(2x1, x2, · · ·xn) 0 6 x1 6 1

2

G1(2x1 − 1, x2, · · ·xn)
1
2 6 x1 6 1

= F1 ∗G1

and it is continuous from Lemma 2.4. Moreover, for all x ∈ Bn−1 and t ∈ I,
H(x, t) = Y0 and K(x, t) = Y0 because H and K are m-homotopy functions.
If x = (x1, · · · , xn) ∈ Bn−1, then x1 = 0 or x1 = 1. If x1 = 0, then
M(x1, x2, · · ·xn, t) = H(2x1, x2, · · ·xn, t) = Y0 and if x1 = 1, then
M(x1, x2, · · ·xn, t) = K(2x1, x2, · · ·xn, t) = Y0.

Thus, F0 ∗G0 and F1 ∗G1 are m-homotopic relative to (Bn−1, Y0). �

Theorem 5.8. Let F : I ⇒ Y and G : I ⇒ Y be continuous multi-valued
functions such that F (0) = Y0, F (1) = Y1, G(0) = Y1 and G(1) = Y2, where Y0, Y1

and Y2 are closed subsets of Y . If H = F ∗ G, then for the multi-valued function
Ĥ defined by

Ĥ : MΠn(Y, Y0) → MΠn(Y, Y2)

[Z] 7→ [H−1] ∗ [Z] ∗ [H],

we have Ĥ = Ĝ ◦ F̂ .
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Proof. We have the following equality;

Ĥ([Z]) = [H−1] ∗ [Z] ∗ [H] = [(F ∗G)−1] ∗ [Z] ∗ [F ∗G]

= [G−1 ∗ F−1] ∗ [Z] ∗ [F ∗G]

= [G−1] ∗ [F−1] ∗ [Z] ∗ [F ] ∗ [G]

= [G−1] ∗ F̂ [Z] ∗ [G]

= Ĝ((F̂ [Z])) = Ĝ ◦ F̂ ([Z]).

So, we obtain the desired result. �

Definition 5.6. Let K : (Y, Y0) ⇒ (X,X0) be a continuous multi-valued
function and F ∈ MΠn(Y, Y0). Define a function as follows:

K∗ : MΠn(Y, Y0) → MΠn(X,X0)

[F ] 7→ K∗[F ] = [K ◦ F ].

The function K∗ is called the m-homomorphism induced by the multi-valued
function H relative to the base set Y0.

Moreover, if H is an m-homotopy between F and F
′
, then K ◦ H is an

m-homotopy between K ◦ F and K ◦ F ′
. So, K∗ is well-defined.

The fact that K∗ is a homomorphism follows from the following equality

K∗([F ] ∗ [H]) = K∗([F ∗H]) = [K ◦ (F ∗H)]

= [(K ◦ F ) ∗ (K ◦H)] = [(K ◦ F )] ∗ [(K ◦H)]

= K∗([F ]) ∗K∗([H]).

Proposition 5.1. Let X, Y and Z be compact spaces. If F : (X,X0) ⇒ (Y, Y0)
and G : (Y, Y0) ⇒ (Z,Z0) are the continuous multi-valued functions, then

(G ◦ F )∗ = G∗ ◦ F∗

holds.
If id(X,X0) : (X,X0) ⇒ (X,X0) is the identical function, then id∗ is the

identical homomorphism.

Proof. Let H : I ⇒ X be a continuous multi-valued function such that
H(0) = H(1) = X0, where X0 ⊂ X is closed set. By the definition, we have

G∗ ◦ F∗([H]) = G∗([F ◦H]) = [G ◦ (F ◦H)]

= [(G ◦ F ) ◦H] = (G ◦ F )∗([H]).

So, (G ◦ F )∗ = G∗ ◦ F∗ is obtained.
Similarly, we get

id∗([H]) = [id ◦H] = [H].

�
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Lemma 5.4. Let X and Y be compact topological spaces. If C is the constant
multi-valued function defined by

C : X ⇒ Y

x 7→ Y0,

where Y0 is closed subset of Y , then the m-homomorphism induced by C is a trivial
homomorphism.

