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GRAPH THEORY FOR BIG DATA ANALYTICS

Aysun AYTAÇ and Hanife AKSU ÖZTÜRK

Abstract. Big data is a thriving term at the present moment, and it offers
researchers numerous opportunities. Big data is a groundbreaking concept

in many areas to achieve detailed results and research on human beings’ in-
terests. Applications such as the Internet of Things, science research, health
care, finance, and e-commerce are applications where tremendous data is gen-
erated, and information needs to be obtained properly. Data analysis of big

data enables humanity to make more accurate and better decisions for many
problems. Analysis of social networks is an implementation of graph theory
to explain and identify relationships on social networks. Social media produce
vast volumes of data every day that is impossible to manage with conventional

data analytics algorithms and methods such as data mining and deep learning.
Social network data is helpful for finding interaction between people, analysis
of confidence, analysis of effect, the suggestion of any item or place, predic-

tion of connections, identification of crime, etc. In this study, a mathematical
graph model of a social network was devised, and edge betweenness centrality,
one of the graph-theoretical measurements for social network analytics, was
studied.

1. Introduction

Big Data is a term for large data sets having a large, more diverse and com-
plex structure with the difficulties of storing, analyzing, and visualizing for more
processes or results [22]. Following [18], Big data means “data which is too big,
too fast, or too hard for existing tools to process.” Therefore, it means not only
the volumetric size but also means that these data are formed and stored at an
increasing speed beside the volume and type; that is, the speed of data generation
and data diversity are also emphasized. Big Data has various definitions in the
literature, see [21].
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Social media posts, photos and videos are collected from many sources in diverse
ways. In order to obtain meaningful and valuable information from the collected
large, fast, and diverse data collections, the data must be processed. The term big
data analysis is used for the methods developed for this purpose. In addition to
data mining, computer science, machine learning, database management, especially
mathematical models and algorithms, and statistics science come to the fore in big
data analysis. There are plenty of papers and books on big data [20, 12, 22, 17,
10]. Much of big data is available in the form of point clouds in arbitrarily high
dimensions. Thus, the science of networks can be of great help. Since networks can
be modeled by graphs, this enables us to use the benefits of graph theory.

Graph theory has very intuitive and simple characteristics, which make it
widely used in modern science. When solving some practical problems, graph the-
ory can transform the problem into an equivalent graph theory problem. Graphs
are significant in computer science due to the ability to abstract a vast class of prob-
lems. Graph theory has many application areas for studying and modeling numer-
ous problems such as software plagiarism detection, web search engines, molecular
bonds to modeling of social networks like Facebook, LinkedIn and Twitter [19].

The management and efficient processing of big data are among the urgent
needs to enable research communities to leverage different existing services through
interconnected complex networks properly. Modeling of such networks is among
the discussed needs to appropriately represent their contents and the interaction
between their different components in harmony with their characteristics and con-
straints. Therefore, there is an essential need to model such networks before focus-
ing on processing and managing big data. Since a graph models complex networks,
this helps manage them and question their contents. Thus, graphs have been used
to represent data sets, then existing theories and tools for graphs can be applied.
Vertices in graphs usually represent real-world objects, and edges show relationships
between objects. Some examples of data modeled as graphs are social networks,
biological networks, and dynamic network traffic graphs. In big data applications,
graphs are very large, having a vast number of vertices and edges. It is almost
impossible to understand the information hidden in large graphs by visual inspec-
tion alone. To make the big data graph manageable using available tools, relevant
graph theoretical concepts and measures such as graph centrality can be used.

For the concept of network-based big data, the concept of decentralized network
- based big data structures can be used. According to this concept, the entire
network is divided into n multiple logical big data subnetworks [12].

The graph we are dealing with here corresponds to any of the n subnetworks
described above. In this study, to solve the problems in large graphs, the problem
was investigated in known small graphs. In this way, it will provide to make an
interpretation for the large graphs containing the small graph structures. This
study also aims to determine which vertex or edge in the graph is more important or
more robust when a mathematical graph model is obtained for many social networks
such as Facebook and Twitter. To do this, there are some measurements defined
in graph theory, such as vertex and edge betweenness centrality [13, 3, 4, 15],
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closeness centrality [6], residual closeness [2, 5]. The field of graph shortest paths
has been of significant importance and has wide-spread applications. Thus, in this
study, the average edge betweenness centrality measurement [1] is discussed in some
wheel-related graphs such as friendship, gear, helm, and sunflower. The notion of
edge betweenness centrality is based on the number of shortest paths that pass
through a certain edge.

