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SOME FIXED POINT THEOREMS ON

PARTIAL METRIC SPACES SATISFYING

AN IMPLICIT CONTRACTIVE CONDITION

WITH APPLICATIONS

Gurucharan Singh Saluja

Abstract. In this paper, we establish a unique fixed point, a unique common
fixed point and a coincidence point theorems satisfying an implicit contrac-

tive condition on partial metric spaces. The results presented in this paper
extend, generalize and unify several results from the existing literature. We
also present one of the possible applications of our result to well-posed and
limit shadowing property of fixed point problems.

1. Introduction

The Banach contraction mappings principle is one of the most useful theorems
in nonlinear analysis. Many authors generalized this famous result in different ways.
Subsequently, several authors have concentrated on expanding and improving this
theory (see, e.g., [12, 18, 27, 37] and many others).

The notion of partial metric space was originally developed by Matthews ([24,
25]) to provide a mechanism generalizing metric space theories. A partial metric
space is a extension of metric by replacing the condition d(x, x) = 0 of the (usual)
metric with the inequality d(x, x) 6 d(x, y) for all x, y. Also, this concept provide
the basis to study denotational semantics of dataflow networks [24, 25, 40, 43]. In
partial metric spaces the distance of a point in the self may not be zero. Introducing
partial metric space, Matthews extended the Banach contraction principle [9] and
proved the fixed point theorem in this space.
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Matthews gave some basic definitions and properties on partial metric space
such as Cauchy sequence, convergent sequence etc. Due to importance of the fixed
point theory it is very interesting to study fixed point theorems on different con-
cepts.

Many authors studied the fixed points for mappings satisfying contractive con-
ditions in complete partial metric spaces. More recently, in [1], [5], [6], [8], [13],
[14], [17], [20], [41] some fixed point theorems under various contractive conditions
in complete partial metric spaces are proved.

On the other hand, Popa [30] and [31] considered an implicit contraction type
condition instead of the usual explicit condition. This direction of research pro-
duced a consistent literature on fixed point, common fixed point and coincidence
point theorems in various ambient spaces. For more details see [4, 10, 11, 16, 32,
35].

In 2013, Vetro and Vetro [42] initiated the study of fixed points of self mappings
in partial metric spaces satisfying an implicit relation. In [7], Altun and Turkoglu
launched a new type of implicit relation satisfying ϕ-map.

Very recently, Popa and Patriciu [36] have studied a new type of ϕ-implicit
relation and established a unique point of coincidence and unique common fixed
point results and also as application of results they obtained fixed point theorem
for a sequence of mappings in partial metric spaces.

The purpose of this paper is to study Altun and Turkoglu [7] type implicit
relation and establish a unique fixed point, a unique common fixed point and a
coincidence point theorems in partial metric spaces. Our results extend, generalize
and unify several results from the existing literature.

2. Preliminaries

Now, we give some basic properties and results on the concept of partial metric
space (PMS).

Definition 2.1. ([25]) Let X be a nonempty set and p : X×X → R+ be such
that for all x, y, z ∈ X the followings are satisfied:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(P2) p(x, x) 6 p(x, y),

(P3) p(x, y) = p(y, x),

(P4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).

Then p is called partial metric on X and the pair (X, p) is called partial metric
space.

Remark 2.1. It is clear that if p(x, x) = 0, then x = y. But, on the contrary
p(x, x) need not be zero.

Example 2.1. ([8]) Let X = R+ and p : X × X → R+ given by p(x, y) =
max{x, y} for all x, y ∈ R+. Then (R+, p) is a partial metric space.

Example 2.2. ([8]) Let X = {[a, b] : a, b ∈ R, a 6 b}. Then p
(
[a, b], [c, d]

)
=

max{b, d} −min{a, c} defines a partial metric p on X.



SOME FIXED POINT THEOREMS ON PARTIAL METRIC SPACES. . . 103

Various applications of this space has been extensively investigated by many
authors (see [21], [41] for details).

Remark 2.2. ([19]) Let (X, p) be a partial metric space.

(a1) The function dM : X×X → R+ defined as dM (x, y) = 2p(x, y)− p(x, x)−
p(y, y) is a (usual) metric on X and (X, dM ) is a (usual) metric space.

(a2) The function dS : X × X → R+ defined as dS(x, y) = max{p(x, y) −
p(x, x), p(x, y) − p(y, y)} is a (usual) metric on X and (X, dS) is a (usual) metric
space.

Note also that each partial metric p on X generates a T0 topology τp on
X, whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where
Bp(x, ε) = {y ∈ X : p(x, y) 6 p(x, x) + ε} for all x ∈ X and ε > 0.

