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a-MAXIMAL FILTERS

IN ALMOST DISTRIBUTIVE LATTICES

Santhi Sundar Raj. Ch., Nageswara Rao. S., and Ramanuja Rao. K.

Abstract. In this paper, the concepts of a-dense element and a-maximal filter
in an ADL A (a, fixed arbitrary element in A) are introduced and discussed
certain properties of these. Mainly, a-maximal filters are characterized in
terms of relative a-annihilator ideals as well as a-pseudo complementations. A

one-to-one correspondence is exhibited between the set of a-maximal filters of
A and the set of all maximal filters of A/θa, where θa is a congruence on A
corresponding to a. Furthermore, the concept of congruence relation on an a-
pseudo complemented ADL A is introduced and exhibited a congruence ϕa on

A for which A/ϕa is a Boolean algebra.

1. Introduction

The axiomatization of Boole’s propositional two valued logic led to the concept
of Boolean algebra. M. H. Stone [2] has proved that any Boolean algebra can be
made into a Boolean ring and vice-versa. U. M. Swamy and G. C. Rao [5] have
introduced a common abstraction of several lattice theoretic and ring theoretic
generalizations of Boolean algebras and Boolean rings in the form of an Almost
Distributive Lattice (ADL) as an algebra (A,∧,∨, 0) of type (2, 2, 0) which satisfies
all the axioms of a distributive lattice with zero except the commutativity of the
operations ∨ and ∧ and the right distributivity of ∨ over ∧. It is known that, in
an ADL the commutativity of ∨ is equivalent to that of ∧ and also to the right
distributivity of ∨ over ∧. In a lattice (L,∧,∨), interchanging the operations ∧ and
∨ yields a lattice again, known as the dual of L. An ideal of the dual (L,∨,∧) is
called as a filter of the lattice (L,∧,∨). Un like the case of a lattice, by interchanging
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the operations ∧ and ∨ in an ADL (A,∧,∨, 0), we do not get an ADL again. The
main reason is that in an ADL (A,∧,∨, 0), ∧ distributes over ∨ both from left and
right, where as ∨ distributes over ∧ from left only. If ∨ distributes ∧ from right
also, then the ADL becomes a lattice and hence a distributive lattice. For all these
reasons, we deal the case of filters in an ADL separately.

J.C Varlet [7] introduced the notions of a-dense element and a-maximal filter of
a general semilattice S. An element x of a semilattice S is a-dense (a, fixed element
of S) if ⟨x, a⟩ ⊆ (a], that is, for every y ∈ S, xy 6 a implies y 6 a. It is the natural
extension of the notion of dense element (that is, 0-dense element) in a semilattice S
bounded bellow by 0. The properties of a-dense elements are closely linked to those
of the filters maximal with respect to the property of not containing a, which are
called a-maximal filters. In this paper, we extend these notions to the case of ADL’s
and initiate the study of the properties of these. In [3], we have introduced the
notion of a-pseudo complementation on an ADL A for an arbitrary fixed element a
of A. It is the generalization of the notion of pseudo-complementation on an ADL.
It is proved that an ADL A is a-pseudo complemented if and only if the relative
a-annihilator ⟨x, a⟩, that is {y ∈ A : x∧y ∈ (a]} is a principal ideal, for each x ∈ A.
Here, a-dense elements and a-maximal filters of an ADL A are characterized in
terms of relative a-annihilator ideals and a-pseudo complementations. Finally, the
concept of congruence relation on an ADL A with an a-pseudo complementation
is introduced and obtained a congruence ϕa on A for which A/ϕa is a Boolean
Algebra.

2. Preliminaries

In this article, we recall certain elementary definitions and results concerning
Almost Distributive Lattices, that we need in sequel.

Definition 2.1. ([5]) An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called
an Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following
independent identities

(i) 0 ∧ a ≈ 0,
(ii) a ∨ 0 ≈ a,
(iii) a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c),
(iv) (a ∨ b) ∧ c ≈ (a ∧ c) ∨ (b ∧ c),
(v) a ∨ (b ∧ c) ≈ (a ∨ b) ∧ (a ∨ c),
(vi) (a ∨ b) ∧ b ≈ b.

Clearly any distributive lattice bounded below is an ADL, in which the smallest
element is the zero element. Further any non-empty set X can be made into an
ADL by fixing an arbitrarily chosen element x0 in X and by defining the operations
∧ and ∨ on X by

x ∧ y =

{
x0 if x = x0

y if x ̸= x0

and x ∨ y =

{
y if x = x0

x if x ̸= x0.

This ADL (X,∧,∨, x0) is called a discrete ADL, in which x0 is the zero element.
In the following we give an example of a non-trivial ADL.
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Example 2.1. Let A = {0, a, b, c, d, e}. Define ∧ and ∨ on A as follows:

∧ 0 a b c d e
0 0 0 0 0 0 0
a 0 a b 0 a b
b 0 a b 0 a b
c 0 0 0 c c c
d 0 a b c d e
e 0 a b c d e

∨ 0 a b c d e
0 0 a b c d e
a a a a d d d
b b b b e e e
c c d e c d e
d d d d d d d
e e e e e e e

Then (A,∧,∨, 0) is an ADL but it is not a lattice (since a ∧ b ̸= b ∧ a) and not a
discrete ADL (since a ∧ c = 0 ≠ c)

Definition 2.2. ([5]) Let A = (A,∨,∧, 0) be an ADL. For any a and b ∈ A,
define

a 6 b if and only if a = a ∧ b (⇔ a ∨ b = b).

Then 6 is a partial order on A.