In this paper, we consider simple finite undirected graph that has no self-loops
and no more than one edge between any two different vertices. Let G = (V,E) be a
graph with a vertex set V = V (G) and an edge set E = E(G). The distance (length
of a shortest path) between the vertices ui and uj of G in denoted by d(ui, vj |G).
The sum of the distances between all pairs of vertices of G is the distance of the
graph G and is denoted by d(G). The distance d(u, v) between two vertices u and
v in G is the length of a shortest path between them. If u and v are not connected,
then d(u, v) = ∞ , and for u = v, d(u, v) = 0. In addition, the distance between
the vertices u and v in G can be denoted by d(u, v|G). The diameter of G, denoted
by diam(G) is the largest distance between two vertices in V (G) [9, 8].

2. Average Edge Betweenness Centrality

Social networks are an important source of data for big data applications and
big data analysis. Therefore, social networks have attracted great attention in re-
cent years and today. Researchers have proposed different graph theory approaches
to grasp and use the knowledge in large networks.

Centrality is one of these metrics. Centrality, the importance of a vertex in a
graph, is defined relative to how well the graph is connected. For example, it can
be extremely important in a social network to know to what extent a person is
connected with others. In a graph, more linked individuals are more important for
that network. Because they are located in the more centers of the network, they
have more impact in the social group that this network represents. In the course
of the years, various kinds of centrality measure concepts have been introduced in
the literature. The average edge betweenness centrality is one of them.

The called the shortest path betweenness, betweenness is defined as the ratio of
the number of shortest paths in which a vertex is located to the number of shortest
paths that exist between any pair of vertices in the network.

Average edge betweenness of the graph G is defined as b(G) = 1
|E|

∑
e∈E

be,

where |E| is the number of the edges, and be is the edge betweenness of the edge
e, defined as be =

∑
i ̸=j

be(i, j) where be(i, j) = nij(e)/nij , nij(e) is the number of

geodesics (shortest paths) from vertex i to vertex j that contain the edge e, and
nij is the total number of shortest paths [11, 7, 13, 15].

Let be compare two graphs G1 and G2. If b(G1) < b(G2), then G1 is more
stability than G2. A complete graph is a simple graph in which every pair of
distinct vertices is connected by an edge. The complete graph on n vertices has
n(n − 1)/2 edges. For a complete graph, we have b(Gcomplete) = 1. A path graph
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is a particularly simple example of a tree, namely on which is not branched at
all, that is, contains only vertices of degree two and one. In particular, two of its
vertices have degree 1 and all others (if any) have degree 2. For a path graph with
n vertices, |E| = n− 1, and therefore:

b(Gpath) = n(n+ 1)/6.

It is easy to see that

b(Gcomplete) 6 b(G) 6 b(Gpath).

The following lemma provides some basic properties for the betweenness related
parameters. Let us recall that for a graph G, be is the betweenness of edge e, b(G)
is the average edge betweenness of G.

Lemma 2.1. [11] Let G be a connected graph and let e ∈ E be an edge with end
vertices i, j ∈ V , then

i) be(i, j) = 1 = be(j, i).
ii) 2 6 be 6 n2/2 if n is even and 2 6 be 6 (n− 1)2/2 if n is odd.
iii) be = 2(n− 1) if one of the end vertices of e has degree 1.

Lemma 2.2. [11] Let G be a graph of order n, then

i) If e is an edge-bridge of the graph G connecting G1 with G − G1 where
|V (G1)| = n1, then be = 2n1(n− n1).

ii) If C is a cut-set of edges of the graph G, connecting two sets of vertices
X and V (G)−X and |X| = nx , then

∑
e∈C

be = 2nx(n− nx).

3. Average edge betweenness centrality of some graphs

In this section, some general results about the average edge betweennesses
centrality measurement and calculated values for some wheel related graphs such
as gear, helm, sunflower and friendship graphs are given.

Theorem 3.1. Let G be a graph with n vertices and m edges. The average edge
betweenness of G is

b(G) = d(G)/m.

Proof. The edge betweenness of a given edge is the fraction of shortest paths,
counted over all pairs of vertices that pass through that edge. The average edge
betweenness of a graph G is the fraction of edges, the sum of edge betweenness of
all edges. Let i and j be the vertices and ek is the edge of G(k = 1,m, i ̸= j). It is
obvious that

m∑
k=1

bek(i, j) = d(i, j).