On a partial metric space the notions of convergence, the Cauchy sequence,
completeness and continuity are defined as follows [24].

Definition 2.2. ([24]) Let (X, p) be a partial metric space. Then:

(b1) a sequence {xn} in (X, p) is said to be convergent to a point x ∈ X if and
only if p(x, x) = limn→∞ p(xn, x),

(b2) a sequence {xn} is called a Cauchy sequence if limm,n→∞ p(xm, xn) exists
and finite,

(b3) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges
to a point x ∈ X with respect to τp. Furthermore,

lim
m,n→∞

p(xm, xn) = lim
n→∞

p(xn, x) = p(x, x).

(b4) A mapping f : X → X is said to be continuous at x0 ∈ X if for every

ε > 0, there exists δ > 0 such that f
(
Bp(x0, δ)

)
⊂ Bp

(
f(x0), ε

)
.

Definition 2.3. ([26]) Let (X, p) be a partial metric space. Then:

(c1) a sequence {xn} in (X, p) is called 0-Cauchy if limm,n→∞ p(xm, xn) = 0,

(c2) (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in X
converges to a point x ∈ X, such that p(x, x) = 0.

Definition 2.4. A point x in X is called a coincidence point of f and T if
f(x) = T (x) for each x ∈ X.

Lemma 2.1 ([24, 25]). Let (X, p) be a partial metric space. Then:

(d1) a sequence {xn} in (X, p) is a Cauchy sequence if and only if it is a Cauchy
sequence in the metric space (X, dM ),

(d2) (X, p) is complete if and only if the metric space (X, dM ) is complete,

(d3) a subset E of a partial metric space (X, p) is closed if a sequence {xn} in
E such that {xn} converges to some x ∈ X, then x ∈ E.

Lemma 2.2 ([1]). Assume that xn → u as n → ∞ in a partial metric space
(X, p) such that p(u, u) = 0. Then limn→∞ p(xn, y) = p(u, y) for every y ∈ X.
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3. Implicit relation

Now, an implicit relation has been introduced to investigate a unique fixed
point, a unique common fixed point and a coincidence point theorems in partial
metric spaces.

Definition 3.1. A function ψ : [0,∞) → [0,∞) is a ϕ-function, ψ ∈ ϕ, if ψ is
nondecreasing function such that Σ∞

n=1ψ
n(t) < +∞ for all t > 0 and ψ(0) = 0.

Remark 3.1. Since Σ∞
n=1ψ

n(t) < +∞, then limn→∞ ψn(t) = 0. Then as in
[23], ψ(t) < t for t > 0 and ψ(0) = 0.

Definition 3.2. Let Fϕ be the set of all continuous functions

F (t1, . . . , t5) : R5
+ −→ R

such that:

(F1) : F is nonincreasing in variables t2, . . . , t5,

(F2) : There exists a function ψ ∈ ϕ such that

(F2a) : F
(
u, v, u+ v, v, 12 (u+ v)

)
6 0,

(F2b) : F
(
u, v, v, u+ v, 12 (u+ v)

)
6 0,

implies u 6 ψ(v).

The proof of property (F1) is easy, in the following examples. We shall only
verify the property (F2).

Example 3.1. Let

F (t1, . . . , t5) = t1 − h max{t2, . . . , t5},

where h ∈ [0, 12 ).

(F2) : Let u, v > 0 and

F
(
u, v, u+ v, v,

1

2
(u+ v)

)
= u− h (u+ v) 6 0,

which implies u 6
(

h
1−h

)
v and (F2a) is satisfied for ψ(t) =

(
h

1−h

)
t.

Similarly, F
(
u, v, v, u + v, 12 (u + v)

)
= u − h (u + v) 6 0 which implies u 6(

h
1−h

)
v and (F2b) is satisfied for ψ(t) =

(
h

1−h

)
t.

Example 3.2. Let

F (t1, . . . , t5) = t1 − k max{t2, t3, t4,
t3 + 2t4

3
,
t4 + 2t5

3
},

where k ∈ [0, 12 ).

(F2) : Let u, v > 0 and

F
(
u, v, u+ v, v,

1

2
(u+ v)

)
= u− k max{v, u+ v, v,

u+ 3v

3
,
u+ 2v

3
} 6 0,
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which implies u 6
(

k
1−k

)
v and (F2a) is satisfied for ψ(t) =

(
k

1−k

)
t.

Similarly, F
(
u, v, v, u+ v, 12 (u+ v)

)
6 0 which implies u 6 ψ(v).

