# SHEFFER STROKE BCH-ALGEBRAS 

Tahsin Oner, Tuğce Kalkan, and Melisa Çakar


#### Abstract

In this paper, Sheffer stroke BCH-algebra is defined and its features are studied. It is stated the connection between a Sheffer stroke BCHalgebra and a BCH-algebra by defining a unary operation on a Sheffer stroke BCH-algebra. After describing a subalgebra and a BCA-part of a Sheffer stroke BCH-algebra, the relationship of this structures is shown. After determining a minimal element and a medial element of Sheffer stroke BCH-algebra, it is shown that this structures are equivalent. It is proved that the collection of all minimal elements are equal to all medial elements of a Sheffer stroke BCHalgebra. Morever, a centre and a branch of a Sheffer stroke BCH-algebra are defined and it is demonstrated that the centre is a subalgebra. It is indicated that the collection of all minimal elements and medial elements are subalgebras of a Sheffer stroke BCH-algebra. Finally, an ideal and a closed ideal are described and it is proved that an ideal is a closed ideal if and only if it is a subalgebra.


## 1. Introduction

In 1966, two classes of abstract algebras, BCK-algebras and BCI-algebras, were introduced by Y. Imai and K. Iséki ([8], [9]). It is known that the class of BCKalgebras is a proper subclass of the class of BCI-algebras. In 1983, Hu and $\mathrm{Li}[[\mathbf{6}]$, [7]] introduced a new class of algebras so-called BCH -algebras. It is known that BCK-algebras and BCI-algebras are contained in the class of BCH-algebras. They have studied a few properties of these algebras. Some other properties of these algebras have been studied by Chaudhry ([1], [2]), Dudek and Thomys [5] and many other researchers.

The Sheffer stroke operation, which was first introduced by H. M. Sheffer [16], engages many scientists' attention, because any Boolean function or axiom can

[^0]be expressed by means of this operation [10]. It reducts axiom systems of many algebraic structures. So, many researchers want to use this operation on their studies. Also, some applications of this operation has been appeared in algebraic structures such as Sheffer stroke non-associative MV-algebras [3] and filters [12], Sheffer stroke Hilbert algebras [11], Sheffer stroke UP-algebras [13], Sheffer stroke BG-algebras [14], Class of Sheffer stroke BCK-algebras [15] and Sheffer operation in ortholattices [4].

After giving basic definitions and notions about a Sheffer stroke and a BCHalgebra, it is defined a Sheffer stroke BCH-algebra. By presenting fundamental notions about this algebraic structure, it is stated the connection between a Sheffer stroke BCH-algebra and a BCH-algebra. It is demonstrated that every Sheffer stroke BCK-algebra is a Sheffer stroke BCH-algebra and one condition is necessary for the converse to be true. A subalgebra and a BCA-part of a Sheffer stroke BCHalgebra are defined and it is shown that a BCA-part is a subalgebra. By describing a minimal element and a medial element of a Sheffer stroke BCH-algebra, it is shown that the minimal element and medial element are equivalent and the collection of all minimal elements are equal to all medial elements in a Sheffer stroke BCH-algebra. The centre of a Sheffer stroke BCH-algebra is defined and it is proved that a centre is a subalgebra. After defining branch of a Sheffer stroke BCH-algebra, related concepts are given. It is presented that the collection of all minimal elements and medial elements are subalgebras of a Sheffer stroke BCH-algebra. Finally, an ideal and a closed ideal are defined and it is shown that an ideal is a closed ideal if and only if it is a subalgebra.

## 2. Preliminaries

In this part, we give the basic definitions and notions about a Sheffer stroke and a BCH -algebra.

Definition 2.1. ([3]) Let $\mathcal{A}=\langle A, \mid\rangle$ be a groupoid. The operation $\mid$ is said to be Sheffer stroke if it satisfies the following conditions:
(S1) $a_{1}\left|a_{2}=a_{2}\right| a_{1}$,
(S2) $\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{2}\right)=a_{1}$,
(S3) $a_{1}\left|\left(\left(a_{2} \mid a_{3}\right) \mid\left(a_{2} \mid a_{3}\right)\right)=\left(\left(a_{1} \mid a_{2}\right) \mid\left(a_{1} \mid a_{2}\right)\right)\right| a_{3}$,
(S4) $\left(a_{1} \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)=a_{1}$.
Definition 2.2. ([6]) A BCH-algebra is an algebra $(A, *, 0)$ of type $(2,0)$ satisfying the following conditions:
$(B C H .1)\left(a_{1} * a_{2}\right) * a_{3}=\left(a_{1} * a_{3}\right) * a_{2}$,
(BCH.2) $a_{1} * a_{1}=0$,
(BCH.3) $a_{1} * a_{2}=0$ and $a_{2} * a_{1}=0$ imply $a_{2}=a_{1}$.
A BCH -algebra is called bounded if it has the greatest element.
Definition 2.3. ([1]) A nonempty subset $S$ of a BCH-algebra $A$ is called a BCH-subalgebra if $a_{1} * a_{2} \in S$, for all $a_{1}, a_{2} \in S$.

Definition 2.4. ([7]) A subset $I$ of $A$ is called an ideal of $A$ if it satisfies (I1) $0 \in I$,
(I2) if $a_{1} * a_{2} \in I$ and $a_{2} \in I$, then $a_{1} \in I$,
for all $a_{1}, a_{2} \in A$.
Definition 2.5. ([15] A Sheffer stroke BCK-algebra is a structure $(A, \mid, 0)$ of type $(2,0)$ such that 0 is the constant in $A, \mid$ is a Sheffer operation on $A$ and the following axioms are satisfied:
(sBCK-1) $\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\right.\right.$ $\left.\left.\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right)\left|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)=0\right| 0$,
(sBCK-2) $\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)=0$ and $\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)=0$ imply $a_{1}=a_{2}$,
for all $a_{1}, a_{2}, a_{3} \in A$.
Lemma 2.1 ([15]). Let A be a Sheffer stroke BCK-algebra. Then the following features hold for all $a_{1}, a_{2}, a_{3} \in A$ : (1) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(2) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
(3) $a_{1}\left|\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)=0\right| 0$,
(4) $(0 \mid 0) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(5) $a_{1}|0=0| 0$,
(6) $\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)=a_{1}$,
(7) $\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=0$,
(8) $a_{1}\left|\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right)=a_{2}\right|\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)$,
(9) $\left(\left(a_{1} \mid\left(\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right)\right) \mid\left(\left(a_{2}\left|\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right|\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\right.\right.$ $\left.\left.\left(a_{2}\left|\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right|\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right)\right)=0 \mid 0$,
(10) $\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$.

