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ON SOME PROPERTIES OF PARTICULAR
TETRANACCI SEQUENCES

Seyyed Hossein Jafari Petroudi, Maryam Pirouz,
and Arzu Ozkog Oztiirk

ABSTRACT. In this paper, a particular Tetranacci sequence, namely Pell-Pado-
van Tetranacci sequence is introduced. The Binet-like-formula, partial sum,
generating function related to this sequence are represented. Some identities
and examples about this sequence are stated by using the matrix form. Also
norms, determinants and eigenvalues of the circulant matrices for the Pell-
Padovan Tetranacci sequence are obtained.

1. Introduction

Many authors investigated recurrence relations like as Fibonacci numbers, Pell
sequence, Padovan sequence, Tribonacci sequence, Tetrabonacci sequence and gen-
eralizations of these sequences. They established numerous results and identities
about these sequences. Also they illustrated various applications of these sequences.
To learn more about Pell sequence, Padovan sequence, Tetranacci sequences and
generalizations of these sequences and applications of these sequences we refer to
1, 2, 3,5, 8,9, 10, 15, 17, 18|.

Fibonacci numbers are a sequence which are defined by the following recurrence
relation:

Fo=0,Fi=1and F,, = F,_ 1+ F,_o for alln > 2.
The first Fibonacci numbers are
0,1,1,2,3,5,8,13,21, 34, 55,89, 144,233, - - - .
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362 PETROUDI, PIROUZ, AND OZTURK

The characteristic equation of F, is 22 —x — 1 = 0 and hence the roots of it are

= 1+—2\/‘?’ and § = 1_7\/‘?’ Also Binet’s formula for the sequence is F,, = a;:gn for
n = 0. Lucas numbers L,, are defined by Lo =2,L; =1and L, = L1 + L2
for n > 2. The first Lucas numbers are

2,1,3,4,7,11,18,29,47,76, - -- ([11]).

Pell sequence P, is defined by the recursive relation

P,=2P, 1+ P, 2

for all n > 2 with the initial values Py = 0, P; = 1. In [12], the Padovan sequence
R, is defined by the recursion relation

R7L+2 - Rn + Rn—l

for all n > 3 with initial values R = 1,R; =1, Ry = 1.
In [12, 13], the Pell-Padovan sequence P(n) is defined by a third-order recur-
rence equation

P(n+3)=2P(n+1)+ P(n)
for n > 0, where P(0) = P(1) = P(2) = 1.

In [7] author defined a new integer sequence related to Fibonacci and Pell
sequences with four parameters

W, =3W,_1—3W,_3—W,_4sforn>4

with initial values Wy = W; =0, W5 = 1, W35 = 3 and then derive some algebraic
identities on it. In [16], the authors considered the integer sequence with four
parameters and introduced the concept of a fourth-order recurrence relations and
established some identities for these sequence.

Let A = (a;;) be an n x n matrix. The circulant matrix formed a square matrix

ail a2 a13 to A1n

a1 Q22 Aag3 ce A2n
C(A) =

an1 an2 ap3 o Ann

The eigenvalues of A are

n—1
(1.1) Aj(A) =" apw Ik,
k=0

2mi

where w =e™ ,i=+/—1and j =0,1,--- ,n — 1. The spectral norm for a matrix
A = [aijlnxm is defined to be ||A||spec = max{y/A;}, where \; are the eigenvalues
of AHA for 0 < j <n—1and A¥ denotes the conjugate transpose of A.
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2. Particular Tetranacci Sequences

DEFINITION 2.1. We define the Pell-Padovan Tetranacci sequence (PT,) by
the recursive relation

(2.1) PT, 4= PT,o+2PT,11 + PT,

with initial values PTy =0, P11y =1, PI, =1, PT3=1.
Hence the first few values of Pell-Padovan Tetranacci sequence are:

0,1,1,1,3,4,6,11,17,27,45,72,116.