Example 3.3. Let

F (t1, . . . , t5) = t1 −max{at2, b(t3 + 2t4), b(t4 + 2t5)},

where a ∈ (0, 1) and b ∈ (0, 14 ).

(F2) : Let u, v > 0 and

F
(
u, v, u+ v, v,

1

2
(u+ v)

)
= u−max{av, b(u+ 3v), b(u+ 2v)}.

If u > v, then u
(
1−max{a, 2b}

)
6 0, a contradiction. Hence u 6 v, which implies

u 6 max{a, 2b}v and (F2a) is satisfied for ψ(t) = max{a, 2b}t.
Similarly, F

(
u, v, v, u+ v, 12 (u+ v)

)
6 0 which implies u 6 ψ(v).

Example 3.4. Let

F (t1, . . . , t5) = t1 − k max{t2, t3 + t4, 2t5},

where k ∈ (0, 13 ).

(F2) : Let u, v > 0 and

F
(
u, v, u+ v, v,

1

2
(u+ v)

)
= u− k max{v, u+ 2v, u+ v} 6 0,

which implies u 6
(

2k
1−k

)
v and (F2a) is satisfied for ψ(t) =

(
2k
1−k

)
t.

Similarly, F
(
u, v, v, u+ v, 12 (u+ v)

)
6 0 which implies u 6 ψ(v).

Example 3.5. Let

F (t1, . . . , t5) = t21 − a max{t22, t23, t24} − 2bt4t5,

where a, b > 0 with 4a+ 2b < 1.

(F2) : Let u, v > 0 and F
(
u, v, u+v, v, 12 (u+v)

)
= u2−a max{v2, (u+v)2, v2}−

bv(u+v).If u > v, then u2
(
1− (4a+2b)

)
6 0, a contradiction. Hence u 6 v, which

implies u 6
√

(4a+ 2b)v and (F2a) is satisfied for ψ(t) =
√
(4a+ 2b)t.

Similarly, F
(
u, v, v, u+ v, 12 (u+ v)

)
6 0 which implies u 6 ψ(v).

Example 3.6. Let

F (t1, . . . , t5) = t31 − a t21t2 − b t1t
2
2 − c t2t3t4 − 2d t1t4t5,

where a, b, c, d > 0 with a+ b+ 2c+ 2d < 1.

(F2) : Let u, v > 0 and

F
(
u, v, u+ v, v,

1

2
(u+ v)

)
= u3 − a u2v − b uv2 − c v2(u+ v)− d uv(u+ v) 6 0.
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If u > v, then u3
(
1−(a+b+2c+2d)

)
6 0, a contradiction. Hence u 6 v, which im-

plies u 6 3
√
(a+ b+ 2c+ 2d)v and (F2a) is satisfied for ψ(t) = 3

√
(a+ b+ 2c+ 2d)t.

Similarly, F
(
u, v, v, u+ v, 12 (u+ v)

)
6 0 which implies u 6 ψ(v).

Example 3.7. Let F (t1, . . . , t5) = t1−ψ
(
at2+bt3+ct4+2dt5

)
, where a, b, c, d >

0 with a+ 2b+ c+ 2d < 1.

(F2) : Let u, v > 0 and

F
(
u, v, u+ v, v,

1

2
(u+ v)

)
= u− ψ

(
av + b(u+ v) + cv + d(u+ v)

)
6 0.

If u > v, then u− ψ
(
(a+ 2b+ c+ 2d)u

)
6 0, which implies

u 6 ψ
(
(a+ 2b+ c+ 2d)u

)
6 ψ(u) < u,

a contradiction. Hence u 6 v, which implies u 6 ψ(v).

Similarly, F
(
u, v, v, u+ v, 12 (u+ v)

)
6 0 which implies u 6 ψ(v).

Example 3.8. Let

F (t1, . . . , t5) = t1 − ψ
(
at2 + bt3 + cmax{t4, 2t5}

)
,

where a, b, c > 0 with a+ 2b+ 2c < 1.

(F2) : Let u, v > 0 and

F
(
u, v, u+ v, v,

1

2
(u+ v)

)
= u− ψ

(
av + b(u+ v) + cmax{v, (u+ v)}

)
6 0.

If u > v, then u− ψ
(
(a+ 2b+ 2c)u

)
6 0, which implies

u 6 ψ
(
(a+ 2b+ 2c)u

)
6 ψ(u) < u,

a contradiction. Hence u 6 v, which implies u 6 ψ(v).