Proposition $2.1([\mathbf{1 5}])$. Let $(A, \mid, 0)$ be a Sheffer stroke BCK-algebra. Then the following features are hold for all $a_{1}, a_{2}, a_{3} \in A$ :
(i) $\quad a_{1} \leqslant a_{3}$ implies $\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\left|\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \leqslant\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right|\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)$,
(ii) $\quad\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(a_{3} \mid a_{3}\right)=\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right|\left(a_{2} \mid a_{2}\right)$,
(iii) $\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \leqslant a_{3} \Leftrightarrow\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \leqslant a_{2}$,
(iv) $\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \leqslant a_{1}$,
(v) $\quad a_{1} \leqslant a_{2} \mid\left(a_{1} \mid a_{1}\right)$,
(vi) $a_{1} \leqslant\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)$,
(vii) If $a_{1} \leqslant a_{2}$, then $a_{3}\left|\left(a_{1} \mid a_{1}\right) \leqslant a_{3}\right|\left(a_{2} \mid a_{2}\right)$.

## 3. Sheffer stroke BCH-Algebras

In this part, we define a Sheffer stroke BCH-algebra and give some properties.

Definition 3.1. A Sheffer stroke BCH-algebra is an algebra $(A, \mid, 0)$ of type $(2,0)$ such that 0 is the constant in $A$ and the following axioms are satisfied:
$(s B C H .1)(a \mid(a \mid a)) \mid(a \mid(a \mid a))=0$,
$(s B C H .2)(a \mid(b \mid b))|(a \mid(b \mid b))=(b \mid(a \mid a))|(b \mid(a \mid a))=0$ imply $a=b$,
$(s B C H .3)(((a \mid(b \mid b)) \mid(a \mid(b \mid b))) \mid(c \mid c))=(((a|c| c)) \mid(a \mid(c \mid c))) \mid(b \mid b))$,
for all $a, b, c \in A$.
A partial order $\leqslant$ on $A$ can be defined by

$$
a \leqslant b \Leftrightarrow(a \mid(b \mid b)) \mid(a \mid(b \mid b))=0 .
$$

Let $A$ be a Sheffer stroke BCH-algebra, unless otherwise is indicated.
Example 3.1. Consider $(A, \mid, 0)$, where $A=\{0, x, y, z, 1\}$. The binary operation | has Cayley table as follow:

| $\mid$ | 0 | $x$ | $y$ | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 1 |
| $x$ | 1 | $y$ | 1 | $y$ |
| $y$ | 1 | 1 | $x$ | $x$ |
| 1 | 1 | $y$ | $x$ | 0 |

Then $(A, \mid, 0)$ is a Sheffer stroke BCH-algebra.
Lemma 3.1. Let $A$ be a Sheffer stroke BCH-algebra. Then the following features hold for all $a_{1}, a_{2}, a_{3} \in A$.
(1) $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(2) $a_{1}\left|\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)=0\right| 0$,
(3) $(0 \mid 0) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$,
(4) $\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)=a_{1}$,
(5) $a_{1}\left|\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right)=a_{2}\right|\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)$,
(6) $\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\left|\left(a_{2} \mid a_{2}\right)=0\right| 0$,
(7) $\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)=0 \mid\left(a_{2} \mid a_{2}\right)$,
(8) $\left(0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)=\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$,
(9) $a_{1} \leqslant a_{2}$ implies $\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$.

Proof. (1) Substituting $\left[a_{2}:=\left(a_{1} \mid a_{1}\right)\right]$ in (S2), we obtain $\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)$ $=a_{1}$. Then $\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid a_{1}\right)=a_{1}$ from (S1).
(2) In (S3), by substituting $\left[a_{2}:=a_{1} \mid\left(a_{2} \mid a_{2}\right)\right]$ and $\left[a_{3}:=a_{2} \mid a_{2}\right]$ and applying (S1), (S2), (S3) and (sBCH.1), we have

$$
\begin{aligned}
a_{1} \mid\left(\left(a_{1} \mid\right.\right. & \left.\left.\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \\
& =a_{1} \mid\left(\left(\left(a_{2} \mid a_{2}\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(a_{2} \mid a_{2}\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \\
& =\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \\
& =\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
& =0 \mid 0 .
\end{aligned}
$$

(3) $(0 \mid 0)\left|\left(a_{1} \mid a_{1}\right)=\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right|\left(a_{1} \mid a_{1}\right)=a_{1}$ from (1), (S2) and (sBCH.1).
(4) By using (S1), (S2) and (3), we get

$$
\begin{aligned}
\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right) & =\left((0 \mid 0) \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left((0 \mid 0) \mid\left(\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \\
& =\left(a_{1} \mid a_{1}\right) \mid\left(a_{1} \mid a_{1}\right) \\
& =a_{1}
\end{aligned}
$$

(5) By using (S1) and (S3), we have

$$
\begin{aligned}
a_{1} \mid\left(\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)\right) & =\left(\left(\left(a_{1} \mid a_{2}\right) \mid\left(a_{1} \mid a_{2}\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right) \\
& =\left(\left(\left(a_{2} \mid a_{1}\right) \mid\left(a_{2} \mid a_{1}\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right) \\
& =a_{2} \mid\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) .
\end{aligned}
$$

(6) It is obtained from (2) and (S3).
(7) It is obtained from ( sBCH .1 ) and ( sBCH .3 ).
(8) By using (S1), (S3), (sBCH.1), (sBCH.3) and (7), we get

$$
\begin{aligned}
0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)= & \left(\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\right.\right.\right. \\
& \left.\left.\left.\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \\
= & \left(\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid \\
& \left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
= & \left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\right. \\
& \left.\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\right) \\
= & \left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\right. \\
& \left.\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid \\
& \left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\right. \\
& \left.\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \\
= & \left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\right.\right. \\
& \left.\left.\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid \\
& \left(\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\right.\right.\right.\right. \\
& \left.\left.\left.\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \\
= & \left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \\
= & \left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) .
\end{aligned}
$$

(9) By using (7), we get

$$
0\left|\left(a_{2} \mid a_{2}\right)=\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right|\left(a_{1} \mid a_{1}\right)=0 \mid\left(a_{1} \mid a_{1}\right) .
$$

Theorem 3.1. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. If we define

$$
a_{1} * a_{2}:=\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1}\left|a_{2}\right| a_{2}\right),
$$

then $(A, *, 0)$ is a BCH-algebra.
Proof. (BCH.1) By using (sBCH.3), we have

$$
\begin{aligned}
\left(a_{1} * a_{2}\right) * a_{3}= & \left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\right.\right. \\
& \left.\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right) \\
= & \left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\right.\right. \\
& \left.\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right) \\
= & \left(a_{1} * a_{3}\right) * a_{2} .
\end{aligned}
$$

(BCH.2) $a_{1} * a_{1}=\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)=0$ from (sBCH.1).
(BCH.3) By using (sBCH.2) we get $a_{1} * a_{2}=\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)=0$ and $a_{2} * a_{1}=\left(\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right)\right)=0$ imply $a_{1}=a_{2}$.