REMARK 2.1. Pell-Padovan Tetranacci sequence (PT,,) has the characteristic
equation z* — 22 — 2z — 1 = 0. By factorization of this polynomial we see that

ot =2 —2r 1= -z - D> +z+1).

Therefore by solving the characteristic equation of this sequence we get that
this equation has two real roots «, 8 and two complex roots -y, A which are

a=(1+V5)/2, B=(1-v5)/2, v=—(1-1iV3)/2, A= —(1+iV3)/2
where 1 = /—1 .

THEOREM 2.1. The generating function for the Pell-Padovan Tetranacci se-
quence (PT,,) is

oo

PT,z" = (z + 2?)/(1 — 2% — 223 — z*).

PROOF. Suppose that the generating function for the Pell-Padovan Tetranacci
sequence (PT,,) has the form

g(x) =Y PT,a" = PTy + PTyx + PTya® + PTsa® + -+ + PTpa™ + - .
n=0

Then we have

ng(x) = PTya? + PTy2® + PTya* + PTya® + -+ PT,2" 2 + - ..
223g(x) = 2PToa® + 2PTya* + 2PTha® + 2PT32% + - + 2PT, 2™ +3 + ...

and

zlg(z) = PToaz* + PTha® 4+ PToa® + PTsa” +--- + PTa™t + ...
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Thus we obtain
g(x) — 2%g(x) - 20%g(x) — 2 g(x)
= (PTy+ PThx + PTya? + PT3a® + --- + PTpa" +--+)
—(PTyx? + PTya® + PToa* + PTsa® + -+ PTa" 2 +...)
—(2PTyx® + 2PTya* + 2PToa® + 2PT3a® + - - - 4 2PT,2" ™ 4 -+ +)
—(PTyz* + PTya® + PToa® + PTya” + -+« + PT,a™* + ..
= PTy + PTyz + (PTy — PTy)x? + (PT3 — PTy — 2PTy)2?
+(PTy — PTy — 2PTy — PTy)z* + - --
+(PT,, — PTy,_o —2PT,,_3 — PT,_4)a" + - --
Therefore we get
gx) (1 —2? =22 —2Y) =0+2+(1-0)2* + (1 -1-0)2*+0+---+0=x+ 2%
Consequently

Z PT,z" = (z +2?)/(1 — 2% — 223 — 2*).
n=0

O

THEOREM 2.2. Let n > 0 be an integer. Then the Binet-like formula for the
Pell-Padovan Tetranacci sequence (PT,,) is

((a—ﬁ)(zfi)(a— A)) a4 ((5—04)(?:)(5_ )\)) gt
+ ((v—a)(zi;)(v—ﬂ)v”ﬂ + ((A_a)(;f;)(A_w) A1

where o, B, v, A are the roots of the equation x* — 2% — 2z — 1 = 0.

PT, =

PRrROOF. From Remark 2.1 we see that the equation

flxy=2*—2*-22-1=0
1

e

hz)=f(l/x)=1—x

has four distinct roots «, 5, v, A. Hence are the roots of

11
RVEIDY

N -

— 223 — 2.

In exact, we have
h(z)=1—2%—22% —2* = (1 — az)(1 — Bz)(1 — yz)(1 — Az).
According to the generating function of Pell-Padovan Tetranacci sequence, we have

T + a2 A n B L C . D
1—22-223—24 l1—-ax 1-pBx 1l—vz 1-X\

A Z(asc)" +B Z(ﬁx)" +C Z(vx)” +D Z(Ax)"
n=0 n=0 n=0 n=0

(2.2) g(x) =
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Thus, we have
x + 22

1— a2 — 223 —at

{ Al - Bz)(1 —yz)(1 — Az) + B(1 — ax)(1 — vz)(1 — Az) }
+C(1 —azx)(1 - Bz)(1 - Az)+ D(1 — az)(1 — Bz)(1 — Ax)