So the sum of edge betweenness of all edges∑
e∈E

be =
n∑

i=1

n∑
j=1

m∑
k=1

= bek(i, j) = d(G).
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Thus
b(G) =

∑
e∈E

be/m = d(G)/m.

The proof is completed. �
Theorem 3.2. If a graph G has n vertices, m edges and diam(G) is diameter

of G, then the average edge betweenness of G is

b(G) 6 1 + diam(G)(n(n− 1)/2m− 1).

Proof. Let u and v be vertices of G, and let |E| = m. So we have m pairs
of vertices with d(u, v|G) = 1. There are (n(n − 1)/2) − m pairs of vertices with
d(u, v|G) 6 diam(G). Thus the distance of G is

d(G) 6 m+ diam(G)(n(n− 1)/2m− 1).

Let we divide m both sides of inequality

d(G)/m 6 (m+ diam(G)(n(n− 1)/2m− 1))/m.

From Theorem 3.1 we have

b(G) 6 1 + diam(G)(n(n− 1)/2m− 1).

The proof is completed. �
Corollary 3.1. Let G be a graph and e is an edge of G. The average edge

betweenness of (G-e) is

b(G− e) > (d(G) + 1)/(m− 1).

3.1. Gear Graph (Gn). Gear graph is a wheel graph with a vertex added
between each pair adjacent vertices of the outer cycle. Gear graph Gn has 2n+ 1-
vertices and 3n-edges. Gear graph Gn includes an even cycle C2n. The vertices
of C2n in Gn are of two kinds: vertices of degree two and three, respectively. The
vertices of degree two will be referred to as minor vertices and vertices of degree
three to as major vertices [14].

Let the central vertex of gear graph Gn be c. The central vertex c has a vertex
degree of n. The edges between c central vertex and i the other vertices will be
referred to eci and edges on cycle will be referred to ei(i+1) where i + 1 is taken

modulo 2n (i = 1, 2n).

Theorem 3.3. The average edge betweenness of the gear graph Gn for n > 3
is

b(Gn) = 2(n− 1).

Proof. We have five cases for the shortest paths.

Case 1. Let we consider the paths between center vertex c and the major
vertices. There is only one path with 1 length eci (i = 1, 3, . . . , 2n − 1). Thus
b(eci) = 1. Hence, for n pairs of vertices, we have

n∑
i=1

d(c, i) =

n−1∑
i=1

beci(c, i) = n.
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Case 2. Let we consider the paths between center vertex c and the minor
vertices. There are two paths with 2 length ec(i−1)e(i−1)i and ec(i+1)ei(i+1) (i =
2, 4, . . . , 2n). Thus

b(ec(i−1)) = 1/2, b(ec(i+1)) = 1/2, b(e(i−1)i) = 1/2, b(ei(i+1)) = 1/2.

Hence, for n pairs of vertices, we have

2n∑
i=2

bec(i−1)
(c, i) +

2n∑
i=2

bec(i+1)
(c, i) +

2n∑
i=2

be(i−1)i
(c, i) +

2n∑
i=2

bei(i+1)
(c, i) = 2n.

Case 3. Let we consider the paths between major vertices. We have two cases
for the distance of major vertices between them on the cycle.

Subcase 3.1. If d(i, i + 2) = 2 on cycle then there are two paths with 2
length between i and i+ 2. These paths are eciec(i+2) and ei(i+1)e(i+1)(i+2) where
i = 1, 3, . . . , 2n− 1, and where i+ 1 and i+ 2 are taken modulo 2n. Thus

b(eci) = 1/2, b(ec(i+2)) = 1/2, b(ei(i+1)) = 1/2, b(e(i+1)(i+2)) = 1/2.

Hence, for n pairs of vertices, we have

2n−1∑
i=1

beci(i, (i+ 2)) +
2n−1∑
i=1

bec(i+2)
(i, (i+ 2)) +

2n−1∑
i=1

bei(i+1)
(i, (i+ 2)) +

2n−1∑
i=1

be(i+1)(i+2)
(i, (i+ 2)) = 2n.

Subcase 3.2. If d(i, j) > 2 on cycle then there is only one path with 2 length
between i and j. This path is eciecj (i, j = 1, 3, . . . , 2n − 1). Thus b(eci) = 1 and
b(ecj) = 1. Hence, for n(n− 3)/2 pairs of vertices, we have

2n−1∑
i=1

2n−1∑
j=1

beci(i, j) +
2n−1∑
i=1

2n−1∑
j=1

becj (i, j) = n(n− 3).

Case 4. Let we consider the paths between minor vertices. We have three
cases for the distance of minor vertices between them on the cycle.