Example 3.2. Consider Sheffer stroke BCH-algebra $(A, \mid, 0)$ in Example 3.1. Then the structure $(A, *, 0)$ has the following Cayley table: It is clear that it is a

Table 1

| $*$ | 0 | $x$ | $y$ | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| $x$ | $x$ | 0 | $x$ | 0 |
| $y$ | $y$ | $y$ | 0 | 0 |
| 1 | 1 | $y$ | $x$ | 0 |

BCH-algebra.
Theorem 3.2. Let $(A, *, 0,1)$ be a bounded BCH-algebra. If we define $a_{1} \mid a_{2}:=$ $\left(a_{1} * a_{2}^{0}\right)^{0}$ and $a_{1}^{0}=1 * a_{1}$, where $a_{1} *\left(1 * a_{1}\right)=a_{1}$ and $1 *\left(1 * a_{1}\right)=a_{1}$, then $(A, \mid, 0)$ is a Sheffer stroke BCH-algebra.

Proof.
(sBCH.1) By using (BCH.2), we have

$$
\begin{aligned}
\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) & =\left(a_{1} \mid a_{1}^{0}\right) \mid\left(a_{1} \mid a_{1}^{0}\right) \\
& =\left(a_{1} * a_{1}\right)^{0} \mid\left(a_{1} * a_{1}\right)^{0} \\
& =\left(\left(a_{1} * a_{1}\right)^{0}\right)^{0} \\
& =a_{1} * a_{1} \\
& =0 .
\end{aligned}
$$

(sBCH.2):

$$
\begin{aligned}
\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) & =\left(a_{1} \mid a_{2}^{0}\right) \mid\left(a_{1} \mid a_{2}^{0}\right) \\
& =\left(a_{1} * a_{2}\right)^{0} \mid\left(a_{1} * a_{2}\right)^{0} \\
& =\left(\left(a_{1} * a_{2}\right)^{0}\right)^{0} \\
& =a_{1} * a_{2} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{2} \mid\left(a_{1} \mid a_{1}\right)\right) & =\left(a_{2} \mid a_{1}^{0}\right) \mid\left(a_{2} \mid a_{1}^{0}\right) \\
& =\left(a_{2} * a_{1}\right)^{0} \mid\left(a_{2} * a_{1}\right)^{0} \\
& =\left(\left(a_{2} * a_{1}\right)^{0}\right)^{0} \\
& =a_{2} * a_{1} \\
& =0
\end{aligned}
$$

imply $a_{1}=a_{2}$ by (BCH.3).
(sBCH.3) By using (BCH.1), we have

$$
\begin{aligned}
\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right) & =\left(\left(a_{1} \mid a_{2}^{0}\right) \mid\left(a_{1} \mid a_{2}^{0}\right)\right) \mid a_{3}^{0} \\
& =\left(\left(a_{1} * a_{2}\right)^{0} \mid\left(a_{1} * a_{2}\right)^{0}\right) \mid a_{3}^{0} \\
& =\left(\left(\left(a_{1} * a_{2}\right)^{0}\right)^{0}\right) \mid a_{3}^{0} \\
& =\left(\left(a_{1} * a_{2}\right) * a_{3}\right)^{0} \\
& =\left(\left(a_{1} * a_{3}\right) * a_{2}\right)^{0} \\
& =\left(\left(\left(a_{1} * a_{3}\right)^{0}\right)^{0}\right) \mid a_{2}^{0} \\
& =\left(\left(a_{1} * a_{3}\right)^{0} \mid\left(a_{1} * a_{3}\right)^{0}\right) \mid a_{2}^{0} \\
& =\left(\left(a_{1} \mid a_{3}^{0}\right) \mid\left(a_{1} \mid a_{3}^{0}\right)\right) \mid a_{2}^{0} \\
& =\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) .
\end{aligned}
$$

Example 3.3. Consider a bounded BCH-algebra $(A, *, 0,1)$ with $A=\{0, x, y$, $z, t, u, v, 1\}$ and the binary operation $*$ on $A$ defined in Table 2 . Then the structure $(A, \mid, 0)$ defined by the bounded BCH-algebra $(A, *, 0,1)$ has Cayley table given in Table 3. Therefore,it is a Sheffer stroke BCH-algebra.

Table 2

| $*$ | 0 | $x$ | $y$ | $z$ | $t$ | $u$ | $v$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $x$ | $x$ | 0 | $x$ | $x$ | 0 | 0 | $x$ | 0 |
| $y$ | $y$ | $y$ | 0 | $y$ | 0 | $y$ | 0 | 0 |
| $z$ | $z$ | $z$ | $z$ | 0 | $z$ | 0 | 0 | 0 |
| $t$ | $t$ | $y$ | $x$ | $t$ | 0 | $y$ | $x$ | 0 |
| $u$ | $u$ | $z$ | $u$ | $x$ | $z$ | 0 | $x$ | 0 |
| $v$ | $v$ | $v$ | $z$ | $y$ | $z$ | $y$ | 0 | 0 |
| 1 | 1 | $v$ | $u$ | $t$ | $z$ | $y$ | $x$ | 0 |

Theorem 3.3. Every Sheffer stroke BCK-algebra is a Sheffer stroke BCHalgebra.

Proof. It is obtained from (sBCK-2), Lemma 2.1 (2), Proposition 2.1 (ii).

TABLE 3

|  | 0 | $x$ | $y$ | $z$ | $t$ | $u$ | $v$ | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $x$ | 1 | $v$ | 1 | 1 | $v$ | $v$ | 1 | $v$ |
| $y$ | 1 | 1 | $u$ | 1 | $u$ | 1 | $u$ | $u$ |
| $z$ | 1 | 1 | 1 | $t$ | 1 | $t$ | $t$ | $t$ |
| $t$ | 1 | $v$ | $u$ | 1 | $z$ | $v$ | $u$ | $z$ |
| $u$ | 1 | $v$ | 1 | $t$ | $v$ | $y$ | $t$ | $y$ |
| $v$ | 1 | 1 | $u$ | $t$ | $u$ | $t$ | $x$ | $x$ |
| 1 | 1 | $v$ | $u$ | $t$ | $z$ | $y$ | $x$ | 0 |