(1—-ax)(1-pz)(1—~yzx)

Therefore, by comparison of the left and right sides of this equality we get that

o a? { AL = Bz)(1 —yz)(1 - Azx) + B(1 — az)(1 — yz)(1 — Az) } '
+C(1 —azx)(1 - Bz)(1 — Az) + D(1 — az)(1 — Bz)(1 — yx)
If we substitute z by 1/a we find that

a2 05 (-2)

Consequently, we get

g(xr) =

s ala+1)
(a=B)a=7)(a=2A)
and similarly we get
B=summm O = tranism
and
D— AA+1)

A=a)(y=B) (A=)
By (2.2) we obtain that

oo

_ a(a+1) (az) BB +1) x)"
1© = Y e S e

n=0

= (v +1) “ AA+1) n
20 A +Z A=t - A=)

- a+1) B(B+1)8"
- Z[a B)a—N@-x  B-a)@-1E-N

n=0

Yy + 1)y AN+ 1A n
+(v—a)(v—ﬂ)(v—k)+(A—a)(v—ﬂ)(k—7)}m
Consequently we obtain
a+l an+1 ﬁ—’—l n+1
<<a—6><a—v>(a—x>) *((ﬁ—axﬂ—v)(ﬂ—n)ﬁ
7+1 n+1 )‘+1 n+1
" ((v—axw—mw—A))” +((A—a)(k—6)(A—7)>A '
O

PT, =
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THEOREM 2.3. Let n > 0 be an integer. Then

PTyi1 + PT, =
(Oé + 1)2 an+1 (/B + 1)2 n+1
((a—m(a—v)(a—m) +(<B—a><ﬂ—w><ﬁ—x>>ﬁ

(FY + 1)2 n+1 ()\ + 1)2 n+1
N (w—a)(v—ﬁ)(w—n)” * ((A—am—m(x—v)) AT

PTn_;,_l*PTn:

a? -1 B2 —1

(@ma—en) " (Fmam—m—) "
- 2 _
i <(7‘ a)gy—ﬁlﬂv— A)) (. ((A— a><§ —Bl)(/\ —7)) Y

PRrROOF. They can be proved by direct calculations from Theorem 2.2.

THEOREM 2.4. Let n > 0 be an integer and k be an arbitrary integer. Then
PTn+k + Pl =
e (= e S Iy P
(a=pB)a=7)(a=2) (B=a)(B=7)(B—2A)

(v+ 1) +1) n—k-+1 A+ 1A% +1) n—k+1
+(<7—a><v—ﬁ><w—A>>” *((A—@(A—B)(A—w))A ’

PTn+k - PTn—k =
(+1)(a®* —1) ok (B+1)(B* —1) n—k+1
<<a—ﬂ><a—v><a—x>> +(<ﬁ—a><5—w>w—m>5

GADEE -1\ e ALDOZ-1) N e
(w—a)(v—m(v—m)” *((A—a)(x—m(x—v))A |

PrROOF. They can be proved by direct calculations from Theorem 2.2.

COROLLARY 2.1. From Theorem 2.4 for k =1, we have

PTn+1+PTn 1=

((afaﬂ;?—a o)+ (o f? b))

( v+ DG+ 1) ) +<()\(>\+1)(A2+1) )v,

R CECES AR —a)(A =B —7)

O

O
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PTnJrl - PT, 1=

(a+1)2(a—1) . (B+12(B-1) .
((a—m(a—wxa—»)“ *((5—@(5—@(54))5

(v+1)*(y-1) n A+1)2(A—1) "
*(wmwmwm)” *((Aa)(Am@w)A |

LEMMA 2.1. Let k > 0 be an integer. Then

- 1
> PT}. = 5 (PTiqa+ PTiys — 2PTiy1 —2).
k=0

PROOF. From the definition of Pell-Padovan Tetranacci sequence we now that
PTk = PTk+4 - PTk+2 - 2PTk+1. Thus we have

PT, = PT,— PT,—2PT,
PTy = PIs— Pl3—2P1T,
PT, = PTs— PT,—2PT,

PTy_s = PTiye— PT,—2PTi

PTy, 1 = Plyyz— Pl —2PT
PTy = PTyia— PTyis — 2PThsr.