Theorem 2.1 ([5]). The following holds for any a, b and c in an ADL A =
(A,∧,∨, 0).

(i) 0 is the zero element for the operation ∧ (that is; a ∧ 0 = 0 = 0 ∧ a)
(ii) 0 is the identity for the operation ∨ (that is; a ∨ 0 = a = 0 ∨ a)
(iii) a ∧ a = a = a ∨ a
(iv) a ∧ b 6 b 6 b ∨ a
(v) (a ∧ b) ∨ b = b, a ∨ (b ∧ a) = a and a ∧ (a ∨ b) = a
(vi) a ∧ b = a ⇔ a ∨ b = b and a ∧ b = b ⇔ a ∨ b = a
(vii) (a ∧ b) ∧ c = a ∧ (b ∧ c)
(viii) a ∨ (b ∨ a) = a ∨ b
(xi) a ∧ b = b ∧ a ⇔ a ∨ b = b ∨ a
(x) a ∧ b = b ∧ a ⇔ inf{a, b} = a ∧ b ⇔ sup{a, b} = a ∨ b
(xi) If a 6 b, then a ∧ b = a = b ∧ a and a ∨ b = b = b ∨ a
(xii) a ∧ b ∧ c = b ∧ a ∧ c and (a ∨ b) ∧ c = (b ∨ a) ∧ c

Lemma 2.1 ([5]). Let A = (A,∧,∨, 0) be an ADL. Then for any m ∈ A, the
following are equivalent.

(i) m is a maximal element with respect to 6;
(ii) m ∧ x = x for all x ∈ A;
(iii) m ∨ x = m for all x ∈ A.

In any discrete ADL A, every non-zero element is maximal; for, if a ̸= 0, then
a ∧ x = x for all x ∈ A. An ADL A = (A,∧,∨, 0) is called an associative ADL if
the operation ∨ is associative; that is (a∨ b)∨ c = a∨ (b∨ c) for all a, b and c ∈ A.
Throughout this paper, A stands for an associative ADL (A,∧,∨, 0) with maximal
elements unless otherwise mentioned.

Definition 2.3. ([5]) Let I be a non empty subset of an ADL A. Then I is
called
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(i) an ideal of A if a ∨ b ∈ I for all a and b ∈ I and x ∧ a ∈ I for all x ∈ I
and a ∈ A.

(ii) a filter of A if a ∧ b ∈ I for all a and b ∈ I and a ∨ x ∈ I for all x ∈ I and
a ∈ A.

As a consequence, for any ideal I of A, a∧x ∈ I for all x ∈ I and a ∈ A and for
any filter F of A, x ∨ a ∈ F for all x ∈ F and a ∈ A. For any x ∈ A, the smallest
ideal (filter) of A containing x is called the ideal (filter) generated by x in A and is
denoted by (x] and [x) respectively. It is known that

(x] = {x ∧ a : a ∈ A} and [x) = {a ∨ x : a ∈ A}.

For any x, y ∈ A, we have

(x] ∨ (y] = (x ∨ y] = (y ∨ x] and (x] ∧ (y] = (x ∧ y] = (y ∧ x].

A principal ideal in an ADL may have more than one generator, unlike the case of
a lattice in which any principal ideal has a unique generator. However, for any x
and y in an ADL, we have (x] = (y] ⇔ x ∧ y = y and y ∧ x = x ⇔ x ∨ y = x and
y ∨ x = y ⇔ [x) = [y) and we denote this situation by writing x ∼ y and calling x
and y as associates to each other.

A proper ideal (filter) P of an ADL A is said to be prime if for any x, y ∈
A, x ∧ y (x ∨ y) ∈ P implies either x ∈ P or y ∈ P . A prime ideal (filter) P
of A is said to be minimal if there exists no prime ideal (filter) Q of A such that
Q ⊂ P . Let us recall from [4], for any elements x and a in an ADL A, the relative
a-annihilator ideal of x is defined by

⟨x, a⟩ = {y ∈ A : x ∧ y ∈ (a]}.

Proposition 2.1 ([4]). The following hold for any x, y and a in an ADL
A = (A,∧,∨, 0).

(i) x 6 y ⇒ ⟨y, a⟩ ⊆ ⟨x, a⟩
(ii) ⟨x ∧ y, a⟩ = ⟨y ∧ x, a⟩
(iii) ⟨x ∨ y, a⟩ = ⟨x, a⟩ ∩ ⟨y, a⟩
(iv) ⟨x, a⟩ ∨ ⟨y, a⟩ ⊆ ⟨x ∧ y, a⟩
(v) x ∈ (a] ⇔ ⟨x, a⟩ = A
(vi) ⟨a, a⟩ = A = ⟨0, a⟩
(vii) a is maximal ⇔ ⟨x, a⟩ = A for all x ∈ A.

Definition 2.4. ([6]) Let A = (A,∧,∨, 0) be an ADL. A unary operation ∗
on A is called a pseudo-complementation on A if, for any a, b ∈ A;

(i) a ∧ b = 0 ⇒ a∗ ∧ b = b;
(ii) a ∧ a∗ = 0;
(iii) (a ∨ b)∗ = a∗ ∧ b∗.

Definition 2.5. ([3]) Let A = (A,∧,∨, 0) be an ADL and a be an arbitrary
fixed element in A. Then a unary operation x 7→ x ∗ a on A is called an a-pseudo
complementation on A if for any x, y ∈ A, it satisfies the following conditions:

(i) ⟨x, a⟩ = (x ∗ a].
(ii) (x ∨ y) ∗ a = (x ∗ a) ∧ (y ∗ a).
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Clearly a 0-pseudo-complementation x 7→ x ∗ 0 on an ADL is a pseudo-comple-
mentation and denoted x ∗ 0 by x∗.