Similarly, F
(
u, v, v, u+ v, 12 (u+ v)

)
6 0 which implies u 6 ψ(v).

The purpose of this paper is to study ψ-implicit contractive condition on partial
metric space and establish a unique fixed point, a unique common fixed point and
a coincidence point theorems in the said space. The results of findings extend and
generalize several results from the existing literature.

4. Main Results

In this section, we shall prove a unique fixed point, a unique common fixed
point and a coincidence point theorems for implicit contractive condition defined
in definition 3.2 in the framework of partial metric spaces.

Theorem 4.1. Let (X, p) be a complete partial metric space and T : X → X
be a mapping satisfying the condition:

F
(
p(T x, T y), p(x, y), p(x, T y), p(y, T x),

1

2

[
p(x, T x) + p(y, T y)

])
6 0,(4.1)
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for all x, y ∈ X, where F ∈ Fϕ. Then T has a unique fixed point.

Proof. Let x0 ∈ X. We construct the iterative sequence {xn} which is defined
as xn = T xn−1 for n = 1, 2, 3, . . . , then xn = T nx0. If xn = xn+1 for some n ∈ N,
then xn is a fixed point of T . So, we assume that xn ̸= xn+1 for all n ∈ N. From
(4.1) for x = xn−1 and y = xn we have successively

F
(
p(T xn−1, T xn), p(xn−1, xn), p(xn−1, T xn), p(xn, T xn−1),

1

2

[
p(xn−1, T xn−1) + p(xn, T xn)

])
6 0.

F
(
p(xn, xn+1), p(xn−1, xn), p(xn−1, xn+1), p(xn, xn),

1

2

[
p(xn−1, xn) + p(xn, xn+1)

])
6 0.(4.2)

Since by (P4),

p(xn−1, xn+1) 6 p(xn−1, xn) + p(xn, xn+1)− p(xn, xn)

6 p(xn−1, xn) + p(xn, xn+1),

and by (P2),

p(xn, xn) 6 p(xn−1, xn).

By (4.2) and (F1), we obtain

F
(
p(xn, xn+1), p(xn−1, xn), p(xn−1, xn) + p(xn, xn+1),

p(xn−1, xn),
1

2

[
p(xn−1, xn) + p(xn, xn+1)

])
6 0.(4.3)

By (F2a), we obtain

p(xn, xn+1) 6 ψ
(
p(xn−1, xn)

)
.(4.4)

By (4.1) for x = xn and y = xn+1, we obtain

F
(
p(T xn, T xn+1), p(xn, xn+1), p(xn, T xn+1), p(xn+1, T xn),

1

2

[
p(xn, T xn) + p(xn+1, T xn+1)

])
6 0.

F
(
p(xn+1, xn+2), p(xn, xn+1), p(xn, xn+2), p(xn+1, xn+1),

1

2

[
p(xn, xn+1) + p(xn+1, xn+2)

])
6 0.(4.5)

Since by (P4),

p(xn, xn+2) 6 p(xn, xn+1) + p(xn+1, xn+2)− p(xn+1, xn+1)

6 p(xn, xn+1) + p(xn+1, xn+2),

and by (P2),

p(xn+1, xn+1) 6 p(xn, xn+1).
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By (4.5) and (F1), we obtain

F
(
p(xn+1, xn+2), p(xn, xn+1), p(xn, xn+1) + p(xn+1, xn+2),

p(xn, xn+1),
1

2

[
p(xn, xn+1) + p(xn+1, xn+2)

])
6 0.(4.6)

By (F2a), we obtain

p(xn+1, xn+2) 6 ψ
(
p(xn, xn+1)

)
,

which implies

p(xn, xn+1) 6 ψ
(
p(xn−1, xn)

)
6 ψ2

(
p(xn−2, xn−1)

)
6 . . . 6 ψn

(
p(x0, x1)

)
.

For n,m ∈ N with m > n, by repeated use of (P4), we have that

p(xn, xm) 6 p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xm−1, xm)

−p(xn+1, xn+1)− p(xn+2, xn+2)− · · · − p(xm−1, xm−1)

6 p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xm−1, xm)

=
m−1∑
k=n

ψk
(
p(x0, x1)

)
.