Therefore, we get

> PTy = —PTy — PT5 + PTyys + PTiys — 2PTy — 2 PTy.
k=0 k=0

Thus, we have

3y PIp=—1—1+Plis+ PTiys — 2PThss.
k=0

Consequently, we get

- 1
> PT} = 5 (PTiqa+ PTiys — 2PTiq1 —2).
k=0

3. Special Matrices on Pell-Padovan Tetranacci Sequence

There are two subsections in this section, one of which consists of algebraic re-
sults obtained with the help of matrices. In the other subsection, circulant matrices
are created for Pell-Padovan Tetranacci sequence and the eigenvalues and norms of
this matrix are examined.
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3.1. More identities about Pell-Padovan Tetranacci sequence.

01 0 0
. 0 0 1
THEOREM 3.1. Let n > 0 be an integer and M = 000 1 . Then
1 2 1 0
PT, 01 0o071"[o0 0
PT, 1 _ 0 01 0 1 _ oy 1
PT, o 0 0 0 1 1 1
PT, 5 1 2 10 1 1

PROOF. We prove this theorem by mathematical induction on n. For n = 1
we have
1

0 01 00 0 1 PT
11| _ {0 0 1 0 1y _[1]_ PT,
M 11 [0 0 01 A N I T M PT;
1 1 2 10 1 3 PTy
Thus the result is true for n = 1. Now suppose that the result is true for n = k.

Hence we have

PT,, 01 00 0 0
Pl | |0 0 10 Lt
Pliy,o | |0 0 0 1 1 1
PTyy3 1 2 1 0 1 1
Then for n = k + 1 we have
0 0 PT; 01 00 PT;
1 1 PT, 0 010 PT,
k+1 _ k _ E+1 | _ k+1
M | T MMEL =M Plus | |0 0 0 1 PTiys
1 1 PTyi3 1 21 0 PTys
Pl Py
_ PTi o _ | PThye
PTk+3 PTk+3
PTk + 2PTk+1 + PTk+2 PTk+4

Therefore, the result is true for n = k + 1. Consequently, by induction the result
is true for every n. This proves the theorem. O
REMARK 3.1. As we know the characteristic polynomial of the recursive rela-
tion
PTyi4=PTyio+2PT, 1+ PT, is p(x)=a2*—2%2-22x—-1=0.

This polynomial can be written as

p(x) =det (eI — M) =0
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where
100 0 010 0
0100 001 0
I=1g 01 ol @M=144 91
000 1 1210

From the Cayley Hamilton Theorem in matrix algebra (Theorem 3.9 in [19]), we
have p(M) = 0. Thus we obtain

(3.1) M*— M?* —2M — I =0.
01 00
0 010

THEOREM 3.2. Let M = 000 1l Then
1 21 0

I=M*—M?-2M = M*+2M?>+ 3M? — 2M°
and
M" = Mn+4 + 2Mn+3 + 3Mn+2 _ 2M"+5.

PrOOF. According to the Remark 3.1, we have
I = M*—M?—2M = M(M?*—-M —2I) = M(M? — M —2(M* — M? —2M))

= M(M3+2M? +3M —2M*) = M* + 2M3 + 3M? — 2M°.
Thus

I=M*"+2M>+3M? —2M°.

This proves the first equality. Multiplying both sides of the above equality by M™
we obtain

(3.2) M™ = M™ T 4 2 ™3 4 M2 - 2P,
Thus the proof is completed. O

COROLLARY 3.1. Let n > 0 be an integer. Then

1
According to this corollary, we have the following interesting example and
theorem about the Pell-Padovan Tetranacci sequence.