Theorem 2.2 ([3]). Let x 7→ x∗a be an a-pseudo complementation on an ADL
A. Then for any x, y ∈ A, we have the following:

(i) m ∗ a 6 x ∗ a 6 0 ∗ a for any maximal element m of A.
(ii) (x ∗ a) ∧ (y ∗ a) = (y ∗ a) ∧ (x ∗ a).
(iii) x 6 y ⇒ y ∗ a 6 x ∗ a.
(iv) a ∗ a is maximal and a ∗ a = 0 ∗ a.
(v) m ∗ a = a ∧ (0 ∗ a) for any maximal m of A
(vi) (x ∗ a) ∧ a = a
(vii) ((x ∗ a) ∗ a) ∧ x = x
(viii) ((x ∗ a) ∗ a) ∗ a = x ∗ a.
(ix) x ∈ (a] ⇔ x ∗ a is maximal.
(x) m ∗ a = n ∗ a, for any maximal elements m and n of A.
(xi) if x is maximal then x ∗ a ∼ a
(xii) (x ∧ a) ∗ a = a ∗ a
(xiii) (x ∧ y) ∗ a = (y ∧ x) ∗ a
(xiv) (x ∨ y) ∗ a = (y ∨ x) ∗ a
(xv) ((x ∧ y) ∗ a) ∗ a = ((x ∗ a) ∗ a) ∧ ((y ∗ a) ∗ a)
(xvi) x ∼ y ⇒ x ∗ a = y ∗ a.

3. a-dense elements and a-maximal filters.

In this section we give the definitions of a-dense element and a-maximal filter
of an ADL A and provide example for these and discuss certain results.

Definition 3.1. Let A be an ADL and a, fixed arbitrary element in A. Then
an element x of A is said to be a-dense, if ⟨x, a⟩ ⊆ (a] (and hence ⟨x, a⟩ = (a]).
When a = 0, the expression 0-dense element is abbreviated to dense element.

Example 3.1. Consider the ADL A defined in the Example 2.1. Then the
elements c, d, e are a-dense elements in A. Note that the element b is not a-dense,
since ⟨b, a⟩ = A ̸= (a].

Let us denote the set of a-dense elements of an ADL A by Da. Then we have
the following those can be easily verified.

Theorem 3.1. The following hold for any ADL A.
(i) Da is either empty or a filter of A, for every a ∈ A.
(ii) a is maximal ⇔ a ∈ Da ⇔ Da = A.
(iii) For any x, y ∈ A, if x ∈ Da and x ∧ y = a then y = a.
(iv) If m is a maximal element in A then m ∈ Da.
(v) For any a and b ∈ A, if a ∼ b then Da = Db

Definition 3.2. Let A be an ADL and a, fixed arbitrary non maximal element
in A. Then a filter F of A is said to be a-maximal, if F is maximal with respect to
the property of not containing a.
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Example 3.2. Consider the ADL A defined in the Example 2.1. Then the set
{c, d, e} is an a-maximal filter of A. Note that the filter {d, e} is not a-maximal,
since {d, e} $ {c, d, e} $ A.

The following is an application of Zorn’s lemma which allow us to denote the
existence of a-maximal filters.

Theorem 3.2. For any filter F of an ADL A and a /∈ F , there exists an
a-maximal filter of A containing F .

In the following we furnish some characterizations of a-maximal filters.

Theorem 3.3. A filter F of an ADL A is a-maximal if and only if a /∈ F and,
for every x /∈ F, ⟨x, a⟩ ∩ F ̸= ϕ.

Proof. Suppose F is an a-maximal filter. Let x ∈ A− F . Then F ⊂ [x) ∨ F
and hence, by the maximality of F , a ∈ [x) ∨ F . Hence a = (t ∨ x) ∧ y for some
t ∈ A and y ∈ F . Now,

a ∧ x ∧ y = (t ∨ x) ∧ y ∧ x ∧ y

= (t ∨ x) ∧ x ∧ y ∧ y (by Theorem 2.1 (xii))

= x ∧ y.

Therefore x ∧ y ∈ (a] and hence y ∈ ⟨x, a⟩ so that ⟨x, a⟩ ∩ F ̸= ϕ.
Conversely, suppose that a /∈ F and, for every x /∈ F , ⟨x, a⟩ ∩ F ̸= ϕ. If F is

not a-maximal, then there exists a filter G of A such that F ⊂ G and a /∈ G. Then
select x ∈ G such that x /∈ F . By supposition, let y ∈ ⟨x, a⟩ ∩ F . Then x ∧ y ∈ (a]
and y ∈ F . Hence a ∧ x ∧ y = x ∧ y so that a ∨ (x ∧ y) = a (by Theorem 2.1(vi)).
As x ∧ y ∈ G, we get a ∈ G; a contradiction. Hence F is an a-maximal filter of
A. �

We observe that ⟨x, 0⟩ = {y ∈ A : x ∧ y = 0} = {x}∗, the annihilator ideal of
x. 0-maximal filter will be called as maximal filter. Now we give a characterization
of maximal filter of an ADL.

Corollary 3.1. Let F be a proper filter of an ADL A. Then F is maximal if
and only if for every x /∈ F, {x}∗ ∩ F ̸= ϕ.