Subcase 4.1. If d(i, i + 2) = 2 on cycle then there is only one path with 2
length between i and i+ 2. This path is ei(i+1)e(i+1)(i+2) (i = 2, 4, . . . , 2n), where
i+ 1 and i+ 2 are taken modulo 2n. Thus b(ei(i+1)) = 1 and b(e(i+1)(i+2)) = 1.
Hence, for n pairs of vertices, we have

2n∑
i=2

bei(i+1)
(i, (i+ 2)) +

2n∑
i=2

be(i+1)(i+2)
(i, (i+ 2)) = 2n.

Subcase 4.2. If d(i, i+4) = 4 on cycle then there are five paths with 4 length
between i and i+ 4. These paths are

ei(i+1)e(i+1)(i+2)e(i+2)(i+3)e(i+3)(i+4); e(i−1)iec(i−1)ec(i+5)e(i+4)(i+5);
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e(i−1)iec(i−1)ec(i+3)e(i+3)(i+4); ei(i+1)ec(i+1)ec(i+5)e(i+4)(i+5);

ei(i+1)ec(i+1)ec(i+3)e(i+3)(i+4),

where i ∈ {2, 4, , 2n} and i+1, i+2, i+3, i+4, i+5 are taken modulo 2n. Thus,
we get

b(ei(i+1)) = 3/5, b(e(i+3)(i+4)) = 3/5, b(e(i+1)(i+2)) = 1/5, b(e(i+2)(i+3)) = 1/5

b(e(i−1)i) = 2/5, b(e(i+4)(i+5)) = 2/5, b(ec(i−1)) = 2/5, b(ec(i+1)) = 2/5,

b(ec(i+3)) = 2/5, b(ec(i+5)) = 2/5.

Hence, for n pairs of vertices, we have

2n∑
i=2

bei(i+1)
(i, (i+ 4)) +

2n∑
i=2

be(i+3)(i+4)
(i, (i+ 4)) +

2n∑
i=2

be(i+1)(i+2)
(i, (i+ 4))

+

2n∑
i=2

be(i+2)(i+3)
(i, (i+ 4)) +

2n∑
i=2

be(i−1)i
(i, (i+ 4)) +

2n∑
i=2

be(i+4)(i+5)
(i, (i+ 4))

+
2n∑
i=2

bec(i−1)
(i, (i+ 4)) +

2n∑
i=2

bec(i+1)
(i, (i+ 4))

+
2n∑
i=2

bec(i+3)
(i, (i+ 4)) +

2n∑
i=2

bec(i+5)
(i, (i+ 4)) = 4n.

Subcase 4.3. If d(i, j) > 4 on cycle then there are four paths with 4 length
between i and j. These paths are

e(i−1)iec(i−1)ec(j+1)ej(j+1);

e(i−1)iec(i−1)ec(j−1)e(j−1)j ;

ei(i+1)ec(i+1)ec(j+1)ej(j+1);

ei(i+1)ec(i+1)ec(j−1)e(j−1)j ,

where i, j ∈ {2, 4, . . . 2n} and i+ 1, j + 1 are taken modulo 2n. Thus, we get

b(e(i−1)i) = 2/4, b(ej(j+1)) = 2/4, b(ei(i+1)) = 2/4, b(e(j−1)j) = 2/4,

b(ec(i−1)) = 2/4, b(ec(j−1)) = 2/4, b(ec(i+1)) = 2/4, b(ec(j+1)) = 2/4.

Hence, for n(n− 5)/2 pairs of vertices, we have

2n∑
i=2

2n∑
j=2

be(i−1)i
(i, j) +

2n∑
i=2

2n∑
j=2

bej(j+1)
(i, j) +

2n∑
i=2

2n∑
j=2

bei(i+1)
(i, j) +

2n∑
i=2

2n∑
j=2

be(j−1)j
(i, j) +

2n∑
i=2

2n∑
j=2

bec(i−1)
(i, j) +

2n∑
i=2

2n∑
j=2

bec(j−1)
(i, j)

+
2n∑
i=2

2n∑
j=2

bec(i+1)
(i, j) +

2n∑
i=2

2n∑
j=2

bec(j+1)
(i, j) = 2n(n− 5).
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Case 5. Let we consider the paths between minor and major vertices. We
have three cases for the distance of minor and major vertices between them on the
cycle.