Theorem 3.4. A Sheffer stroke BCH-algebra satisfying

$$
\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)=
$$

$\left(\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid$

$$
\left(a_{2} \mid\left(a_{3} \mid a_{3}\right)\right)
$$

is a Sheffer stroke BCK-algebra.
Proof. It is sufficient to prove that (sBCK-1) holds. By using (sBCH.1), (sBCH.3) and (S2), we get
$\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\right.\right.$
$\left.\left.\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\right.\right.\right.$
$\left.\left.\left.\left(a_{1} \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right.\right.$
$\left.\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{2} \mid a_{2}\right)\right) \mid\right.\right.$
$\left.\left.\left.\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid$
$\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right.$
$\left.\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\right.\right.\right.$
$\left.\left.\left.\left.\left(a_{2} \mid a_{2}\right)\right)\right)\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right)$
$\left(\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right) \mid\left(a_{1} \mid\left(a_{3} \mid a_{3}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)$
$=0 \mid 0$.
Definition 3.2. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then a nonempty subset $S$ of $A$ is called a subalgebra of $A$, if

$$
\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \in S
$$

for all $a_{1}, a_{2} \in S$.
Example 3.4. In Example 3.1,

$$
S_{1}=\{0, x\}, S_{2}=\{0, y\}, \text { and } S_{3}=\{0, x, y\}
$$

are subalgebras of $A$.
Definition 3.3. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then the subset

$$
M=\left\{a_{1}: a_{1} \in A \text { and } 0\left|\left(a_{1} \mid a_{1}\right)=0\right| 0\right\}
$$

is called a BCA-part of $A$.
Example 3.5. Given Sheffer stroke BCH-algebra in Example 3.1. Then it is obvious that the $M=\{0, x, y, 1\}$ is a BCA-part of $A$.

Theorem 3.5. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then $M$ is a subalgebra of $A$.

Proof. Clearly, $0 \in M$ and $M$ is non-empty. Let $a_{1}, a_{2} \in M$. By using Lemma 3.1 (8), (S2) and ( sBCH .1 ), we have
$\left(0 \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(0 \mid\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\right.\right.$ $\left.\left.\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\left|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$
$=\left(0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)$
$=\left(\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)$
$=(((0 \mid 0) \mid(0 \mid 0)) \mid(0 \mid 0)) \mid(((0 \mid 0) \mid(0 \mid 0)) \mid(0 \mid 0))$
$=((0 \mid(0 \mid 0)) \mid(0 \mid(0 \mid 0))$
$=0$.
Then $\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \in M$ and $M$ is a subalgebra of $A$.
Definition 3.4. An element $a_{0} \in A$ is called a minimal element of $A$ if $a \leqslant a_{0}$ implies $a=a_{0}$.

The collection of all minimal elements of a Sheffer stroke BCH-algebra $A$ is denoted by $\operatorname{Min}(A)$.

Example 3.6. Given Sheffer stroke BCH-algebra in Example 3.1. Then 0 is the minimal element of $A$.

Definition 3.5. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. We define

$$
\operatorname{Med}(A)=\left\{a_{1}: a_{1} \in A \text { and } 0\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=a_{1}\right| a_{1}\right\} \subseteq A .
$$

The set $\operatorname{Med}(A)$ is called the medial part of $A$.
An element $a \in \operatorname{Med}(A)$ is called a medial element of $A$. For a medial element $a \in A$, we write $0|(0 \mid(a \mid a))=a| a$.

Example 3.7. In Example 3.1, $\{0\}$ is a medial element of $A$.
Proposition 3.1. In a Sheffer stroke BCH-algebra $(A, \mid, 0)$ the following features hold:
(1) 0 is a minimal element of $A$,
(2) $a_{1}\left|(0 \mid 0)=a_{1}\right| a_{1}$, for all $a_{1} \in A$.

Proof. (1) Let $a_{1} \in A$ such that $a_{1} \leqslant 0$. Thus $\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)=0$. By using (S2), (sBCH.1) and Lemma 3.1 (6), we get

$$
\begin{aligned}
\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)= & \left(\left(\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\right. \\
& \left.\left(a_{1} \mid a_{1}\right)\right) \\
= & \left(\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid \\
& \left(\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \\
= & (0 \mid 0) \mid(0 \mid 0) \\
= & 0 .
\end{aligned}
$$

Then $\left(a_{1} \mid(0 \mid 0)\right)\left|\left(a_{1} \mid(0 \mid 0)\right)=\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=0$. Hence $a_{1}=0$ from (sBCH.2). Therefore, 0 is a minimal element of $A$.
(2) Obviously, $\left(a_{1} \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \leqslant 0$ from Lemma 3.1 (6). Since 0 is a minimal element of $A,\left(a_{1} \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid(0 \mid 0)\right)\right)=0$. Thus $a_{1} \leqslant\left(a_{1} \mid(0 \mid 0)\right) \mid$ $\left(a_{1} \mid(0 \mid 0)\right)$ by (S2). Moreover,

```
\(\left(\left(\left(\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(\left(\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\)
    \(=\left(\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\right.\right.\)
        \(\left.\left.\left(\left(a_{1} \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\)
        \(=(0 \mid 0) \mid(0 \mid 0)\)
        \(=0\).
```

Hence $\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right) \leqslant a_{1}$. Then $\left(a_{1} \mid(0 \mid 0)\right) \mid\left(a_{1} \mid(0 \mid 0)\right)=a_{1}$. By (S2), we obtain $a_{1}\left|(0 \mid 0)=a_{1}\right| a_{1}$.

Remark 3.1. In a Sheffer stroke BCH-algebra $A$, we have $(0 \mid(0 \mid(0 \mid 0)))=$ $(0 \mid(0 \mid 0))=0 \mid 0$ from (sBCH.1). So, $0 \in \operatorname{Med}(A)$. From Proposition 3.1, we get that $0 \in \operatorname{Min}(A)$. Hence $\operatorname{Med}(A)$ and $\operatorname{Min}(A)$ are non-empty.

Proposition 3.2. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then an element $a_{0} \in A$ is a medial element if and only if it is a minimal element.

Proof. Let $a_{0}$ be a medial element of $A$. Then $0\left|\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)=a_{0}\right| a_{0}$. Let $a_{1} \leqslant a_{0}$. Then $\left(a_{1} \mid\left(a_{0} \mid a_{0}\right)\right) \mid\left(a_{1} \mid\left(a_{0} \mid a_{0}\right)\right)=0$. From (sBCH.1) and (sBCH.3),

$$
\begin{aligned}
0 \mid\left(a_{1} \mid a_{1}\right) & =\left(\left(a_{1} \mid\left(a_{0} \mid a_{0}\right)\right) \mid\left(a_{1} \mid\left(a_{0} \mid a_{0}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right) \\
& =\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{0} \mid a_{0}\right) \\
& =0 \mid\left(a_{0} \mid a_{0}\right) .
\end{aligned}
$$

Then $0\left|\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)=0\right|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$. Therefore, $a_{0}=\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right)=$ $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \leqslant a_{1}$ from Lemma 3.1 (6). Hence $a_{0}=a_{1}$. So $a_{0}$ is a minimal element of $A$.