It is kown that, in an ADL A, the intersection of an arbitrary family of filters
is a filter if and only if A has a maximal element. A filter F of an ADL A is ∧−
irreducible if F =

∩
i∈∆

Fi where {Fi : i ∈ ∆} is a an arbitrary family of filtrs of A

then F = Fi for some i ∈ ∆.

Theorem 3.4. The following statements are equivalent for any ADL A.
(i) F is a-maximal filter for some a ∈ A.
(ii) F is ∧−irreducible.
(iii) F ⊂ G =

∩
{I : I is a filter of A and F ⊂ I}.

(iv) F is x-maximal filter of A for some x ∈ G− F .



a-MAXIMAL FILTERS IN ALMOST DISTRIBUTIVE LATTICES 315

Proof. (i) =⇒ (ii): Let F =
∩
i∈∆

Fi, where {Fi : i ∈ ∆} is an arbitrary family

of filters of A. Since F is a-maximal, a /∈ F and hence a /∈ Fi for some i ∈ ∆. As
F ⊆ Fi and by the maximality of F we get F = Fi. Thus F is ∧− irreducible.

(ii) =⇒ (iii): If possible suppose that

F = G =
∩

{I : I is a filter of A and F ⊂ I}.

Then, since F is ∧− irreducible, F=I for some filter I of A contains F properly; a
contradiction. Hence F ⊂ G.

(iii) =⇒ (iv): Assume that F ⊂ G =
∩

{I : I is a filter of A and F ⊂ I}.
Then there exists x ∈ G such that x /∈ F . If F is not x-maximal filter of A,
then there exists a filter J of A such that x /∈ J and F ⊂ J . Therefore J ∈
{I : I is a filter of A and F ⊂ I}. So that x ∈ J , a contradiction. Hence F is
x-maximal filter of A for any x ∈ G− F .

(iv) =⇒ (i): It is clear. �
Let us recall that, a proper filter F of an ADL A is prime filter if and only if

for any filters F1 and F2 of A, F = F1 ∩ F2 implies either F = F1 or F = F2.

Corollary 3.2. Every a-maximal filter is prime filter.

Remark 3.1. The converse of the above Corollary is not true; that is, there
are prime filters of ADL’s which are not a-maximal; even when ADL is a lattice.
For, consider the following example.

Example 3.3. Let L be a bounded chain (totally ordered set). Then L is a
distributive lattice in which every proper filter is a prime filter (since x∨y = y or x
depending up on x 6 y or y 6 x) . For example, let L be the four element chain
represented by the Hassee diagram given bellow. Then {1}, {b, 1}, {a, b, 1} are all
prime filters of L but {1} is not an a-maximal filter of L, since {1} $ {b, 1} $ L.

c
c
c
c
0

a

b

1

Now we prove some properties of a-dense elements which are closely linked to
those of a-maximal filters.

Theorem 3.5. In an ADL A, the intersection of the a-maximal filters is equal
to Da.

Proof. Let {Fi : i ∈ ∆} be the family of a-maximal filters of A. Let x ∈ Da

such that x /∈ Fi for some i ∈ ∆. Since Fi is a-maximal A, we have ⟨x, a⟩ ∩ Fi ̸= ϕ
(by Theorem 3.3). Hence we can find y ∈ Fi such that y ∈ ⟨x, a⟩. Since x is
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a-dense, ⟨x, a⟩ = (a] and therefore y ∈ (a] and hence a∧ y = y. Since y ∈ Fi we get
a ∈ Fi which is contradiction . Therefore x ∈ Fi. Thus Da ⊆ Fi for all i ∈ ∆. On
the other hand, let x ∈ Fi for all i ∈ ∆ and x /∈ Da. Then ⟨x, a⟩ * (a] and hence
there exists y ∈ A such that x ∧ y ∈ (a] and y /∈ (a]. Now consider the class.

C = {F : F is a filter of A, y ∈ F and a /∈ F}.

Now a /∈ [y), for; a ∈ [y) ⇒ a = a∨y ⇒ y = a∧y ⇒ y ∈ (a], which is contradiction.
Therefore [y) ∈ C so that C is non-empty. It can be easily prove that C is closed
under union of chains in C. By the Zorn’s lemma, C has a maximal member, say F.
We have y ∈ F and a /∈ F . Clearly F = Fi for some i ∈ ∆. Therefore x ∈ F and
y ∈ F and hence x∧y ∈ F. This implies a ∈ F , which is a contradiction. Therefore
x ∈ Da. Thus Da = ∩{Fi : i ∈ ∆}. �

Theorem 3.6. The following statements (i) and (ii) are equivalent for any
ADL A and any one of them implies (iii).

(i) A has unique a-maximal filter.
(ii) Da is an a-maximal filter of A.
(iii) Da is a prime filter of A.

Proof. It follows from the above theorem and the fact that the class of all
a-maximal filters of A is not a chain. Therefore (i), (ii) are equivalent. (iii) is a
consequence of Corollary 3.2. �

Let us recall from [8] that an element p in an ADL A is said to be ∧−irreducible
if, for any x and y ∈ A,

p = x ∧ y = y ∧ x ⇒ either p = x or p = y

Lemma 3.1. Let a be non-maximal element in an ADL A. Then a is ∧−
irreducible if and only if the principle ideal (a] is prime.

Proof. Suppose that a is ∧−irreducible. Suppose x∧y ∈ (a]. Then y∧x ∈ (a].
So that x ∧ y = a ∧ s and y ∧ x = a ∧ t for some s, t ∈ A. Now, we have

a = a ∨ (a ∧ s) = a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y)

and a = a ∨ (a ∧ t) = a ∨ (y ∧ x) = (a ∨ y) ∧ (a ∨ x).