Proof. Let F be the zero element in MΠ(Y, Y0). Then F : In ⇒ Y is a
continuous multi-valued function such that F (x) = Y0, for all x ∈ Bn−1, where Y0

is closed subset of Y . Since the m-homomorphism induced by C is

C∗ : MΠn(X,x0) → MΠn(Y, Y0)

[F ] 7→ [C ◦ F ]

and C ◦ F : In ⇒ Y here is a constant multi-valued function, C ◦ F is a zero
element in MΠn(Y, Y0). Thus, the m-homomorphism induced by C is a trivial
homomorphism. �

Lemma 5.5. Let X and Y be compact topological spaces. If H : X ⇒ Y and
K : X ⇒ Y are continuous multi-valued function such that they are m-homotopic,
then the m-homomorphism induced by these functions are equal.

Proof. Assume that H : X ⇒ Y and K : X ⇒ Y are m-homotopic. Since the
m-homotopy relation is reflexive, for any continuous multi-valued function
F : In ⇒ X, F ≃m F . So, we have

H ◦ F ≃m K ◦ F.
Hence, for the induced homomorphisms H∗,K∗ : MΠn(X,X0) ⇒ MΠn(Y, Y0), we
get [H ◦ F ] = [K ◦ F ]. So, the equality H∗([F ]) = K∗([F ]) holds. �

Corollary 5.2. Let X and Y be compact topological spaces. If H : X ⇒ Y
is a null m-homotopic, then the induced m-homomorphism H∗ is trivial.

Proof. SinceH : X ⇒ Y is nullm-homotopic, it ism-homotopic to a constant
multi-valued function C i.e. H ≃m C, where C : X ⇒ Y is a constant function.
From Lemma 5.5, their induced homomorphisms are equal, i.e. H∗ = C∗. Since the
m-homomorphism induced by constant function is a trivial homomorphism, H∗ is
trivial. �

In this part, we start with giving the multi-valued version of the homotopy
equivalence in algebraic topology called m-homotopy equivalence and m-homotopy
type.

Definition 5.7. Let X and Y be compact spaces. A continuous multi-valued
function F : X ⇒ Y is an m-homotopy equivalance if there is a continuous
multi-valued function G : Y ⇒ X with G ◦ F ≃m idX and F ◦G ≃m idY .

Two spaces X and Y have the same m-homotopy type if there is an
m-homotopy equivalence and written as X ≃m Y .
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Lemma 5.6. Let X, Y and Z be compact topological spaces. If F : X ⇒ Y
and G : Y ⇒ Z are m-homotopy equivalences, then G ◦ F is also an m-homotopy
equivalence.

Proof. Assume that F : X ⇒ Y is an m-homotopy equivalence. Then there
exists a continuous multi-valued function H : Y ⇒ X such that F ◦H ≃m idY and
H ◦ F ≃ idX .

Since G : Y ⇒ Z is an m-homotopy equivalence, there exists a continuous
multi-valued function K : Z ⇒ Y such that G ◦K ≃m idZ and K ◦G ≃ idY . We
obtain

(G ◦ F ) ◦ (H ◦K) = G ◦ (F ◦H) ◦K ≃m G ◦ idY ◦K = G ◦K ≃m idZ

and

(H ◦K) ◦ (G ◦ F ) = H ◦ (K ◦G) ◦ F ≃m H ◦ idY ◦ F = H ◦ F ≃m idX .

Therefore, G ◦ F is an m-homotopy equivalence. �

Lemma 5.7. The same m-homotopy type relation on compact spaces is an
equivalence relation.

Proof. For any topological space X since idX ◦ idX = idX ≃m idX , the space
X has the same m-homotopy type with itself. Suppose that
topological spaces X and Y has the relation X ≃m Y . So, there exists an
m-homotopy equivalence F : X ⇒ Y , this means that there exists a
continuous multi-valued function G : Y ⇒ X such that G ◦ F ≃m idX and
F ◦ G ≃m idY . Thus, G is an m-homotopy equivalence and Y has the same
m-homotopy type with X i.e. Y ≃m X. Assume that X ≃ Y and Y ≃ Z. So,
there exists m-homotopy equivalences F : X ⇒ Y and G : Y ⇒ Z. Then from
the Lemma 5.6 G ◦ F : X ⇒ Z is an m-homotopy equivalence. Thus, we get
X ≃m Z. �

Proposition 5.2. Let X, Y be compact spaces. Assume that F : X ⇒ Y is
an m-homotopy equivalence and G : X ⇒ Y is continuous. If G is m-homotopic to
F , then G is an m-homotopy equivalence.

Proof. Let F : X ⇒ Y be an m-homotopy equivalence. Then there exists
a continuous multi-valued function H : Y ⇒ X such that F ◦ H ≃m idY and
H ◦ F ≃ idX . Let G : X ⇒ Y be a continuous multi-valued function which is
m-homotopic to F . So

F ≃m G ⇒ H ◦ F ≃m H ◦G
⇒ idX ≃m H ◦G

and

F ≃m G ⇒ F ◦H ≃m G ◦H
⇒ idY ≃m G ◦H.