Subcase 5.1. If d(i, i + 1) = 1 on cycle then there is only one path with 1
length between i and i+ 1. This path is ei(i+1), where i = 1, 2n and i+ 1 is taken
modulo 2n. Thus b(ei(i+1)) = 1. Hence, for 2n pairs of vertices, we have

2n∑
i=1

bei(i+1)
(i, (i+ 1)) = 2n.

Subcase 5.2. If d(i, i + 3) = 3 on cycle then there are three paths with 3
length between i and i+ 3. These paths are

ei(i+1)e(i+1)(i+2)e(i+2)(i+3); eciec(i+2)e(i+2)(i+3); eciec(i+4)e(i+3)(i+4),

where i = 1, 2n and i+ 1, i+ 2, i+ 3, i+ 4 are taken modulo 2n. Thus we get

b(ei(i+1)) = 1/3, b(e(i+3)(i+4)) = 1/3, b(e(i+1)(i+2)) = 1/3,

b(eci) = 2/3, b(ec(i+2)) = 1/3 and b(ec(i+4)) = 1/3.

[3pt]Hence, for 2n pairs of vertices, we have

2n∑
i=1

bei(i+1)
(i, (i+ 3)) +

2n∑
i=1

be(i+3)(i+4)
(i, (i+ 3)) +

2n∑
i=1

be(i+1)(i+2)
(i, (i+ 3))

+

2n∑
i=1

be(i+2)(i+3)
(i, (i+ 3)) +

2n∑
i=1

be(i+3)(i+4)
(i, (i+ 3)) +

2n∑
i=1

beci(i, (i+ 3))

+
2n∑
i=1

bec(i+2)
(i, (i+ 3)) +

2n∑
i=1

bec(i+4)
(i, (i+ 3)) = 6n.

Subcase 5.3. If d(i, j) > 3 on cycle then there are two paths with 3 length
between i and j. These paths are eciec(j+1)ej(j+1); eciec(j−1)e(j−1)j , where i = 1, 2n
and j + 1 are taken modulo 2n. Thus, we get

b(ec(j+1)) = 1/2, b(ej(j+1)) = 1/2, b(eci) = 2/2, b(ec(j−1)) = 1/2

and b(e(j−1)j) = 1/2. Hence, for n(n− 4) pairs of vertices, we have

2n∑
i=1

2n∑
j=1

bec(j+1)
(i, j) +

2n∑
i=1

2n∑
j=1

bej(j+1)
(i, j) +

2n∑
i=1

2n∑
j=1

beci(i, j)

+

2n∑
i=1

2n∑
j=1

bec(j−1)
(i, j) +

2n∑
i=1

2n∑
j=1

be(j−1)j
(i, j) = 3n(n− 4).

As a consequence by Case 1 - Case 5, the average edge betweenness of Gn is
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b(Gn) = (1/3n)(n+2n+2n+n(n−3)+2n+4n+2n(n−5)+2n+6n+3n(n−4))

= 2(n− 1).
The proof is completed. �

3.2. Helm Graph (Hn). Helm Hn is a graph obtained from a wheel Wn with
cycle Cn having a pendant edge attached to each vertex of the cycle. Helm graph
Hn consists of the vertex set

V (Hn) = {i|1 6 i 6 n} ∪ {i′|1 6 i 6 n} ∪ {c}

and the edge set

E(Hn) = {ei(i+1)|1 6 i 6 n} ∪ {eii′ |1 6 i 6 n} ∪ {eci|1 6 i 6 n}.

The vertices of Hn − {c} are of two kinds: vertices of degree four and one,
respectively. The vertices of degree one will be referred to as minor denoted by i′

and vertices of degree four to as major vertices denoted by i [14, 16].

Theorem 3.4. The average edge betweenness of the helm graph Hn for n > 3
is

b(Hn) = 2(n− 1).

Proof. We have four cases for the shortest paths.

Case 1. Let we consider the paths between center vertex c and the major
vertices. Also we consider the paths between major vertices. It is the same as
wheel graph Wn so we have (i, j = 1, n and i ̸= j)

n∑
i=1

beci +

n∑
i=1

n∑
j=1

beij = n(n− 1).

Case 2. Let we consider the paths between center vertex c and the minor
vertices. There is only one path with 2 length ecieii′ , (i = 1, n). Thus b(eci) = 1
and b(eii′) = 1. Hence, for n pairs of vertices we have

n∑
i=1

beci(c, i) +

n∑
i=1

beii′ (c, i) = 2n.

Case 3. Let we consider the paths between minor vertices. We have three
cases for the distance of major vertices between them on the cycle. Let i and j be
the major vertices of Hn (i = 1, n, i ̸= j and i < j).