Since a is ∧−irreducible, either a = a ∨ x or a = a ∨ y

a = a ∨ x ⇒ x = a ∧ x (by Theorem 2.2 (vi))

⇒ x ∈ (a]

and a = a ∨ y ⇒ y = a ∧ y

⇒ y ∈ (a].

Hence x ∈ (a] or y ∈ (a]. Thus (a] is a prime ideal of A. Also, note that (a] ̸= A,
since a is not maximal.

Conversely, suppose (a] is a prime ideal of A. Let x as y ∈ A such that
x ∧ y = y ∧ x = a. Since x ∧ y 6 y and y ∧ x 6 x, we get that a 6 y and a 6 x.
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Now, since x∧ y = a ∈ (a] and (a] is prime it follows that either x ∈ (a] or y ∈ (a].

x ∈ (a] ⇒ x = a ∧ s for some s ∈ A

⇒ x = x ∧ x = a ∧ s ∧ x = s ∧ a ∧ x = s ∧ a 6 a

⇒ a = x.

Similarly, we can show that y ∈ (a] ⇒ a = y. Therefore a = x or a = y. Thus
a is ∧−irreducible element in A. �

Now, we prove the following

Theorem 3.7. Let a be a non-maximal element in an ADL A. Then a is
∧−irreducible if and only if Da = A− (a]

Proof. Suppose a is ∧− irreducible. Then, by Lemma 3.1, (a] is a prime ideal
of A. For any maximal element m of A and x ∈ A,

x /∈ A− (a] ⇒ x ∈ (a]

⇒ x ∧m ∈ (a] and m /∈ (a]

⇒ m ∈ ⟨x, a⟩ and m /∈ (a]

⇒ ⟨x, a⟩ * (a]

⇒ x is not a-dense element in A.

Therefore x /∈ Da and hence Da ⊆ A−(a]. On the other hand, let x ∈ A−(a]. Then
x /∈ (a] and for any y ∈ A, x∧y ∈ (a] ⇒ y ∈ (a] (since (a] is prime ideal). Therefore
⟨x, a⟩ ⊆ (a]. So that x is a-dense and hence x ∈ Da. Therefore A− (a] ⊆ Da. Thus
Da = A− (a].

Conversely, suppose Da = A− (a]. Let x and y ∈ A such that x∧y = y∧x = a
and a ̸= x. Then x /∈ (a]. For,

x ∈ (a] ⇒ a ∧ x = x

⇒ x ∧ a = a ∧ x = x (since a = y ∧ x 6 x)

⇒ x 6 a and hence x = a; a contradiction.

Therefore x ∈ Da and hence ⟨x, a⟩ = (a]. Since x∧y = a, we have y ∈ ⟨x, a⟩ so that
a∧y = y. Since a = x∧y 6 y, y∧a = a∧y = y and hence y 6 a. Therefore a = y.
Thus a is ∧− irreducible. �

Let us re call that an equivalence relation θ on an ADL A = (A,∧,∨, 0) is said
to be a congruence if θ is compatible with ∧ and ∨ on A; that is

(p, q) and (r, s) ∈ θ ⇒ (p ∧ r, q ∧ s) ∈ θ and (p ∨ r, q ∨ s) ∈ θ

If θ is a congruence on A, then for any x ∈ A, the set x/θ = {y ∈ A : (x, y) ∈ θ} is
called the congruence class of x corresponding to θ. If x = 0, then 0/θ = {y ∈ A :
(0, y) ∈ A} is called the kernal of θ and is denoted kerθ. kerθ is a unique congruence
class which is an ideal of A. In general, for any ADL A and θ a congruence on A,
the Quotient A/θ = {x/θ : x ∈ A} is an ADL under the operation ∧ and ∨ on A/θ
defined by

x/θ ∧ y/θ = (x ∧ y)/θ and x/θ ∨ y/θ = (x ∨ y)/θ
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and its zero element is 0/θ.

Finally, in this section we consider the congruence θa on an ADL A correspond-
ing to a ∈ A.

Definition 3.3. ([5]) For any a ∈ A, define

θa = {(x, y) ∈ A×A : a ∨ x = a ∨ y}.

Then θa is a congruence on A.

Theorem 3.8. Let A be an ADL and a ∈ A. For any a-maximal filter F of
A, let F = {x/θa : x ∈ F}. Then F is a maximal filter of A/θa and the map F 7→
F is an one-to-one correspondence between the set of a-maximal filters of A on to
the set of all maximal filters of A/θa.

Proof. Let F be an a- maximal filter of A. Put F = {x/θa : x ∈ F} then
clearly F is a filter of A/θa as F is a filter of A. First observe that, for any
x ∈ A, x/θa ∈ F if and only if x ∈ F . For, x/θa ∈ F implies that x/θa =
y/θa for some y ∈ F . So that (x, y) ∈ θa and hence a ∨ x = a ∨ y. Now a ∨ y ∈ F
since y ∈ F . Hence a ∨ x ∈ F and a /∈ F . Thus x ∈ F since F is prime filter of A
(by Corollary 3.2).