Since
∑∞

k=0 ψ
k
(
p(x0, x1)

)
<∞, then

limn→∞
∑m−1

k=n ψ
k
(
p(x0, x1)

)
= 0 and limn,m→∞ p(xn, xm) = 0

and so

dM (xn, xm) = 2p(xn, xm) → 0 as n,m→ ∞.(4.7)

This implies that {xn} is a Cauchy sequence inX. Thus by Lemma 2.1 this sequence
will also Cauchy in (X, dM ). In addition, since (X, p) is complete, (X, dM ) is also
complete. Thus there exists u ∈ X such that xn → u as n → ∞. Moreover by
Lemma 2.2,

p(u, u) = lim
n→∞

p(u, xn) = lim
n,m→∞

p(xn, xm) = 0,(4.8)

implies

lim
n→∞

dM (u, xn) = 0.(4.9)

Now, we show that x is a fixed point of T . Notice that due to (4.8), we have
p(u, u) = 0. By (4.1) with x = u and y = xn, we have

F
(
p(T u, T xn), p(u, xn), p(u, T xn), p(xn, T u),

1

2

[
p(u, T u) + p(xn, T xn)

])
6 0.

F
(
p(T u, xn+1), p(u, xn), p(u, xn+1), p(xn, T u),

1

2

[
p(u, T u) + p(xn, xn+1)

])
6 0.(4.10)



SOME FIXED POINT THEOREMS ON PARTIAL METRIC SPACES. . . 109

Letting n→ ∞ in (4.10), we obtain by Lemma 2.2 and using (P3) that

F
(
p(T u, u), 0, 0, p(T u, u), 1

2
p(T u, u)

)
6 0,

which implies by (F2b) that p(T u, u) 6 ψ(0) = 0, that is, T u = u. This shows that
u is a fixed point of T .

Now we show that the fixed point of T is unique. Assume that v is another
fixed point of T such that v = T v with v ̸= u. Then form (4.1), (4.8) and using
(P3), we have

F
(
p(T u, T v), p(u, v), p(u, T v), p(v, T u),

1

2

[
p(u, T u) + p(v, T v)

])
6 0.

F
(
p(T u, T v), p(u, v), p(u, T v), p(v, T u),

1

2

[
p(u, T u) + p(v, T v)

])
6 0.

F
(
p(u, v), p(u, v), p(u, v), p(v, u),

1

2

[
p(u, u) + p(v, v)

])
6 0.

F
(
p(u, v), p(u, v), p(u, v), p(u, v), 0

)
6 0.

By (F1) and (F2a), we obtain

p(u, v) 6 ψ
(
p(u, v)

)
< p(u, v),

if p(u, v) ̸= 0, a contradiction. Hence p(u, v) = 0, which implies u = v. This shows
that the fixed point of T is unique. This completes the proof. �

Theorem 4.2. Let T and f be two self-maps on a complete partial metric space
(X, p) satisfying the condition:

F
(
p(T x, T y), p(fx, fy), p(fx, T y), p(fy, T x),

1

2

[
p(fx, T x) + p(fy, T y)

])
6 0,(4.11)

for all x, y ∈ X, where F ∈ Fϕ. If the range of f contains the range of T and f(X)
is a complete subspace of X, then T and f have a coincidence fixed point.

Proof. Let x0 ∈ X and choose a point x1 in X such that

T x0 = fx1, . . . , T xn = fxn+1 = yn+1.

Then from (4.11) for x = xn−1 and y = xn we have successively

F
(
p(T xn−1, T xn), p(fxn−1, fxn), p(fxn−1, T xn), p(fxn, T xn−1),

1

2

[
p(fxn−1, T xn−1) + p(fxn, T xn)

])
6 0.
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F
(
p(yn, yn+1), p(yn−1, yn), p(yn−1, yn+1), p(yn, yn),

1

2

[
p(yn−1, yn) + p(yn, yn+1)

])
6 0.(4.12)

Since by (P4),

p(yn−1, yn+1) 6 p(yn−1, yn) + p(yn, yn+1)− p(yn, yn)

6 p(yn−1, yn) + p(yn, yn+1),

and by (P2),

p(yn, yn) 6 p(yn−1, yn).

By (4.12) and (F1), we obtain

F
(
p(yn, yn+1), p(yn−1, yn), p(yn−1, yn) + p(yn, yn+1),

p(yn−1, yn),
1

2

[
p(yn−1, yn) + p(yn, yn+1)

])
6 0.(4.13)

By (F2a), we obtain

p(yn, yn+1) 6 ψ
(
p(yn−1, yn)

)
,

which implies

p(yn, yn+1) 6 ψ
(
p(yn−1, yn)

)
6 ψ2

(
p(yn−2, yn−1)

)
6 . . . 6 ψn

(
p(y0, y1)

)
.