Conversely, let $a_{0}$ be a minimal element of $A$. Since

$$
\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right) \leqslant a_{0}
$$

from Lemma 3.1 (6) and $a_{0}$ is a minimal element,

$$
a_{0}=\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right) .
$$

Thus $a_{0} \mid a_{0}=\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right)$ and $a_{0}$ is a medial element of $A$.
Remark 3.2. From Proposition 3.1, $\operatorname{Min}(A)=\operatorname{Med}(A)$.
Theorem 3.6. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then

$$
\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \in \operatorname{Min}(A),
$$

for all $a_{1} \in A$.
Proof. Let $a_{1}, a_{2} \in A$ and $a_{2} \leqslant\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$. Then

$$
\left(a_{2} \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)=0,
$$

which implies

$$
\left(\left(a_{2} \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\left|\left(a_{2} \mid a_{2}\right)=0\right|\left(a_{2} \mid a_{2}\right)
$$

That is,

$$
\left(\left(a_{2} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{2} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=0\right|\left(a_{2} \mid a_{2}\right)
$$

and then we get $0\left|\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=0\right|\left(a_{2} \mid a_{2}\right)$. Now,

$$
\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\left|\left(a_{1} \mid a_{1}\right)=\left(\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\right|\left(a_{1} \mid a_{1}\right)=0 \mid 0
$$

and then we have

$$
\left(\left(\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid
$$

$\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)=0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$.
$\left(\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)\right)$ $\left|\left(a_{1} \mid a_{1}\right)=0\right|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$.

That is, $0\left|\left(a_{1} \mid a_{1}\right)=0\right|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$. Then $\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)=\left(0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)$ $\mid\left(0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \leqslant a_{2}$. Hence, $a_{2}=\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$. Therefore,

$$
\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \in \operatorname{Min}(A) .
$$

Remark 3.3. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Since $\operatorname{Min}(A)=$ $\operatorname{Med}(A)$, then $\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \in \operatorname{Med}(A)$. Thus

$$
\left(0 \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)=0 \mid\left(a_{1} \mid a_{1}\right),
$$

for all $a_{1} \in A$.
Theorem 3.7. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then

$$
\operatorname{Min}(A)=\left\{\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid a_{1} \in A\right\} .
$$

Proof. Let $B=\left\{\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid a_{1} \in A\right\}$ and $a_{2} \in B$. Then

$$
a_{2}=\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)
$$

for some $a_{1} \in A$. By Theorem 3.6, $a_{2}=\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \in \operatorname{Min}(A)$. So $B \subseteq \operatorname{Min}(A)$.

Let $a_{1} \in \operatorname{Min}(A)$. Since $\operatorname{Min}(A)=\operatorname{Med}(A)$, so $a_{1} \in \operatorname{Med}(A)$. Thus

$$
a_{1}=\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\left|\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)=\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right),
$$

where $a_{2}=\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)$. Hence $a_{1} \in B$. Then $\operatorname{Min}(A) \subseteq B$. Therefore, $\operatorname{Min}(A)=B=\left\{\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid a_{1} \in A\right\}$.

Remark 3.4. From above theorem and Remark 3.2, we have that if $(A, \mid, 0)$ is a Sheffer stroke BCH-algebra, then

$$
\operatorname{Min}(A)=\operatorname{Med}(A)=\left\{\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid a_{1} \in A\right\}
$$

Proposition 3.3. Let $(A, \mid, 0)$ be a Sheffer stroke $B C H$-algebra and $a \in A$. Then the following conditions are equivalent:
(i) a is minimal;
(ii) $a_{1}\left|\left(a_{1} \mid(a \mid a)\right)=a\right| a$,
(iii) $0|(0 \mid(a \mid a))=a| a$,
(iv) $a\left|\left(a_{1} \mid a_{1}\right)=\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right|(0 \mid(a \mid a))$,
(v) $a\left|\left(a_{1} \mid a_{1}\right)=0\right|\left(a_{1} \mid(a \mid a)\right)$, for every $a, a_{1} \in A$.

Proof. $(i) \Rightarrow(i i)$ : By Lemma 3.1 (6),

$$
\left(\left(a_{1} \mid\left(a_{1} \mid(a \mid a)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid(a \mid a)\right)\right)\right)|(a \mid a)=0| 0 .
$$

Since $a$ is minimal, we get $\left(\left(a_{1} \mid\left(a_{1} \mid(a \mid a)\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid(a \mid a)\right)\right)\right)=a$. By (S2), we obtain (ii).
(ii) $\Rightarrow$ (iii): Obvious.
$(i i i) \Rightarrow(i v)$ : From (sBCH.3), we get

$$
\begin{aligned}
a \mid\left(a_{1} \mid a_{1}\right) & =((0 \mid(0 \mid(a \mid a))) \mid(0 \mid(0 \mid(a \mid a)))) \mid\left(a_{1} \mid a_{1}\right) \\
& =\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid(0 \mid(a \mid a)) .
\end{aligned}
$$

$(i v) \Rightarrow(v)$ : Applying Lemma 3.1 (8), we obtain

$$
\left(0 \mid\left(a_{1} \mid(a \mid a)\right)\right)=\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)|(0 \mid(a \mid a))=a|\left(a_{1} \mid a_{1}\right)
$$

$(v) \Rightarrow(i)$ : Let $a_{1} \leqslant a$. Then $\left(a_{1} \mid(a \mid a)\right) \mid\left(a_{1} \mid(a \mid a)\right)=0$. Then

$$
a\left|\left(a_{1} \mid a_{1}\right)=0\right|\left(a_{1} \mid(a \mid a)\right)=0|(0 \mid 0)=0| 0 .
$$

By (S2), $\left(a \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a \mid\left(a_{1} \mid a_{1}\right)\right)=0$. Then $a \leqslant a_{1}$. Consequently, $a=a_{1}$.
Proposition 3.4. Let $(A, \mid, 0)$ be a Sheffer stroke $B C H$-algebra and $a \in A$. Then $a$ is minimal element if and only if there is an element $a_{1} \in A$ such that $a=\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$.

Proof. Let $a$ be a minimal element of $A$. By Proposition 3.3 and (S2), $(0 \mid(0 \mid(a \mid a))) \mid(0 \mid(0 \mid(a \mid a)))=a$. If we choose $a_{1}=(0 \mid(a \mid a)) \mid(0 \mid(a \mid a))$, then $a=$ $\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$.

Conversely, suppose that $a=\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$ for some $a_{1} \in A$. By using Lemma 3.1 (6) and (9), we get $((0 \mid(0 \mid(a \mid a))) \mid(0 \mid(0 \mid(a \mid a))))|(a \mid a)=0| 0$. That is,

$$
((0 \mid(0 \mid(a \mid a))) \mid(0 \mid(0 \mid(a \mid a)))) \leqslant a
$$

Then $(0 \mid(0 \mid(0 \mid(a \mid a))))=0 \mid(a \mid a)$. Thus,

$$
\begin{aligned}
((0 \mid(0 \mid(a \mid a))) \mid(0 \mid(0 \mid(a \mid a)))) & =\left(0 \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \\
& =\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \\
& =a .
\end{aligned}
$$

From Proposition 3.3, we have $a$ is minimal.