(M’n+4 + 2MTL+5 + 3Mn+2 _ M’n) .

ExaMPLE 3.1. From the first values of Pell-Padovan Tetranacci sequence we
have

1
6= 5(4+2(3)+3(1) -1).
In exact, we have
1
PTs = 3 (PTs + 2PT, + 3PT5 — PTy)

or
1
PTiis = 5 (PTipa +2PTigs + 3PTiey — PTh).
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THEOREM 3.3. Let n > 0 be an integer. Then
1
PTn+5 = 5 (PTn+4 + 2PTn+3 + SPTn+2 - PTn) .

PrOOF. We prove this theorem by mathematical induction on n. According
to the last example we see that

1
PT1+5 = 5 (PT1+4 + 2PT1+3 + 3PT1+2 — PTl) .

Then if we assume that PTt+5 = % (PTt+4 + 2PTt+3 + 3PTt+2 — PTt) forallt < n.
Then we have

PTn+5 = PTn+3 + 2PTn+2 + PTn+1
1
= 5 (PTos2 + 2PT, 4y + 3PT, — PT, )

1
+2 |5 (PTug1 + 2PT, + 3Py — PT,3)

1
+5 (PT, +2PT, 1 + 3PT,z — PTy_4)

1
5 [(PTyq2 + 2PTy41 + PT,) + 2(PTy41 + 2PT,, + PT,,—1)
+3(PT, + 2PT,_1 4+ PTy_3) — (PTp_3 + 2PT,_3 + PTy_,)]
1
= 5 (PTusa + 2P s + 3PToy — PT,).
Thus, the result is true for negative n. O
THEOREM 3.4. Let r,n > 0 be integer. Then
Mn—i—r —
4Mn+r+10 _ 4Mn+r+9 _ 7Mn+r+8 _ 8Mn+r+7 + 10Mn+r+6 + 12Mn+r+5 +9Mn+r+4
PrOOF. By Theorem 3.2 we have
M’n — M’n+4 4 2Mn+3 4 3M’n+2 _ 2Mn+5.
Hence
Mn+'r — MnM'r
_ (Mn+4 4 2Mn+3 + 3Mn+2 _ 2Mn+5)(Mr+4 4 2M7‘+3 + 3Mr+2 _ 2Mr+5)
Mn+r+8 + 2Mn+r+7 4 3Mn+7‘+6 _ 2Mn+r+9 + 2Mn+r+7 4 4Mn+r+6
+6Mn+r+5 o 4Mn+'r+8 + 3Mn+r+6 + 6Mn+r+5 + 9Mn+r+4 o 6Mn+r+7
_2Mn+’r‘+9 _ 4M’n+’r+8 _ 6Mn+r+7 4 4Mn+’r‘+10

— 4Mn+r+10 _ 4Mn+r+9 _ 7Mn+r+8 _ 8Mn+r+7 4 10Mn+7"+6 + 12Mn+7“+5
+9M T

Thus, the proof is completed. O
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COROLLARY 3.2. Let n > 0 be an integer. Then
M2n —
4M2n+10 _ 4M2n+9 _ 7M2n+8 _ 8M2n+7 + 10M2n+6 + 12M2n+5 + 9M2n+4’

M2n+9 —
% [4M2n+10 _ 7M2n+8 _ 8M2n+7 + 10M2n+6 + 12M2n+5 + 9M2n+4 _ MQTL} .

PROOF. They can be derived from Theorem 3.4 by substituting r = n. (]

EXAMPLE 3.2. From the first values of Pell-Padovan Tetranacci sequence PT,,
we have

72 = 1%[9(16) +12(11) + 10(17) — 8(27) — 7(45) + 4(116) — 1].