Hence, G is an m-homotopy equivalence. �
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Theorem 5.9. Let X and Y be compact topological spaces. If F : X ⇒ Y is an
m-homotopy equivalence, then m-homomorphism induced by F is an isomorphism.

Proof. The m-homomorphism induced by F : X ⇒ Y is defined by

F∗ : MΠn(X,X0) → MΠn(Y, Y0)

[G] 7→ [F ◦G],

where X0 is closed in X and Y0 is closed in Y . The multi-valued function maps one
equivalence class to another. So, it can be considered as a single-valued function.
Thus, we will continue the proof by considering F∗ as a single-valued function. Since
F is an m-homotopy equivalence, there exists a continuous multi-valued function
H : Y ⇒ X such that H ◦ F ≃m idX and F ◦H ≃m idY . Then we have

H ◦ F ≃m idX ⇒ (H ◦ F )∗ = H∗ ◦ F∗ = (idX)∗.

On the other hand, we know that an m-homomorphism induced by identical
function is an identical homomorphism i.e.

(idX)∗ : MΠn(X,X0) → MΠn(X,X0)

[G] 7→ [idX ◦G] = [G].

So, F∗ has a left m-homotopy inverse. Similarly, it is shown that the right
m-homotopy inverse exists.

Hence, F∗ is an m-isomorphism. �

Corollary 5.3. Let X, Y and Z be compact topological spaces. If F : X ⇒ Y
and G : Y ⇒ Z are m-homotopy equivalences, then the m-homomorphism induced
by G ◦ F is an isomorphism.

Proof. By Lemma 5.6, G ◦ F is an m-homotopy equivalence. From Theorem
5.9, the m-homomorphism (G ◦ F )∗ induced by G ◦ F is an isomorphism. �

Now, we introduce the notions of contractibility and retraction that are adapted
to multi-valued functions.

Definition 5.8. A compact topological space X is m-contractible if the
identical function idX is null m-homotopic.

Theorem 5.10. Let X and Y be compact topological spaces. If X and Y are
m-contractible spaces, then X × Y is m-contractible.

Proof. Assume that X is m-contractible. Then there exists a constant
multi-valued function CX : X ⇒ X, x 7→ X0 such that idX ≃m CX , where X0 is
closed in X. Because Y is m-contractible, there exists a constant
multi-valued function CY : Y ⇒ Y , y 7→ Y0 such that idY ≃m CY , where Y0

is closed in Y . As idX ≃m CX , we have a multi-homotopy function H : X× I ⇒ X
such that H(x, 0) = idX(x) and H(x, 1) = CX(x). Since idY ≃m CY , we have a
multi-homotopy function K : Y × I ⇒ Y such that K(y, 0) = idY (y) and
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K(y, 1) = CY (y). So, if the multi-valued function F is defined by

F : (X × Y )× I ⇒ X × Y

(x, y, t) 7→
{(

H(x, t),K(y, t)
)}

,

then we have

F (x, y, 0) =
{(

H(x, 0),K(y, 0)
)}

= {(idX(x), idY (y))}
= {(x, y)} = idX×Y (x, y)

and

F (x, y, 1) =
{(

H(x, 1),K(y, 1)
)}

=
{(

CX(x), CY (y)
)}

= {(X0, Y0)}
= C0 = CX×Y (x, y),

where CX×Y is the constant multi-valued function defined by

CX×Y : X × Y ⇒ X × Y

(x, y) 7→ C0.

The set C0 is defined by C0 = {(X0, Y0)} = {(x, y) ∈ X × Y |x ∈ X0, y ∈ Y0}. By
the upper-semi continuity and the lower-semi continuity of the functions H and K,
F is continuous. Consequently, X × Y is m-contractible. �

Lemma 5.8. If a compact space Y is m-contractible, then any two multi-valued
function from any compact topological space X to Y are m-homotopic.

Proof. Suppose that the space Y is an m-contractible space. Then idY is an
m-homotopic to a constant multi-valued function C : Y ⇒ Y on the closed subset
Y0 of Y .

For any continuous multi-valued function F : X ⇒ Y , we get

F = idY ◦ F ≃m C ◦ F,
where C ◦ F is a constant multi-valued function.