For n,m ∈ N with m > n, by repeated use of (P4), we have that

p(yn, ym) 6 p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)

−p(yn+1, yn+1)− p(yn+2, yn+2)− · · · − p(ym−1, ym−1)

6 p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)

=

m−1∑
j=n

ψj
(
p(y0, y1)

)
.

Since
∑∞

j=0 ψ
j
(
p(y0, y1)

)
<∞, then

limn→∞
∑m−1

j=n ψj
(
p(y0, y1)

)
= 0 and limn,m→∞ p(yn, ym) = 0

and so

dM (yn, ym) = 2p(yn, ym) → 0 as n,m→ ∞.(4.14)

This implies that {yn} = {fxn} is a Cauchy sequence in X. Thus by Lemma 2.1
this sequence will also Cauchy in (X, dM ). In addition, since (X, p) is complete,
(X, dM ) is also complete. Thus there exists v ∈ X such that xn → v ⇒ fxn → fv
as n→ ∞, since f(X) is a complete subspace of X. Moreover by Lemma 2.2,

p(fv, fv) = lim
n→∞

p(fv, fxn) = lim
n,m→∞

p(fxn, fxm) = 0,(4.15)

implies

lim
n→∞

dM (fv, fxn) = 0.(4.16)
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Now, we show that v is a coincidence point of T and f . Notice that due to (4.15),
we have p(fv, fv) = 0. By (4.11) with x = u and y = xn, we have

F
(
p(T v, T xn), p(fv, fxn), p(fv, T xn), p(fxn, T v),

1

2

[
p(fv, T v) + p(fxn, T xn)

])
6 0.

F
(
p(T v, fxn+1), p(fv, fxn), p(fv, fxn+1), p(fxn, T v),

1

2

[
p(fv, T v) + p(fxn, fxn+1)

])
6 0.(4.17)

Letting n→ ∞ in (4.17) and using (P3), we obtain by Lemma 2.2 that

F
(
p(T v, fv), 0, 0, p(T v, fv), 1

2
p(T v, fv)

)
6 0,(4.18)

which implies by (F2b) that p(T v, fv) 6 ψ(0) = 0, that is, T v = fv. This shows
that v is a coincidence point of T and f . This completes the proof. �

Theorem 4.3. Let T1 and T2 be two self-maps on a complete partial metric
space (X, p) satisfying the condition:

F
(
p(T1x, T2y), p(x, y), p(x, T2y), p(y, T1x),

1

2

[
p(x, T1x) + p(y, T2y)

])
6 0,(4.19)

for all x, y ∈ X, where F ∈ Fϕ. Then T1 and T2 have a unique common fixed point
in X.

Proof. For each x0 ∈ X. Put x2n+1 = T1x2n = y2n and x2n+2 = T2x2n+1 =
y2n+1 for n = 0, 1, 2, . . . . We prove that {yn} is a Cauchy sequence in (X, p). It
follows from (4.19) for x = x2n and y = x2n+1 that

F
(
p(T1x2n, T2x2n+1), p(x2n, x2n+1), p(x2n, T2x2n+1), p(x2n+1, T1x2n),

1

2

[
p(x2n, T1x2n) + p(x2n+1, T2x2n+1)

])
6 0.

F
(
p(y2n, y2n+1), p(y2n−1, y2n), p(y2n−1, y2n+1), p(y2n, y2n),

1

2

[
p(y2n−1, y2n) + p(y2n, y2n+1)

])
6 0.(4.20)

Since by (P4),

p(y2n−1, y2n+1) 6 p(y2n−1, y2n) + p(y2n, y2n+1)− p(y2n, y2n)

6 p(y2n−1, y2n) + p(y2n, y2n+1),

and by (P2),

p(y2n, y2n) 6 p(y2n−1, y2n).
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By (4.20) and (F1), we obtain

F
(
p(y2n, y2n+1), p(y2n−1, y2n), p(y2n−1, y2n) + p(y2n, y2n+1),

p(y2n−1, y2n),
1

2

[
p(y2n−1, y2n) + p(y2n, y2n+1)

])
6 0.(4.21)

By (F2a), we obtain

p(y2n, y2n+1) 6 ψ
(
p(y2n−1, y2n)

)
,

By (4.19) for x = x2n+2 and y = x2n+1, we obtain

F
(
p(T1x2n+2, T2x2n+1), p(x2n+2, x2n+1), p(x2n+2, T2x2n+1), p(x2n+1, T1x2n+2),

1

2

[
p(x2n+2, T1x2n+2) + p(x2n+1, T2x2n+1)

])
6 0.