Subcase 3.1. If d(i, j) = 1 on cycle then there is one path between i′ and
j′. This path is eii′eijejj′ . Thus, we have b(eii′) = 1, b(eij) = 1 and b(ejj′) = 1.
Hence, for n pairs of vertices, we obtain

n∑
i=1

n∑
j=1

beii′ (i
′, j′) +

n∑
i=1

n∑
j=1

beij (i
′, j′) +

n∑
i=1

n∑
j=1

bejj′ (i
′, j′) = 3n.

Subcase 3.2. If d(i, j) = 2 on cycle then there are two paths between i′ and
j′. These paths are eii′ei(i+1)e(i+1)jejj′ and eii′eciecjejj′ . Thus, b(ei(i+1)) = 1/2,
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b(e(i+1)j) = 1/2, b(eci) = 1/2, b(ecj) = 1/2, b(eii′) = 1 and b(ejj′) = 1 are obtained.
Hence, for n pairs of vertices, we obtain

n∑
i=1

n∑
j=1

bei(i+1)
(i′, j′) +

n∑
i=1

n∑
j=1

be(i+1)j
(i′, j′) +

n∑
i=1

n∑
j=1

beci(i
′, j′)

+
n∑

i=1

n∑
j=1

becj (i
′, j′) +

n∑
i=1

n∑
j=1

beii′ (i
′, j′) +

n∑
i=1

n∑
j=1

bejj′ (i
′, j′) = 4n.

Subcase 3.3. If d(i, j) > 2 on cycle then there is one path between i′ and j′.
This path is eii′eciecjejj′ . Thus, we have b(eii′) = 1, b(eci) = 1, b(ecj) = 1 and
b(ejj′) = 1. Hence, for n(n− 5)/2 pairs of vertices, we obtain∑n

i=1

∑n
j=1 beii′ (i

′, j′) +
∑n

i=1

∑n
j=1 beci(i

′, j′) +
∑n

i=1

∑n
j=1 becj (i

′, j′)

+
∑n

i=1

∑n
j=1 bejj′ (i

′, j′) = 2n(n− 5).

Case 4. Let we consider the paths between minor and major vertices. Let i
be a major vertex and j′ be a minor vertex (i, j = 1, n). d(i, j′) is the distance
between i and j′ vertices on cycle. We have four cases.

Subcase 4.1. If d(i, j′) = 1 then there is one path between i and j′. This
path is eii′ and b(eii′) = 1. Hence, for n pairs of vertices, we obtain

n∑
i=1

beii′ (i, j
′) = n.

Subcase 4.2. If d(i, j′) = 2 then there is one path between i and j′. This
path is eijejj′ and we get b(eij) = 1, b(ejj′) = 1. Hence, for 2n pairs of vertices,
we obtain

n∑
i=1

n∑
j=1

beij (i, j
′) +

n∑
i=1

n∑
j=1

bejj′ (i, j
′) = 2(2n) = 4n.

Subcase 4.3. If d(i, j′) = 3 then there are two paths between i and j′. These
paths are ei(i+1)e(i+1)jejj′ and eciecjejj′ . Thus we have b(ejj′) = 1, b(ei(i+1)) =
1/2, b(e(i+1)j) = 1/2, b(eci) = 1/2 and b(ecj) = 1/2. Hence, for 2n pairs of vertices,
we obtain

n∑
i=1

n∑
j=1

bejj′ (i, j
′) +

n∑
i=1

n∑
j=1

bei(i+1)
(i, j′) +

n∑
i=1

n∑
j=1

be(i+1)j
(i, j′)

+
n∑

i=1

n∑
j=1

beci(i, j
′) +

n∑
i=1

n∑
j=1

becj (i, j
′) = 3(2n) = 6n.

Subcase 4.4. If d(i, j′) > 4 then there is one path between i and j′. This
path is eciecjejj′ . Thus we have b(ejj′) = 1, b(eci) = 1 and b(ecj) = 1.
Hence, for n(n− 5) pairs of vertices, we obtain
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n∑
i=1

n∑
j=1

beci(i, j
′) +

n∑
i=1

n∑
j=1

becj (i, j
′) +

n∑
i=1

n∑
j=1

bejj′ (i, j
′) = 3n(n− 5).