Converse is trivial.
Now, we prove that F is a maximal filter of A/θa. Since a∨a = a∨0, (a, 0) ∈ θa

and hence a/θa = 0/θa . If 0/θa ∈ F then a/θa ∈ F so that a ∈ F contradicting
the fact F is a- maximal. Thus 0/θa /∈ F so that F is proper. Let if possible there
exists a proper filter G of A/θa such that F ⊂ G. Select x/θa ∈ G − F so that
x /∈ F . As F is a-maximal and x /∈ F , we get ⟨x, a⟩ ∩ F ̸= θ (by Theorem 3.3).
Hence there exists y ∈ F such that x∧ y ∈ (a]. So that a∧ x∧ y = x∧ y and hence
a ∨ (x ∧ y) = a (by Theorem 2.1(vi)). As y ∈ F , y/θa ∈ F and hence y/θa ∈ G.
Now, (x∧ y)/θa = x/θa ∧ y/θa ∈ G and hence, a/θa ∨ (x∧ y)/θa ∈ G. This implies
(a ∨ (x ∧ y))/θa ∈ G. Hence a/θa ∈ G; a contradiction since G is proper. Hence F
is a maximal filter of A/θa. Clearly the mapping F 7→ F is one-one.

Finally we prove that F 7→ F is onto. Let M be a maximal filter of A/θa. Put
F = {x ∈ A : x/θa ∈ M}. Then, as M is proper filter of A, F is a filter of A
not containing a. Suppose x /∈ F then x/θa /∈ M . As M is maximal in A/θa and
x/θa /∈ M , we get that {x/θa}∗ ∩ M ̸= θ (by Corollary 3.1). Hence there exists
y/θa ∈ M such that x/θa ∧ y/θa = 0/θa. So that (x ∧ y)/θa = 0/θa and hence
a ∨ (x ∧ y) = a ∨ 0 = a. This in turn implies that F is an a- maximal filter of A
and clearly F = M . Hence F 7→ F is onto. �

4. a-pseudo complemented ADL

In this section, we describe a-dense elements and a-maximal filters in an a-
pseudo complemented ADL A and exhibit the congruence ϕa on A such that the
quotient A/ϕa is a Boolean algebra.

First we recall from 3 that an ADL A is said to be a-pseudo complemented,
if there exists an a-pseudo complementation x 7→ x ∗ a on A. In the following we
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exhibit an a-pseudo complementation x 7→ x ∗ a on a non-trivial discrete ADL as
follows.

Example 4.1. Let (X,∧,∨, 0) be a non-trivial discrete ADL. Fix y ̸= 0 and
a ̸= 0 in X. Define for any x ∈ X,

x ∗ 0 =

{
0 if x ̸= 0

y if x = 0
and x ∗ a = y.

Then x 7→ x ∗ 0 is 0-pseudo complementation on X and x 7→ x ∗ a is an a-pseudo
complementation on X. Thus X is a-pseudo complemented for every a ∈ X.

Lemma 4.1. The following are equivalent:
(i) x ∈ Da.
(ii) x ∗ a ∼ a.
(iii) (x ∗ a) ∗ a = a ∗ a.

Proof. (i) =⇒ (ii) : x ∈ Da ⇒ x is a− dense

⇒ ⟨x, a⟩ = (a]

⇒ (x ∗ a] = (a]

⇒ x ∗ a ∼ a.

(ii) =⇒ (iii) : x ∗ a ∼ a ⇒ (x ∗ a) ∧ a = a and a ∧ (x ∗ a) = x ∗ a.
Now, (x ∗ a) ∗ a = (a ∧ (x ∗ a)) ∗ a

= ((x ∗ a) ∧ a) ∗ a) (by Theorem 2.2(xiii))

= a ∗ a (by 2.1(vi))

(iii) =⇒ (i) : (x ∗ a) ∗ a = a ∗ a
⇒ ((x ∗ a) ∗ a) ∗ a = (a ∗ a) ∗ a
⇒ x ∗ a = (a ∗ a) ∗ a (by Theorem 2.2 (viii))

⇒ ⟨x, a⟩ = (x ∗ a] = ((a ∗ a) ∗ a] = (a]

(since a ∗ a is maximal and (by Theorem 2.2 (xi))

⇒ x is a− dense

⇒ x ∈ Da.

�

Lemma 4.2. The following holds
(i) For every x ∈ A, x ∨ (x ∗ a) ∈ Da.
(ii) If a is ∧-irreducible and x /∈ (a] then x ∈ Da.
(iii) The interval [a,∞) = {x ∈ A : a 6 x < ∞} is pseudo-complemented

ADL.
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Proof. (i). Consider

((x ∨ (x ∗ a)) ∗ a) ∗ a = ((x ∗ a) ∧ ((x ∗ a) ∗ a)) ∗ a (by definition 2.5(ii)))

= (a ∧ (x ∗ a) ∧ ((x ∗ a) ∗ a)) ∗ a (by definition 2.5(i))

= ((x ∗ a) ∧ a ∧ ((x ∗ a) ∗ a)) ∗ a (by Theorem 2.2(xii))

= (a ∧ (x ∗ a) ∗ a)) ∗ a (by Theorem 2.2(vi))

= (((x ∗ a) ∗ a) ∧ a) ∗ a (by Theorem 2.2(xiii))

= a ∗ a. (by Theorem 2.2(vi))

Hence by Lemma 4.2(iii), x ∨ (x ∗ a) is a-dense. So that x ∨ (x ∗ a) ∈ Da.
(ii). Suppose a is ∧-irreducible. Then the principal ideal (a] is prime. Let

x ∈ A− (a]. Then for any y ∈ A, x ∧ y ∈ (a] ⇒ y ∈ (a] ⇒ ⟨x, a⟩ ⊆ (a]. Hence x is
a-dense, so that x ∈ Da.