Example 3.8. Let $(A, \mid, 0)$ be the Sheffer stroke BCH-algebra in Example 3.1. Then 0 is the minimal element of $A$. There is an element $x \in A$ such that $0=(0 \mid(x \mid x)) \mid(0 \mid(x \mid x))$. Conversely, there is an element $x \in A$ such that $0=(0 \mid(x \mid x)) \mid(0 \mid(x \mid x))$ for $x \in A$. By using Lemma 3.1 (6) and (9), we have $(0 \mid(0 \mid(0 \mid(0 \mid 0))))=0 \mid(0 \mid 0)$.

$$
\begin{aligned}
((0 \mid(0 \mid(0 \mid 0))) \mid(0 \mid(0 \mid(0 \mid 0)))) & =(0 \mid(0 \mid(0 \mid(x \mid x)))) \mid(0 \mid(0 \mid(0 \mid(x \mid x)))) \\
& =(0 \mid(x \mid x)) \mid(0 \mid(x \mid x)) \\
& =0 .
\end{aligned}
$$

Then 0 is the minimal element of $A$ from Proposition 3.3.
From $a \in A, \overline{a_{1}}=\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)$.
Proposition 3.5. Let $(A, \mid, 0)$ be a Sheffer stroke $B C H$-algebra. Then the following features hold for all $a_{1}, a_{2} \in A$ :
(i) $\overline{\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)}=\left(\overline{a_{1}} \mid\left(\overline{a_{2}} \mid \overline{a_{2}}\right)\right) \mid\left(\overline{a_{1}} \mid\left(\overline{a_{2}} \mid \overline{a_{2}}\right)\right)$,
(ii) $\overline{\overline{a_{1}}}=\overline{a_{1}}$.

Proof. (i) $\overline{\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)}=\left(0 \mid\left(0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$
$=\left(0 \mid\left(\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(0 \mid\left(\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\right.\right.$
$\left.\left.\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$
$=\left(\left(\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(\left(\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\right.$ $\left.\left(0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$
$=\left(\overline{a_{1}} \mid\left(\overline{a_{2}} \mid \overline{a_{2}}\right)\right) \mid\left(\overline{a_{1}} \mid\left(\overline{a_{2}} \mid \overline{a_{2}}\right)\right)$.
(ii) By using Lemma 3.1 (6) and (9), we get

$$
\left(\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)\left|\left(a_{1} \mid a_{1}\right)=0\right| 0 .
$$

That is,

$$
\left(\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \leqslant a_{1} .
$$

Then $\left(0 \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right)=0 \mid\left(a_{1} \mid a_{1}\right)$. That is, $\left(0 \mid\left(\overline{a_{1}} \mid \overline{a_{1}}\right)\right)=\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)$. Hence

$$
\begin{aligned}
\left(\overline{\overline{a_{1}}} \mid \overline{\overline{a_{1}}}\right) & =\left(0 \mid\left(0 \mid\left(\overline{a_{1}} \mid \overline{a_{1}}\right)\right)\right. \\
& =\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \\
& =\left(\overline{a_{1}} \mid \overline{a_{1}}\right) .
\end{aligned}
$$

Therefore, $\overline{\overline{a_{1}}}=\overline{a_{1}}$.
The set $\{a \in A: a=\bar{a}\}$ is called the centre of $A$, denoted by CentA. By Proposition 3.3, Cent $A$ is the set of all minimal elements of $A$. We get

$$
\operatorname{Cent} A=\{\bar{a}=a \in A\} .
$$

Define $\varphi: A \rightarrow \operatorname{Cent} A$ by $\varphi(a)=\bar{a}$ for all $a \in A$. By Proposition 3.5, $\varphi$ is a homomorphism from $A$ onto $C e n t A$.

Proposition 3.6. Let $A$ be a Sheffer stroke BCH-algebra. Then Cent A is a subalgebra of $A$.

Proposition 3.7. Let $A$ be a Sheffer stroke BCH-algebra and $a_{1}, a_{2} \in C e n t A$. Then $a_{1}\left|\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)=a_{2}\right|\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)$, for every $a_{3} \in A$.

Proof. Let $a_{3} \in A$. By using Proposition 3.3 and (sBCH.3), we obtain

$$
\begin{aligned}
a_{1} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right) & =\left(\left(\left(a_{3} \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right. \\
& =\left(\left(\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{3} \mid\left(a_{3} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right)\right. \\
& =a_{2} \mid\left(a_{3} \mid\left(a_{1} \mid a_{1}\right)\right) .
\end{aligned}
$$

Definition 3.6. Let $a_{0}$ be a minimal element of a Sheffer stroke BCH-algebra. Then the set

$$
B\left(a_{0}\right)=\left\{a_{1}: a_{1} \in A \text { and } a_{0} \leqslant a_{1}\right\}
$$

is called the branch of $A$, determined by $a_{0}$.
Example 3.9. Let $(A, \mid, 0)$ be the Sheffer stroke BCH-algebra in Example 3.1.


Then $B(0)=\{x, y, 1\}$.
Theorem 3.8. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then for each $a_{1} \in A$, there is unique $a_{0} \in \operatorname{Min}(A)$ such that $a_{0} \leqslant a_{1}$. That is, $a_{1}$ belongs to the unique branch $B\left(a_{0}\right)$, determined by $a_{0}$.

Proof. Let $a_{1} \in A$. Then $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \leqslant a_{1}$. We take $a_{0}=$ $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)$. So $a_{0} \leqslant a_{1}$. By Theorem 3.7, $a_{0}=\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid$ $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \in \operatorname{Min}(A)$. Then there is a $a_{0} \in \operatorname{Min}(A)$ such that $a_{1} \in B\left(a_{0}\right)$.

Let $b_{0} \in \operatorname{Min}(A)$ such that $a_{1} \in B\left(b_{0}\right)$. Thus $b_{0} \leqslant a_{1}$, so $\left(\left(b_{0} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\right.$ $\left.\left(b_{0} \mid\left(a_{1} \mid a_{1}\right)\right)\right)=0$, which gives

$$
\left(\left(b_{0} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(b_{0} \mid\left(a_{1} \mid a_{1}\right)\right)\right)\left|\left(b_{0} \mid b_{0}\right)=0\right|\left(b_{0} \mid b_{0}\right) .
$$

That is, $0\left|\left(a_{1} \mid a_{1}\right)=0\right|\left(b_{0} \mid b_{0}\right)$. Thus $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)=\left(0 \mid\left(0 \mid\left(b_{0} \mid b_{0}\right)\right)\right)$. So

$$
a_{0}=\left(0 \mid\left(0 \mid\left(b_{0} \mid b_{0}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(b_{0} \mid b_{0}\right)\right)\right) \leqslant b_{0} .
$$

Since $b_{0} \in \operatorname{Min}(A)$, so $a_{0}=b_{0}$. Hence for $a_{1} \in A$, there is a unique $a_{0}=$ $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)$ such that $a_{1} \in B\left(a_{0}\right)$.