In exact, we have

1
PTyy = £ [9PTs + 12PT; + 10PTs — 8PTy — TPTyp + 4PTi; — PTi]

or equivalently we have
1
Z[9PT2X1+4 +12PT55 145 + 10PTox146 — 8PTox147
—TPTyx148 +4PTax1410 — PTox1].

P49 =

THEOREM 3.5. Let n > 0 be an integer. Then
Plyyy9 =
HOPTyp s +12PTop 15+ 10PToy 6 — 8PTon 17 — TPTonts + 4PTon 110 — PTy).

PROOF. It can be proved similar to Theorem 3.4. O

3.2. Circulant matrices via Pell-Padovan Tetranacci sequence. We de-
fine circulant matrix

PTy py, PI, --- PT,
prPT,, PI, PI} --- PT, o
PT = C(PTn) — PTn—Z PTn—l PTO '. '. " PTTL—3
PT P, P13 --- PTy
for PT,,.
The equations we will use in the following theorems are given.
1 1
p= o Q= ot ,
(a=pB)a—7)(a=2A) (B=a)(B—=7)(B—N)
1 A+1
R= tis S = +

(y=a)(y=B)r=A)’ A=a)A=B) (A=)’
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a = —PT,+Pa+ QB+ Ry+ S\

b = —Pla+1)(1—a")—Q—F")(B+1)
CR(y+1)(" = 1) = SO+ (" — 1)

¢ = —PT,+Pa+QB— Ry— S\

d = P, ,—P—-Q-R—S§.

THEOREM 3.6. Let PT denote the circulant matrices of (PT,). The eigenvalues
of PT are
dw™ 4+ cw ¥ +bw ™ +a
—wH — 2w — w41

N (PT) =
forj=0,1,2,--- n—1.

PROOF. For the sequence (PT,,), we have

N(C(PT,) = > PTaw*

n—1

— Z [Pak-‘rl + Q6k+1 +R’Yk+1 + S)\k+1] w—]k
k=0

e (H) 52 (M)

We know about
(aw )" =, By = B ) = )= X

then the equation
Pa(a™ —=1)(fw™ = 1)(yw™ = 1)(Aw™7 = 1)
+QB(B" — 1)(aw™T — 1)(Aw — 1)(yw i — 1)
+Ry(y™ — 1)(aw’? - \w = 1 (pw = 1)
+SAA" = 1)(oaw™ = 1)(yw™? = 1)(fw™? —1)
( ( )(A

MCPT) = = T =D (T D7 =) =1)

We found the numarator
{ Pa(a” ~1)(7) +QB(5" = (e }w@
+Ry(y" = 1)(aBA) = SA(A" = 1)(aB7)
_|_{ Pla" =1y +A-=a)+Q(B" - 1)(v+A—p) }w2j
+ROY" =Dy +A=B)+ S =LA+~ - 5)
+{ Pla™ = 1)(—1+ay+a)) +Q(B" — 1)(—1+ By + BA) }w_j
+R(Y" = DA +ya+v8) + S(A" = 1)(1 + Ao+ AB)
—Pa(a” = 1) = QB(8" — 1) — Ry(y" — 1) = SA" — 1)
and denominator
—w M = 2w T 4]
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for \; (C(PT,)). For the given values, we obtain

(=PTh-1+P+Q+ R+ S)w™?
+(=PT, + Pa+ QB — Ry — S\)w=2%
+{ Pla+1)(1—a") +Q(1 — 5")(5 +1) }w
+R(y+ 1" -1+ SA+1)(A"—1)
—PT, + Pa+ QB+ Ry + SX

A (C(PTy)) = w5 — w3 — w2 +1

and then

dw™ + cw ™ +bw 7 +a
A (C(PTy)) = —w M w3 — w2 1’

Now, we deduce the determinants of the PT,, matrices.