As a consequence by Case 1 - Case 4 the average edge betweenness of Hn is

b(Hn) =

(1/3n)(n(n− 1) + 2n+ 3n+ 4n+ 2n(2n− 5) + n+ 4n+ 6n+ 3n(n− 5))

= 2(n− 1).
The proof is completed. �

3.3. Sunflower graph (SFn). Sunflower graph SFn is defined as follows:
consider a wheel with central vertex c and an n-cycle 1, 2, . . . , n and additional n
vertices 1′, 2′, . . . , n′, where i′ is joined by i, (i+ 1) for i = 1, 2, . . . , n where (i+ 1)
is taken modulo n. SFn has order 2n+1 and size 4n. The vertices of SFn−{c} are
two kinds: vertices of degree five and two, respectively. The vertices of degree two
will be referred to as minor vertices and vertices of degree five to as major vertices.
The edges between c and i can be labeled as eci . The edges on cycle can be labeled
as ei(i+1) where (i + 1) is taken modulo n and the edges between i major and j′

minor vertices can be labeled as eij′ [14, 16].

Theorem 3.5. The average edge betweenness of the sunflower graph SFn for
n > 5 is

b(SFn) = (3n− 5)/2.

Proof. We have four cases for the shortest paths.

Case 1. Let we consider the paths between center vertex c and the major
vertices. Also we consider the paths between major vertices. It is the same as
wheel graph Wn so we have (i, j = 1, n and i ̸= j)

n∑
i=1

beci +
n∑

i=1

n∑
j=1

beij = n(n− 1).

Case 2. Let we consider the paths between center vertex c and the minor
vertex i′. There are two paths with 2 length ecieii′ , and ec(i+1)e(i+1)i′ , ( i = 1, n
where i + 1 is taken modulo n). Thus b(eci) = 1/2, b(eii′) = 1/2, b(ec(i+1)) = 1/2
and b(e(i+1)i′) = 1/2. Hence, for n pairs of vertices we have

n∑
i=1

beci(c, i
′) +

n∑
i=1

beii′ (c, i
′) +

n∑
i=1

bec(i+1)
(c, i′) +

n∑
i=1

be(i+1)i′ (c, i
′) = 2n.

Case 3. Let we consider the paths between minor vertices. We have four cases
for the distance of minor vertices between them on the cycle. Let i′ and j′ be the
minor vertices of SFn (i, j = 1, n, where j, i+ 1 are taken modulo n).
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Subcase 3.1. If d(i′, j′) = 2 on cycle then there is one path between i′ and
j′. This path is eji′ejj′ . Thus b(eji′) = 1 and b(ejj′) = 1. Hence, for n pairs of
vertices, we obtain

n∑
i=1

n∑
j=1

beji′ (i
′, j′) +

n∑
i=1

n∑
j=1

bejj′ (i
′, j′) = 2n.

Subcase 3.2. If d(i′, j′) = 3 on cycle then there is one path between i′ and j′.
This path is e(i+1)i′e(i+1)jejj′ . Thus b(e(i+1)i′) = 1, b(e(i+1)j) = 1 and b(ejj′) = 1.
Hence, for n pairs of vertices, we obtain

n∑
i=1

n∑
j=1

be(i+1)i′ (i
′, j′) +

n∑
i=1

n∑
j=1

be(i+1)j
(i′, j′) +

n∑
i=1

n∑
j=1

bejj′ (i
′, j′) = 3n.

Subcase 3.3. If d(i′, j′) = 4 on cycle then there are five paths between i′ and
j′ from Subcase 4.2 of Case 4 in Theorem 3.3. and also there is one path on cycle
with four length. Hence, for n pairs of vertices, we obtain 4n.

Subcase 3.4. If d(i′, j′) > 4 on cycle then there are four paths with four
length between i′ and j′ from Subcase 4. 2 of Case 4 in Theorem 3.3. Hence, for
n(n− 7)/2 pairs of vertices, we obtain the total value 4n(n− 7)/2 = 2n(n− 7).

Case 4. Let we consider the paths between minor and major vertices. Let i
be a major vertex and j′ be a minor vertex (i, j = 1, n). d(i, j′) is the distance
between i and j′ vertices on cycle. We have four cases.

Subcase 4.1. If d(i, j′) = 1 then there are two pairs of vertices. One path is
eii′ and the other one is e(i+1)i′ so b(eii′) = 1 and b(e(i+1)i′) = 1. Hence, for 2n
pairs of vertices, we obtain

n∑
i=1

n∑
j=1

beii′ (i, j
′) +

n∑
i=1

n∑
j=1

be(i+1)i′ (i, j
′) = 2n.