Remark 3.5. From above theorem, we conclude that in a Sheffer stroke BCHalgebra $A$, for any $a_{1} \in A$, there exists a unique $a_{0}=\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)$ $\in \operatorname{Min}(A)=\operatorname{Med}(A)$ such that $a_{0} \leqslant a_{1}$. That is, every $a_{1} \in A$ belongs to a unique branch $B\left(a_{0}\right)$, where

$$
a_{0}=\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \in \operatorname{Min}(A)=\operatorname{Med}(A) .
$$

Theorem 3.9. Let $(A, \mid, 0)$ be a Sheffer stroke $B C H$-algebra and $a_{0}, b_{0} \in$ $\operatorname{Min}(A)$. Then $a_{0}=b_{0}$ if and only if $B\left(a_{0}\right)=B\left(b_{0}\right)$.

Proof. Let $a_{0}=b_{0}$ and $B\left(a_{0}\right) \neq B\left(b_{0}\right)$. Suppose that there is an $a_{1}^{\prime} \in B\left(a_{0}\right)$ such that $a_{1}^{\prime} \notin B\left(b_{0}\right)$. Since $a_{1}^{\prime} \in B\left(a_{0}\right), a_{0} \leqslant a_{1}^{\prime}$. Thus $\left(a_{0} \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right)=0 \mid 0$. Then, $\left(\left(a_{0} \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right) \mid\left(a_{0} \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right)\right)\left|\left(a_{0} \mid a_{0}\right)=0\right|\left(a_{0} \mid a_{0}\right)$. Thus $0\left|\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)=0\right|\left(a_{0} \mid a_{0}\right)$ that is, $\left(0 \mid\left(0 \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right)\right)=\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right)$. Since $a_{0} \in \operatorname{Min}(A)=\operatorname{Med}(A)$, so $a_{0}=$ $\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{0} \mid a_{0}\right)\right)\right)$. Then $a_{0}=\left(0 \mid\left(0 \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right)\right)$. Since $a_{0}=$ $b_{0}$, so $b_{0}=\left(0 \mid\left(0 \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1}^{\prime} \mid a_{1}^{\prime}\right)\right)\right) \leqslant a_{1}^{\prime}$. Hence, $a_{1}^{\prime} \in B\left(b_{0}\right)$, a contradiction. Therefore, $B\left(a_{0}\right)=B\left(b_{0}\right)$.

Conversely, let $B\left(a_{0}\right)=B\left(b_{0}\right)$. Since $a_{0} \in B\left(a_{0}\right)$, so $a_{0} \in B\left(b_{0}\right)$. Then $b_{0} \leqslant a_{0}$. Similarly, $b_{0} \in B\left(b_{0}\right)=B\left(a_{0}\right)$ gives $a_{0} \leqslant b_{0}$. Therefore, $a_{0}=b_{0}$.

Theorem 3.10. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Let $a_{0} \neq b_{0}$ and $a_{0}, b_{0} \in \operatorname{Min}(A)$. Then $B\left(a_{0}\right) \cap B\left(b_{0}\right)=\varnothing$.

Proof. Let $a_{0} \neq b_{0}$ and $B\left(a_{0}\right) \cap B\left(b_{0}\right) \neq \varnothing$. Let $a_{1} \in B\left(a_{0}\right) \cap B\left(b_{0}\right)$. Then $a_{1} \in B\left(a_{0}\right)$ and $a_{1} \in B\left(b_{0}\right)$. By Theorem 3.8, we obtain $B\left(a_{0}\right)=B\left(b_{0}\right)$. From Theorem 3.9, we get $a_{0}=b_{0}$, a contradiction. Therefore, $B\left(a_{0}\right) \cap B\left(b_{0}\right)=\varnothing$.

Theorem 3.11. Let $(A, \mid, 0)$ be a Sheffer stroke $B C H$-algebra. Then $\operatorname{Med}(A)$ is a subalgebra of $A$.

Proof. Let $(A, \mid, 0)$ be a Sheffer stroke BCH-algebra. Then $(0 \mid(0 \mid(0 \mid 0)))=0 \mid 0$, so $0 \in \operatorname{Med}(A)$.
Let $a_{1}, a_{2} \in \operatorname{Med}(A)$. Then $\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)=a_{1} \mid a_{1}$ and $\left(0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)=a_{2} \mid a_{2}$. From Lemma 3.1 (8) and (S2), we get

$$
\begin{aligned}
\left(0 \mid\left(0 \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) & =\left(0\left|\left(\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(0 \mid\left(a_{1} \mid a_{2}\right)\right)\right)\right|\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
& =\left(\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{1} \mid a_{1}\right)\right)\right)\right) \mid\left(0 \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \\
& =\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)
\end{aligned}
$$

So, $\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \in \operatorname{Med}(A)$ by (S2). Therefore, $\operatorname{Med}(A)$ is a subalgebra of $A$.

Remark 3.6. If $A$ is a Sheffer stroke BCH-algebra, then $\operatorname{Med}(A)=\operatorname{Min}(A)$. Hence we obtain $\operatorname{Min}(A)$ is a subalgebra of $A$.

## 4. Ideals in Sheffer stroke BCH-Algebras

Definition 4.1. A non-empty subset $I$ of a Sheffer stroke BCH-algebra $A$ is called an ideal of $A$ if it satisfies
(I1) $0 \in I$,
(I2) $\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \in I$ and $a_{2} \in I$ imply $a_{1} \in I$.
We will denote by $\operatorname{Id}(A)$ the set of all ideals of $A$.
Example 4.1. In Example 3.1, $\{0\},\{0, x\},\{0, y\}$ are ideals of $A$.
Proposition 4.1. Let $A$ be a Sheffer strkoke BCH-algebra and $I \in I d(A)$. For any $a_{1}, a_{2} \in A$, if $a_{2} \in I$ and $a_{1} \leqslant a_{2}$, then $a_{1} \in I$.

Proposition 4.2. Let $\varphi: A \rightarrow B$ be a surjective homomorphism. If $I$ is an ideal of a containing $\varphi^{-1}(0)$, then $\varphi(I)$ is an ideal of $B$.