THEOREM 3.7. Let PT denote the circulant matrices of (PT,). Then the de-
terminants are

det(C(PTy)) =

a — (7d)n + 21771 (2@%—0)” 4 9n (aT)d)n + (2771 o 2172n)(7b)n
(—1)”(1 _|_21—n) 4+ 92-—n 4 92—4n 4 q ’
PROOF. Recall that the eigenvalue of C'(PT,,) and Lemma 1.2 of [8], we have
det(C(PT,))

n—1

= [t
j=0

" w3 L ew Y £ bw I +a

- ],1:[0 —wH = 2w — w2 41

a® — (_d)n + 9l-n (211%*6)" 4 9on (aTd)" + (2—n _ 21—2n)(_b)n
(C1)7(1+20m) + 220 1 224 4 | '

O

There are many articles dealing with the norms of matrices [4, 6, 14]. Let
A = (@ij)nan be an matrix, Euclidean norm and spectral norm of the matrix A are

defined as

1/2
n

1Al = | D Ibil?

i,7=1

1/2
||A||spec = (11/2,82( )‘Z(A A)) i

xRN

where A*represent the conjugate transpose of A.
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THEOREM 3.8. Let PT denote the circulant matrices of (PTy). Then the Fu-
clidean norms are

|C(PT, )||E=
TLP2 41— oc +7’LQ2[341 [32n 2+7’LR2 41— ,yzn 2
-2
PQl ((15) —i—RSl (’Y)\)

A2n 2

2541—
+nS§ =

—af —YA
+2n +PR(cw)271 ga& +PS(a)\)271 ga);))\ :
+QR(B7)* 80— 1 QS (BN =B

PROOF. From the defination of the Euclidean norm, we know
n—1
IC(PT)| =n)_ PT?.
i=0
From Binet formulas for the Pell-Padovan Tetranacci sequence, we obtain

n— n—1
ZPTE _ Z(Pai'H+Qﬁi+1+R’yi+1+S’/\i+1)2

i=1

n—1 n—1 n—1 n—1
— p2 ZQQ(i+1) +Q? Zﬂz(iﬂ) L R? Z,yz(iﬂ) 152 Z 2\2(i+1)
i=1 i=1 i=1 i=1

n—1 n—1 n—1
+2PQ Y (aB) Y +2RS Y (yN) Y 4 2PR Y (ay)HY
i=1 i=1 i—1

n—1 n—1 n—1
T2PS Y (X)) +2QR Y (57 +2Q8 Y (BN,

i=1 i=1 i=1
We know anlis = “1 —, hence
o=
Sl PT? =
P2q 4% QQB‘“ /32" > L R2 4# Szgﬂ
2< PQIE— +R31 (U 4 PR )
+PS(aN)2 I 4 QR(5y)2 Y 4 QS(AN) B

So we get the result

n—1 n—1
|C(PT)||% =n <ZPT3 + PT02> =n) PT?.

i=1 i=1
t

The spectral norm of PT,, is given by the following theorem which can be
proved by induction on n.
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THEOREM 3.9. Let PT denote the circulant matrices of (PT,). The spectral
norm of PT 1is

1
HPTHSPEC = 5 (PTn+4 + PTn+3 - QPTn+1 - 2)
forn > 4.

PRrOOF. For the matrix C(PT,), its spectral radius p(C(PT,)) is obtained
from the following inequality,

then

Z aij = Z PT, = PTn+4 + PTyy3 —2PT, 1 —2)
for any ¢ = 1,2,--- , . Then

1
||C(PTn)||spec = g (PTn+4 + PTn+3 - 2PT7’L+1 - 2) .

O

CONCLUSION 3.1. In this paper we introduced the Pell-Padovan Tetranacci se-
quence. We obtained Binet-like formula of this sequence. We studied the generating
function and partial sum of this sequence. We investigated some interesting iden-
tities and examples about this sequence. Also we deduce norms, determinants and
eigenvalues of the circulant matrices for the Pell-Padovan Tetranacci sequence.
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