Subcase 4.2. If d(i, j′) = 2 then there is one path between i and j′. This
path is eijejj′ and b(eij) = 1, b(ejj′) = 1. Hence, for 2n pairs of vertices, we obtain

n∑
i=1

n∑
j=1

beij (i, j
′) +

n∑
i=1

n∑
j=1

bejj′ (i, j
′) = 2(2n) = 4n.

Subcase 4.3. If d(i, j′) = 3 then there are two paths between i and j′. These
paths are ei(i+1)e(i+1)jejj′ and eciecjejj′ . Thus we have b(ejj′) = 1,b(ei(i+1)) = 1/2,
b(e(i+1)j) = 1/2, b(eci) = 1/2 and b(ecj) = 1/2. Hence, for 2n pairs of vertices, we
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obtain
n∑

i=1

n∑
j=1

bejj′ (i, j
′) +

n∑
i=1

n∑
j=1

bei(i+1)
(i, j′) +

n∑
i=1

n∑
j=1

be(i+1)j
(i, j′)

+
n∑

i=1

n∑
j=1

beci(i, j
′) +

n∑
i=1

n∑
j=1

becj (i, j
′) = 3(2n) = 6n.

Subcase 4.4. If d(i, j′) > 4 then there is one path between i and j′. This
path is eciecjejj′ . Thus we have b(ejj′) = 1, b(eci) = 1 and b(ecj) = 1.
Hence, for n(n− 6) pairs of vertices, we obtain

n∑
i=1

n∑
j=1

beci(i, j
′) +

n∑
i=1

n∑
j=1

becj (i, j
′) +

n∑
i=1

n∑
j=1

bejj′ (i, j
′) = 3n(n− 6).

As a consequence by Case 1 - Case 4 the average edge betweenness of SFn is

b(SFn) = (1/4n)(n(n−1)+2n+2n+3n+4n+2n(n−7)+2n+4n+6n+3n(n−6))

= (3n− 5)/2.

The proof is completed.
�

3.4. Friendship graph (fn). Friendship graph fn is collection of n triangles
with a common point. The friendship graph fn has two kinds of vertex. It has
2n vertices of degree 2 called minor vertex and 1 vertex of degree 2n called center
vertex. Label the minor vertices as 1, 2, ..., 2n and the center vertex as c. Label
the edges which are between c and i as eci (i = 1, 2n) and which are between i and
i+ 1 (i is odd) as ei(i+1) [14, 16].

Theorem 3.6. The average edge betweenness of the friendship graph fn is

b(fn) = 1 + 4(n− 1)/3.

Proof. We have three cases in order to find the shortest paths.

Case 1. Let we consider the paths between center vertex c and minor vertices
i. There is one path eci between c and i. Thus b(eci) = 1. Hence, for 2n pairs of
vertices, we obtain

2n∑
i=1

beci(c, i) = 2n.

Case 2. Let we consider the paths between minor vertex i and minor vertex
(i+1) (i is odd). There is one path ei(i+1) between i and (i+1). Thus b(ei(i+1)) = 1.
Hence, for n pairs of vertices, we obtain

2n−1∑
i=1

bei(i+1)
(i, i+ 1) = n.
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Case 3. Let we consider the paths between minor vertex i and minor vertex
j. There is one path eciecj between i and j (1 6 i, j 6 2n and if i(j) is odd then
j ̸= i + 1 (i ̸= j + 1)). Thus b(eci) = 1 and b(ecj) = 1. Hence, for 2n(2n − 2)/2
pairs of vertices, we obtain

n∑
i=1

n∑
j=1

beci(i, j) +

n∑
i=1

n∑
j=1

becj (i, j) = 2n(2n− 2).

As a consequence by Case 1 - Case 3 the average edge betweenness of fn is

b(fn) = (1/3n)(2n+ n+ 2n(2n− 2)) = 1 + 4(n− 1)/3.

The proof is completed. �

4. Conclusion

In this paper we consider the concept of average edge betweenness of some G
graphs because when computing b(G), we can gather information on which edge
carries the most of the graph vulnerability. The average edge betweenness value
is calculated for four kinds of wheel related graphs: gear, helm, sunflower and
friendship. Let we put in order to these values as follow:

b(fn) < b(SFn) < b(Gn) = b(Hn)(n > 13).

We see that the fn graph is more vulnerable then the others. Therefore, for using
fn graph or the graphs which have fn as a subgraph is more suitable for network
design.
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[2] A. Aytaç and Z. N. Odabaş Berberler. Network robustness and residual closeness. RAIRO
Oper. Res., 52(3)(2018), 839–847.
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