(iii). Clearly the interval [a,∞) = {x ∈ A : a 6 x < ∞} is an ADL under the
induced operations ∧ and ∨ with a as its smallest element. Since x 7→ x ∗ a is an
a-pseudo complementation on A, its restriction on the interval [a,∞) is a pseudo-
complementation on the ADL [a,∞) and hence [a,∞) is pseudo-complemented
ADL. �

Theorem 4.1. Let A be an a-pseudo complemented ADL and F a filter of A.
Then F is a-maximal if and only if F contains exactly one of the elements x and
x ∗ a, for every x ∈ A.

Proof. We suppose for every x ∈ A, F contains exactly one of x and x ∗ a.
Since a ∗ a is maximal, a ∗ a ∈ F and hence a /∈ F . Let x ∈ A−F . Then x ∗ a ∈ F .
Since ⟨x, a⟩ = (x ∗ a], we have x ∗ a ∈ ⟨x, a⟩ ∩ F so that ⟨x, a⟩ ∩ F ̸= ϕ. Hence, (by
Theorem 3.3) F is a-maximal.

Conversely suppose F is a-maximal, then a /∈ F . For any x ∈ A, if x and
x ∗ a ∈ F , Then x∧ (x ∗ a) ∈ F and hence a ∈ F (since a∧ x∧ (x ∗ a) = x∧ (x ∗ a)
and hence by 2.1(vi), a ∨ (x ∧ (x ∗ a)) = a) which is contradiction. Let x ∈ A such
that x /∈ F and x∗a /∈ F . Since F is a-maximal and x /∈ F , again (by Theorem 3.3),
⟨x, a⟩ ∩ F ̸= ϕ. Hence these exists y ∈ A such that y ∈ F and y ∈ ⟨x, a⟩ = (x ∗ a]
and hence (x ∗ a) ∧ y = y. As y ∈ F , x ∗ a ∈ F which is contradiction. Therefore,
for every x ∈ A, F contains exactly one of x and x ∗ a. �

Corollary 4.1. Let x 7→ x∗ be a pseudo-complementation on an ADL A.
Then a filter F of A is maximal if and only if F contains exactly one of x and x∗,
for every x ∈ A.

Theorem 4.2. Let A be an a-pseudo complemented ADL and P a prime filter
of A such that Da ⊆ P and a /∈ P . Then P is a-maximal filter of A.

Proof. For every x ∈ A, x∨ (x ∗ a) ∈ Da. Therefore x∨ (x ∗ a) ∈ P . Since P
is prime, x ∈ P or x ∗ a ∈ P but not both as a /∈ P . Therefore P contains exactly
one of x and x ∗ a. Hence P is a-maximal (by Theorem 4.1). �

Corollary 4.2. Da is a prime filter of A if and only if it is a-maximal.
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Corollary 4.3. Let A be a pseudo complemented ADL. Then every prime
filter of A which contains the dense set D is maximal.

Note that an ADL can have more than one a-pseudo complementations. Infact,
it is observed that the a-pseudo complementations on an ADL are in one-to-one
correspondence with the maximal elements (refer [3]). Finally, we conclude this
paper by introducing the concept of congruence on a-pseudo complemented ADL
and exhibiting a congruence on an a-pseudo complemented ADL with respect to
which the Quotient is a Boolean algebra . First we need the following.

Lemma 4.3. Let θ be an equivalence relation on an ADL A and suppose that
x 7→ x ∗ a and x 7→ x+ a be a-pseudo complementation on A. Then, for any x and
y ∈ A, (x ∗ a, y ∗ a) ∈ θ if and only if (x+ a, y + a) ∈ θ.

Proof. It follows from the fact that, for any x ∈ A, we have

x ∗ a = (x+ a) ∧ (0 ∗ a) and x+ a = (x ∗ a) ∧ (0 + a).

�

Definition 4.1. Let A = (A,∧,∨, 0) be an ADL and x 7→ x ∗ a an a-pseudo
complementation on A. An equivalence relation θ on A is said to be a congruence
relation if

(i) θ is compatible with ∧ and ∨ on A.
(ii) (x, y) ∈ θ ⇒ (x ∗ a, y ∗ a) ∈ θ (this condition is independent of any

a-pseudo complementatin on A (by Lemma 4.3))

Theorem 4.3. Let A be an ADL and x 7→ x ∗ a an a-pseudo complementation
on A. Define a relation ϕa on A by

(x, y) ∈ ϕa if and only if x ∗ a = y ∗ a.
Then ϕa is a congruence on the a-pseudo complemented ADL A.

Proof. Clearly ϕa is an equivalence relation on A. Let (p, q), (r, s) ∈ ϕa.
Then p ∗ a = q ∗ a and r ∗ a = s ∗ a. Therefore

((p ∧ r) ∗ a) ∗ a = ((p ∗ a) ∗ a) ∧ ((r ∗ a) ∗ a) (by Theorem 2.2 (xv))

= ((q ∗ a) ∗ a) ∧ ((s ∗ a) ∗ a)
= ((q ∧ s) ∗ a) ∗ a.

This implies (((p∧r)∗a)∗a)∗a = (((q∧s)∗a)∗a)∗a and hence (p∧r)∗a = (q∧s)∗a
(by Theorem 2.2 (viii)). Therefore (p ∧ r, q ∧ s) ∈ ϕa. Again (p ∨ r) ∗ a =
(p ∗ a)∧ (r ∗ a) = (q ∗ a)∧ (s ∗ a) = (q∨ s) ∗ a. Therefore (p∨ r, q∨ s) ∈ ϕa. Clearly
(p, q) ∈ ϕa ⇒ (p ∗ a, q ∗ a) ∈ ϕa. Thus ϕa is a congruence on A. �

In the following we prove certain properties of the congruence classes of ϕa.