Since m-homotopy relation is an equivalence relation, any two continuous
multi-valued function from X to Y are m-homotopic. �

Theorem 5.11. Let X and Y be compact topological spaces. If Y is
m-contractible, then an m-homotopy class of a continuous multi-valued function
from X to Y has only one element.

Proof. Let Y be m-contractible. Then an identical function idY : Y ⇒ Y is
m-homotopic to a constant multi-valued function C : Y ⇒ Y , y 7→ Y0, where
Y0 ⊂ Y . So, there exists a multi-homotopy function H : Y × I ⇒ Y between idY
and C. Let F : X ⇒ Y be any continuous multi-valued function. So, we know
that a multi-valued function F × idI : X × I ⇒ Y × I is continuous, where idI is a
identical function on unit interval I by Lemma 2.2. Then a multi-valued function
G defined by

G : X × I ⇒ Y

(x, t) 7→ G(x, t) = H ◦ (F × idI)(x, t)
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is continuous. Moreover, we have

G(x, 0) = H ◦ (F × idI)(x, 0) = H(F (x), 0) = idY (F (x)) = F (x),

G(x, 1) = H ◦ (F × idI)(x, 1) = H(F (x), 1) = C(F (x)) = Y0.

Thus, F is m-homotopic to a constant multi-valued function. Since F is arbitrarly
chosen, it means that an m-homotopy class of a continuous multi-valued function
from A to B has only one element. �

Theorem 5.12. Let X be a compact topological space. The space X is
m-contractible if and only if for any compact topological space Y , every
continuous multi-valued function F : Y ⇒ X is null m-homotopic.

Proof. If the space X is m-contractible, then every continuous multi-valued
function F : Y ⇒ X is null m-homotopic by Theorem 5.11. Conversely, let
continuous multi-valued function F : Y ⇒ X is null m-homotopic. Since the
space Y is any space, we can take Y = X. Thus, the identical function on X is
null m-homotopic. So, X is m-contractible. �

Theorem 5.13. Let X be a finite space. If X is m-contractible, then it is
m-pathwise connected.

Proof. Since X is m-contractible, the identical function on X is null
m-homotopic. For any subset X0 of X, define the constant multi-valued function
C by

C : X ⇒ X

x 7→ X0.

Thus, there exists a continuous multi-valued function H : X × I ⇒ X such that
H(x, 0) = idX(x) = {x} and H(x, 1) = C(x) = X0. Define a multi-valued function
F such that

F : I ⇒ X

t 7→ F (t) = H(x, t).

A continuity of H implies that F is continuous. Moreover, we have

F (0) = H(x, 0) = idX(x) = {x} and

F (1) = H(x, 1) = C(x) = X0,

where {x} and X0 are closed subsets of X. Therefore, we obtain that X is
m-pathwise connected. �

Definition 5.9. A closed subspace A of a compact topological space X is
m-retract of X if there is a continuous multi-valued function R : X ⇒ A with
R(a) = {a}, for all a ∈ A such a multi-valued function is called an m-retraction.

Equivalently, a continuous multi-valued function R such that R ◦ I = idA is
called an m-retraction, where I : A ⇒ X is an m-inclusion function.



ON CLASSIFICATIONS OF MULTI-VALUED FUNCTIONS USING MULTI-HOMOTOPY 183

Theorem 5.14. Let X, Y and Z be compact topological spaces and X ⊂ Y . If
X is an m-retract of Y , then every continuous multi-valued function F : X ⇒ Z
can be extended to a continuous multi-valued function F̃ : Y ⇒ Z. So, if X is the
m-retract of Y and F0, F1 : X ⇒ Z are the m-homotopy equivalent functions, then
F̃0 ≃m F̃1.

Proof. Assume that X is the m-retract of Y . Then there exists a continuous
multi-valued function R : Y ⇒ X with R(x) = {x}, for all x ∈ X. If
F0, F1 : X ⇒ Z are m-homotopy equivalent functions, then there exists a
continuous multi-valued function H : X × I ⇒ Z such that H(x, 0) = F0(x)
and H(x, 1) = F1(x). Assume that idI : I ⇒ I is an identical function on a unit
interval. The continuities of idI , R and H imply that H ◦ (R × I) is continuous.
Thus, the multi-valued function defined by

K : Y × I ⇒ Z

(y, t) 7→ K(y, t) = H ◦ (R× I)(y, t)

is continuous. Since we have

K(y, 0) = H ◦ (R× I)(y, 0) = H(R(y), 0) = F0(R(y)) = F0 ◦R(y) = F̃0 and

K(y, 1) = H ◦ (R× I)(y, 1) = H(R(y), 1) = F1(R(y)) = F1 ◦R(y) = F̃1,

F̃0 ≃m F̃1 is obtained. �

Lemma 5.9. Let X be a compact topological space, A be a closed in X and
R : X ⇒ A be an m-retraction function. If X is m-contractible, then A is also
m-contractible.