F
(
p(y2n+2, y2n+1), p(y2n+1, y2n), p(y2n+1, y2n+1), p(y2n, y2n+2),

1

2

[
p(y2n+1, y2n+2) + p(y2n, y2n+1)

])
6 0.(4.22)

Since by (P4),

p(y2n, y2n+2) 6 p(y2n, y2n+1) + p(y2n+1, y2n+2)− p(y2n+1, y2n+1)

6 p(y2n, y2n+1) + p(y2n+1, y2n+2),

and by (P2),

p(y2n+1, y2n+1) 6 p(y2n, y2n+1).

By (4.22), (F1) and using (P3), we obtain

F
(
p(y2n+2, y2n+1), p(y2n+1, y2n), p(y2n+1, y2n), p(y2n+1, y2n)

+p(y2n+2, y2n+1),
1

2

[
p(y2n+2, y2n+1) + p(y2n+1, y2n)

])
6 0.(4.23)

By (F2b), we obtain

p(y2n+2, y2n+1) 6 ψ
(
p(y2n+1, y2n)

)
,

which implies

p(yn, yn+1) 6 ψ
(
p(yn−1, yn)

)
6 ψ2

(
p(yn−2, yn−1)

)
6 . . . 6 ψn

(
p(y0, y1)

)
.

For n,m ∈ N with m > n, by repeated use of (P4), we have that

p(yn, ym) 6 p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)

−p(yn+1, yn+1)− p(yn+2, yn+2)− · · · − p(ym−1, ym−1)

6 p(yn, yn+1) + p(yn+1, yn+2) + · · ·+ p(ym−1, ym)

=
m−1∑
r=n

ψr
(
p(y0, y1)

)
.

Since
∑∞

r=0 ψ
r
(
p(y0, y1)

)
<∞, then
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limn→∞
∑m−1

r=n ψr
(
p(y0, y1)

)
= 0 and limn,m→∞ p(yn, ym) = 0

and so

dM (yn, ym) = 2p(yn, ym) → 0 as n,m→ ∞.(4.24)

This implies that {yn} is a Cauchy sequence inX. Thus by Lemma 2.1 this sequence
will also Cauchy in (X, dM ). In addition, since (X, p) is complete, (X, dM ) is also
complete. Thus there exists z ∈ X such that xn → z as n → ∞. Moreover by
Lemma 2.2,

p(z, z) = lim
n→∞

p(z, yn) = lim
n,m→∞

p(yn, ym) = 0,(4.25)

implies

lim
n→∞

dM (z, yn) = 0.(4.26)

Now, we show that z is a common fixed point of T1 and T2. Notice that due to
(4.25), we have p(z, z) = 0. By (4.19) with x = z and y = x2n+1 and using (4.25),
we have

F
(
p(T1z, T2x2n+1), p(z, x2n+1), p(z, T2x2n+1), p(x2n+1, T1z),

1

2

[
p(z, T1z) + p(x2n+1, T2x2n+1)

])
6 0.

F
(
p(T1z, x2n+2), p(z, x2n+1), p(z, x2n+2), p(x2n+1, T1z),

1

2

[
p(z, T1z) + p(x2n+1, x2n+2)

])
6 0.(4.27)

Letting n→ ∞ in (4.27) and using (P3), we obtain by Lemma 2.2 that

F
(
p(T1z, z), 0, 0, p(T1z, z),

1

2
p(T1z, z)

)
6 0,

which implies by (F2b) that p(T1z, z) 6 ψ(0) = 0, that is, T1z = z. This shows that
z is a fixed point of T1. Similarly, we can show that T2z = z. Thus z is a common
fixed point of T1 and T2.

Now, we have to show that the common fixed point of T1 and T2 is unique.
Assume that z′ is another common fixed point of T1 and T2 such that T1z′ = z′ =
T2z′ with z ̸= z′. Now using (4.19), (4.25) and (P3) with x = z and y = z′, we
have

F
(
p(T1z, T2z′), p(z, z′), p(z, T2z′), p(z′, T1z),

1

2

[
p(z, T1z) + p(z′, T2z′)

])
6 0.

F
(
p(z, z′), p(z, z′), p(z, z′), p(z′, z),

1

2

[
p(z, z) + p(z′, z′)

])
6 0.

F
(
p(z, z′), p(z, z′), p(z, z′), p(z, z′), 0

)
6 0.
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By (F1) and (F2a), we obtain

p(z, z′) 6 ψ
(
p(z, z′)

)
< p(z, z′),

if p(z, z′) ̸= 0, a contradiction. Hence p(z, z′) = 0, which implies z = z′. This
shows that the common fixed point of T1 and T2 is unique. This completes the
proof. �

Remark 4.1. If we take f = I, the identity map and T is the single valued
mapping in Theorem 4.2, then we obtain Theorem 4.1 of this paper.