Proof. Since $0 \in I, 0=\varphi(0) \in \varphi(I)$. Let $a_{1}, a_{2} \in B$ and

$$
\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right), a_{2} \in \varphi(I)
$$

Then there are $x \in A$ and $y, z \in I$ such that

$$
a_{1}=\varphi(x), a_{2}=\varphi(y) \text { and }\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)=\varphi(z)
$$

We have $\varphi((x \mid(y \mid y)) \mid(x \mid(y \mid y)))=\varphi(z)$. Then

$$
(((x \mid(y \mid y)) \mid(x \mid(y \mid y))) \mid(z \mid z)) \mid(((x \mid(y \mid y)) \mid(x \mid(y \mid y))) \mid(z \mid z)) \in \varphi^{-1}(0) \subseteq I .
$$

By the definition of an ideal, $x \in I$. Consequently, $a_{1}=\varphi(x) \in \varphi(I)$. Therefore, $\varphi(I)$ is an ideal of $A$.

Definition 4.2. An ideal $I$ of a Sheffer stroke BCH-algebra $A$ is said to be closed if $(0 \mid(a \mid a)) \mid(0 \mid(a \mid a)) \in I$, for every $a \in I$.

Theorem 4.1. An ideal I of a Sheffer stroke BCH-algebra $A$ is closed if and only if $I$ is a subalgebra of $A$.

Proof. Let $I$ be a closed ideal of $A$ and $a_{1}, a_{2} \in I$. By using (sBCH.3), we obtain

$$
\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\right.\right.
$$

$\left.\left.\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)$
$=\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid$
$\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(a_{1} \mid\left(a_{1} \mid a_{1}\right)\right)\right) \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid$
$\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$
$=\left(\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)$
$=0 \mid 0$.
Thus
$\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right)$
$\left.\mid\left(a_{1} \mid a_{1}\right)\right) \mid\left(\left(\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\left(\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \mid\right.\right.\right.$
$\left.\left.\left.\left(0 \mid\left(a_{2} \mid a_{2}\right)\right)\right)\right) \mid\left(a_{1} \mid a_{1}\right)\right) \in I$. Since $a_{1},\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(0 \mid\left(a_{2} \mid a_{2}\right)\right) \in I$, we get
$\left(\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right) \mid\left(a_{1} \mid\left(a_{2} \mid a_{2}\right)\right)\right) \in I$.
Conversely, if $I$ is a subalgebra of $A$, then $a_{1} \in I$ and $0 \in I$ imply $\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \mid$ $\left(0 \mid\left(a_{1} \mid a_{1}\right)\right) \in I$. Therefore, $I$ is a closed ideal of $A$.

## 5. Conclusion

In this study, we have given a Sheffer stroke BCH-algebra, and study a minimal element, a medial element, a subalgebra, an ideal and many features in Sheffer stroke BCH-algebras. After giving basic definitions and notions about Sheffer stroke and a BCH-algebra, we describe a Sheffer stroke BCH-algebra and present basic notions about this algebraic structure. We show that a Sheffer stroke BCH-algebra is a BCH-algebra and a BCH-algebra is a Sheffer stroke BCH-algebra. After defining a subalgebra and a BCA-part, we present the relationship between this structures
on Sheffer stroke BCH-algebra. Besides, by defining a minimal element and a medial element on Sheffer stroke BCH-algebra, it is proved that the minimal element and medial element are equivalent. The centre and branch of a Sheffer stroke BCHalgebra are described and it is shown that a centre of a Sheffer stroke BCH-algebra is a subalgebra. It is indicated that $\operatorname{Med}(A)$ is a subalgebra of a Sheffer stroke BCH-algebra. Finally, an ideal and a closed ideal are defined and it is shown that an ideal is a closed ideal if and only if it is a subalgebra.

## References

[1] M. A. Chaudhry. On BCH-algebras. Math. Japon., 36(4)(1991), 665-676.
[2] M. A. Chaudhry and H. F. Din. On some classes of BCH-algebras. Int. J. Math. Math. Sci., 25(3)(2001), 205-211.
[3] I. Chajda, R. Halaš and H. Länger. Operations and structures derived from non-associative MV-algebras. Soft Comput., 23(12)(2019), 3935-3944.
[4] I. Chajda. Sheffer operation in ortholattices. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math., 44(1)(2005), 19-23.
[5] W. A. Dudek and J. Thomys. On decompositions of BCH-algebras. Math. Japon, 35(6)(1990), 1131-1138.
[6] Q. P. Hu and X. Li. On BCH-algebras. Math. Semin. Notes, Kobe Univ., 11(2)(1983), 313320.
[7] Q. P. Hu and X. Li. On proper BCH-algebras. Math. Japonica, 30(4)(1985), 659-661.
[8] Y. Imai and K. Iséki. On axiom systems of proposional calculi, XIV. Proc. Jpn. Acad., Ser. A, Math. Sci, 42(1)(1966), 19-22.
[9] K. Iséki. An algebra related with a propositional calculus. Proc. Jpn. Acad., Ser. A, Math. Sci, 42(1)(1966), 26-29.
[10] W.m McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos. Short single axioms for Boolean algebra. J. Autom. Reasoning, 29(1)(2002), 1-16.
[11] T. Oner, T. Katican and A. Borumand Saeid. Relation between Sheffer stroke operation and Hilbert algebras. Categ. Gen. Algebr. Struct. Appl., 14(1)(2021), 245-268.
[12] T. Oner, T. Katican, A. Borumand Saeid and M. Terziler. Filters of strong Sheffer stroke non-associative MV-algebras. An. tiin. Univ. Ovidius Constana, Ser. Mat., 29(1)(2021), 143-164.
[13] T. Oner, T. Katican and A. Borumand Saeid. On Sheffer stroke UP-algebras. Discuss. Math., Gen. Algebra Appl., (in press).
[14] T. Oner, T. Kalkan and N. Kircali Gursoy. Sheffer stroke BG-algebras. International Journal of Maps in Mathematics, 4(1)(2021), 27-39.
[15] T. Oner, T. Kalkan and A. Borumand Saeid. Class of Sheffer stroke BCK-algebras. An. tiin. Univ. Ovidius Constana, Ser. Mat., (in press).
[16] H. M. Sheffer. A set of five independent postulates for Boolean algebras, with application to logical constants. Trans. Am. Math. Soc., 14(4)(1913), 481-488.

Received by editors 03.05.2021; Revised version 04.07.2021; Available online 12.07.2021.
Department of Mathematics, Ege University, Izmir, Turkey
Email address: tahsin.oner@ege.edu.tr
Department of Mathematics, Ege University, Izmir, Turkey
Email address: tugcekalkan92@gmail.com
Department of Mathematics, Ege University, Izmir, Turkey
Email address: melisacinar1996@gmail.com


[^0]:    2010 Mathematics Subject Classification. Primary 06F05, 03G25; Secondary 03G10.
    Key words and phrases. BCH-algebra, Sheffer stroke, minimal element, medial element, ideal. Communicated by Daniel A. Romano.