Proof. Assume that X is m-contractible. Then there exists a constant
multi-valued function

CX : X ⇒ X

x 7→ X0

such that idX ≃m CX , where X0 ⊂ X. Thus, there exists a multi-homotopy
function H : X×I ⇒ X such that H(x, 0) = idX and H(x, 1) = CX . If R : X ⇒ A
is the m-retraction, then for all a ∈ A, R(a) = {a}. Let A0 = R(X0) where A0 is
subset of A and letK be the composition R◦H. Then this functionK is continuous.
On the other hand, we have

K(a, 0) = R ◦H(a, 0) = R(idX(a))

= R(a) = {a} = idA(a)

and

K(a, 1) = R ◦H(a, 1) = R(CX(a))

= R(X0) = A0 = CA(x),
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where

CA : A ⇒ A

a 7→ A0

is the constant function on A. Thus, A is m-contractible. �

Definition 5.10. Let X be a compact topological space and A be a closed
subspace of X. If there exists a multi-homotopy function H : X× I ⇒ X such that
for all x ∈ X and a ∈ A,

H(x, 0) = {x},
H(x, 1) ∈ A and

H(a, 1) = {a},

then a subspace A of X is called a deformation m-retract of X.
Equivalent to this definition, if there exists an m-retraction R : X ⇒ A such

that R ◦ I = idA and I ◦R ≃m idX , where I : A ⇒ X is an m-inclusion function,
then a subspace A of X is called a deformation m-retract of X.

Theorem 5.15. Let X be a compact topological space and A, B be closed
subsets of X such that B ⊂ A ⊂ X. If A is a deformation m-retract of X and B
is a deformation m-retract of A, then B is a deformation m-retract of X.

Proof. If A is a deformation m-retract of X, then there exists a
multi-homotopy function H : X × I ⇒ X such that for all x ∈ X and a ∈ A,

H(x, 0) = {x},
H(x, 1) ∈ A and

H(a, 1) = {a}.

Since B is a deformation m-retract of A, there exists a multi-homotopy function
K : A× I ⇒ A such that for all x ∈ A and b ∈ B,

K(a, 0) = {a},
K(a, 1) ∈ B and

K(b, 1) = {b}.

If we define a multi-valued function such that

F : X × I ⇒ X

(x, t) 7→ F (x, t) =

{
H(x, 2t) , t ∈ [0, 1

2 ]

K(R(x), 2t− 1) , t ∈ [ 12 , 1],

where R : X ⇒ A is an m-retraction then it is continuous from Lemma 2.4. As A
is a deformation m-retract of X, we have R ◦ I = idA and I ◦ R ≃m idX . So, for
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all b ∈ B ⊂ A, we have R(b) = {b}. Since for all x ∈ X and b ∈ B, we have

F (x, 0) = H(x, 0) = {x},
F (x, 1) = K(R(x), 1) ∈ B and

F (b, 1) = K(R(b), 1) = {b}.

Thus, B is a deformation m-retract of X. �

Lemma 5.10. Let X be a compact topological space and A be a closed subset of
X. If A is a deformation m-retract of X, then X and A have the same m-homotopy
type.

Proof. If A is a deformation m-retract of X, then there exists a continuous
multi-valued function R : X ⇒ A such that R ◦ I = idA and I ◦ R ≃m idA, where
I : A ⇒ X is the m-inclusion function. If R ◦ I = idA, then R ◦ I ≃m idA. Since
I ◦R ≃m idA, X and A have the same m-homotopy type. �

Definition 5.11. LetX be a compact topological space, A andA
′
be nonempty

closed subsets of X such that A
′ ⊆ A and I : A ⇒ X be an m-inclusion function.

If there exists an m-retraction R : X ⇒ A such that R ◦I = idA and I ◦R ≃m idX
relative to (A

′
, A

′
), then a subspace A of X is called a strong deformation m-retract

of X. In this case, the multi-valued function R is called a strong deformation
m-retraction function.

Lemma 5.11. Let X be a compact topological space, A be a nonempty closed
subset of X. If A is a strong deformation m-retract of X, then the m-inclusion
function I : A ⇒ X is m-homotopy equivalence.