Remark 4.2. If we take T1 = T2 = T in Theorem 4.3, then we obtain Theorem
4.1 of this paper.

5. Application to well-posedness and limit shadowing of fixed point
problem

The notion of well posedness of a fixed point problem has generated much
interest to several mathematicians, for example, Akkouchi [2], Akkouchi and Popa
[3], De Blasi and Myjak [15], Lahiri and Das [22], Popa [33, 34], Reich and
Zaslawski [38] and many others. Here, we study well posedness and limit shadowing
of a fixed point problem of mappings in Theorem 4.1.

Definition 5.1. ([15]) Let (X, d) be a metric space and T : X → X be a
mapping. The fixed point problem of T is said to be well-posed if

(i) T has a unique fixed point u in X;
(ii) for any sequence {xn} of points in X such that limn→∞ d(T xn, xn) = 0,

we have limn→∞ d(xn, u) = 0.

The limit shadowing property of fixed point problems has been discussed in
the articles [28, 29, 39] and others.

Definition 5.2. ([31]) Let (X, d) be a metric space and T : X → X be a
mapping. The fixed point problem of T is said to have limit shadowing property
in X if assuming that sequence {xn} in X satisfies d(T xn, xn) = 0 as n → ∞ it
follows that there exists x ∈ X such that d(T nx, xn) = 0 as n→ ∞.

We can give similar definitions in partial metric spaces.
Concerning the well-posedness and limit shadowing of the fixed point problem

for a mapping in a partial metric space satisfying the conditions of Theorem 4.1,
we have the following results.

Theorem 5.1. Let T : X → X be a self mapping as in Theorem 4.1. Then the
fixed point problem for T is well posed.

Proof. Owing to Theorem 4.1, we know that T has a unique fixed point u =
T u ∈ X, such that p(u, T u) = 0. Let {xn} ⊂ X be such that limn→∞ p(xn, T xn) =
0. Then taking x = xn−1 and y = u in inequality (4.1), we have

F
(
p(T xn−1, T u), p(xn−1, u), p(xn−1, T u), p(u, T xn−1),

1

2

[
p(xn−1, T xn−1 + p(u, T u)

])
6 0.
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or

F
(
p(xn, u), p(xn−1, u), p(xn−1, u), p(u, xn),

1

2

[
p(xn−1, xn + p(u, T u)

])
6 0,

or

F
(
p(xn, u), p(xn−1, u), p(xn−1, u), p(u, xn),

1

2

[
p(xn−1, u) + p(u, xn)

])
6 0,

by (P3), we have

F
(
p(xn, u), p(xn−1, u), p(xn−1, u), p(xn, u),

1

2

[
p(xn−1, u) + p(xn, u)

])
6 0,

which implies by (F2b) that

p(xn, u) 6 ψ
(
p(xn−1, u)

)
.

Hence, we have

p(xn, u) 6 ψ
(
p(xn−1, u)

)
6 ψ2

(
p(xn−2, u)

)
6 . . . 6 ψn

(
p(x0, u)

)
.

Taking the limit as n→ ∞ in the above inequality and by Remark 3.1, we get that
p(xn, u) → 0 as n→ ∞ which is equivalent to saying that xn → u as n→ ∞. This
completes the proof. �

Theorem 5.2. Let T : X → X be a self mapping as in Theorem 4.1. Then T
has the limit shadowing property.

Proof. Owing to Theorem 4.1, we know that T has a unique fixed point u =
T u ∈ X, such that p(u, T u) = 0. Let {xn} ⊂ X be such that limn→∞ p(xn, T xn) =
0. Then, as in the previous proof,

p(xn, u) 6 ψ
(
p(xn−1, u)

)
6 ψ2

(
p(xn−2, u)

)
6 . . . 6 ψn

(
p(x0, u)

)
.

Passing to the limit as n→ ∞ in the above inequality and by Remark 3.1, it follows
that p(xn, T nu) = p(xn, u) → 0 as n→ ∞. This completes the proof. �

6. Conclusion

In this paper, we study Popa and Patriciu [36] type implicit relation and es-
tablish a unique fixed point, a coincidence point and a unique common fixed point
theorems in the framework of partial metric spaces. The results presented in this
paper extend, unify and generalize several results from the existing literature re-
garding various ambient spaces and contraction condition. We also present one of
the possible applications of our result to well-posed and limit shadowing property
of fixed point problems.
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