Proof. Assume that A is a strong deformation m-retract of X. Then there
exists anm-retraction R : X ⇒ A such that R◦I = idA and I◦R ≃m idX relative to
(A

′
, A

′
), where ∅ ̸= A

′ ⊂ A. Thus, there exists a continuous
multi-valued function R such that R ◦ I ≃m idA and I ◦ R ≃m idX . So, the
m-inclusion function I is m-homotopy equivalence. �

Theorem 5.16. Let X, Y , Z be compact topological spaces and Z, Y be
nonempty subspaces such that Z ⊂ Y ⊂ X. If Z is a strong deformation m-retract
of Y and Y is a strong deformation m-retract of X, then Z is a strong deformation
m-retract of X.

Proof. Assume that Z is a strong deformation m-retract of Y . Then there
exists an m-retraction R1 : Y ⇒ Z such that R1 ◦ I1 = idZ and I1 ◦ R1 ≃m idY
relative to (Z,Z), where I1 : Z ⇒ Y be an m-inclusion function. Suppose that Y is
a strong deformation m-retract of X. So, there exists an m-retraction R2 : X ⇒ Y
such that R2◦I2 = idY and I2◦R2 ≃m idX relative to (Z,Z), where I2 : Y ⇒ X be
an m-inclusion function. Hence, we have continuous multi-valued functions I2 ◦ I1
and R1 ◦R2. Furthermore, we have
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(R1 ◦R2) ◦ (I2 ◦ I1)(z) =
∪

x∈(I2◦I1)(z)

R1 ◦R2(x)

=
∪

x∈(I2◦I1)(z)

∪
y∈R2(x)

R1(y) =
∪

x∈(I2◦I1)(z)
y∈R2(x)

R1(y)

=
∪

y∈R2◦(I2◦I1)(z)

R1(y) =
∪

y∈I1(z)

R1(y)

= R1 ◦ I1(z) = {z} = idZ(z).

Since I1 ◦ R1 ≃m idY relative to (Z,Z), there exists a multi-homotopy function
H : Y × I ⇒ Y such that H(y, 0) = I1 ◦ R1(y), H(y, 1) = idY (y) and for all
y ∈ Z, t ∈ I, H(y, t) = Z. Since I2 ◦ R2 ≃m idX relative to (Z,Z), there exists a
multi-homotopy function K : X × I ⇒ X such that K(x, 0) = I2 ◦ R2(x),
K(x, 1) = idX(x) and for all x ∈ Z, t ∈ I, K(x, t) = Z. Since I2 ◦ R2(x) ⊂ Y by
the definition of I2, we can define a multi-valued function F such that

F : X × I ⇒ X

(x, t) 7→

{
H(I2 ◦R2(x), 2t), t ∈ [0, 1

2 ]

K(x, 2t− 1), t ∈ [ 12 , 1].

Therefore, it is continuous by Lemma 2.4 and we find

F (x, 0) = H(I2 ◦R2(x), 0) = I1 ◦R1(I2 ◦R2(x))

= I1 ◦R1(R2(x)) = I1(R1 ◦R2(x))

= I2(I1(R1 ◦R2(x))) = (I2 ◦ I1) ◦ (R1 ◦R2)(x) and

F (x, 1) = K(x, 1) = idX(x).

So, we obtain (I2 ◦ I1) ◦ (R1 ◦R2)(x) ≃m idX . Furthermore, for all x ∈ Z, we have

H(I2 ◦R2(x), 2t) = Z, for 0 6 t 6 1

2
and

K(x, 2t− 1) = Z, for
1

2
6 t 6 1.

For all x ∈ Z and t ∈ I, we get F (x, t) = Z. Consequently, Z is a strong deformation
m-retract of X. �

6. Conclusion

Multi-valued functions are a generalization of single-valued functions. So, it is
possible to give multi-valued versions of many notions and properties for
single-valued functions. In this paper, we give multi-valued versions of
properties related to the path connectivity notion in general topology and
lemmas and theorems related to the homotopy in algebraic topology.

Our aim is to learn more about the class of multi-valued functions using
algebraic topology methods and tools. Moreover, we contribute to the theory of
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homotopy of multi-valued functions. For this reason, we have determined which of
the existing definitions and properties can be applied to the multi-valued
functions. Then we determine whether an additional condition is required for these
definitions, theorems and results. As a result, our main aim is to improve the
algebraic topological aspect of multi-valued functions.

Acknowledgement. The authors thank the reviewer (s) for helpful sugges-
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