Lemma 4.4. We have the following.
(i) 0/ϕa = a/ϕa = (a] and is the smallest element in A/ϕa.
(ii) For any maximal elements m and n in A, m/ϕa = n/ϕa = Da and is the

greatest element in A/ϕa.
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(iii) The restriction of ϕa on the ADL [a,∞) is the congruence on the pseudo
complemented ADL [a,∞).

(iv) For every x ∈ A, (x ∗ a) ∗ a ∈ x/ϕa.
(v) For every x, y ∈ A, if there exists d ∈ Da such that x ∧ d = y ∧ d, then

(x, y) ∈ ϕa.

Proof. (i): Since 0 ∗ a = a ∗ a, (0, a) ∈ ϕa and hence 0/ϕa = a/ϕa. Also,
0/ϕa = kerϕa and hence an ideal of A containing a. Therefore (a] ⊆ 0/ϕa. Let
x ∈ 0/ϕa. Then x ∗ a = 0 ∗ a which is maximal. Therefore, by Theorem 2.2 (ix),
x ∈ (a]. Therefore 0/ϕa ⊆ (a]. Thus 0/ϕa = (a]. Clearly 0/ϕa is the smallest
element in A/ϕa.

(ii): For any maximal elements m and n in A, by 2.2 (x), m ∗ a = n ∗ a so
that m/ϕa = n/ϕa.

Now, x ∈ Da ⇔ x ∗ a ∼ a

⇔ x ∗ a ∼ m ∗ a (since a ∼ m ∗ a)
⇔ (x ∗ a) ∗ a = (m ∗ a) ∗ a (by Theorem 2.2(xvi))

⇔ ((x ∗ a) ∗ a) ∗ a = ((m ∗ a) ∗ a) ∗ a
⇔ x ∗ a = m ∗ a (by Theorem 2.2(viii))

⇔ (x,m) ∈ ϕa

⇔ x ∈ m/ϕa.

Therefore m/ϕa = Da. Also for any x ∈ A, we have (x ∧m) ∗ a = (m ∧ x) ∗ a =
x∗a (by Theorem 2.2 (xiii)), it follows that x/ϕa∧m/ϕa = m/ϕa∧x/ϕa. Therefore
x/ϕa ⊆ m/ϕa so that m/ϕa is the largest element in A/ϕa.

(iii) It is clear obviously.
(iv) It follows by Theorem 2.2 (viii).
(v) Let x, y ∈ A such that x ∧ d = y ∧ d for some d ∈ Da. Then

((x ∧ d) ∗ a) ∗ a = ((y ∧ d) ∗ a) ∗ aand (d ∗ a) ∗ a = a ∗ a (by Theorem 2.2(xv))

⇒ ((x ∗ a) ∗ a) ∧ ((d ∗ a) ∗ a) = ((y ∗ a) ∗ a) ∧ ((d ∗ a) ∗ a)
⇒ ((x ∗ a) ∗ a) ∧ (a ∗ a) = ((y ∗ a) ∗ a) ∧ (a ∗ a)
⇒ (a ∗ a) ∧ ((x ∗ a) ∗ a) = (a ∗ a) ∧ ((y ∗ a) ∗ a) (by Thm 2.2(i))

⇒ (x ∗ a) ∗ a) = (y ∗ a) ∗ a) (since a ∗ a is maximal)

⇒ ((x ∗ a) ∗ a) ∗ a = ((y ∗ a) ∗ a) ∗ a
⇒ x ∗ a = y ∗ a (by Theorem 2.2 (viii))

⇒ (x, y) ∈ ϕa.

�

Theorem 4.4. Let A be an ADL with a maximal element m and x 7→ x ∗ a an
a-pseudo complementation on A. Then the quotient A/ϕa is a Boolean algebra.

Proof. For any x and y ∈ A, we have that, (x ∧ y) ∗ a = (y ∧ x) ∗ a and
(x ∨ y) ∗ a = (y ∨ x) ∗ a, it follows that, x/ϕa ∧ y/ϕa = (x ∧ y)/ϕa = (y ∧ x)/ϕa =
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y/ϕa ∧ x/ϕa and x/ϕa ∨ y/ϕa = (x∨ y)/ϕa = (y ∨ x)/ϕa = y/ϕa ∨ x/ϕa. Therefore
the induced operations ∧ and ∨ on the quotient A/ϕa are commutative and hence
A/ϕa is a lattice. The distributivity of A/ϕa follows from that of A. Hence A/ϕa

is a bounded distributive lattice in which a/ϕa is the smallest element and m/ϕa

is the largest element (by Lemma 4.4). Finally, let x/ϕa ∈ A/ϕa with x ∈ A. Since
x∧(x∗a) ∈ (a], x∧(x∗a) = a∧x∧(x∗a) and it follows that (x∧(x∗a))∗a = (x∧a)∗a.
Also, since a/ϕa ⊆ x/ϕa, (x ∧ a) ∗ a = a ∗ a. Hence (x ∧ (x ∗ a)) ∗ a = a ∗ a. This
implies (x∧ (x ∗a), a) ∈ ϕa and hence x/ϕa ∧ (x ∗a)/ϕa = (x∧ (x ∗a))/ϕa = a/ϕa.
From Lemma 4.2 (i), x∨ (x ∗a) ∈ Da, it follows that x∨ (x ∗a) ∈ m/ϕa. Therefore
x/ϕa∨(x∗a)/ϕa = (x∨(x∗a))/ϕa = m/ϕa. Therefore (x∗a)/ϕa is the complement
of x/ϕa in A/ϕa. Thus A/ϕa is a Boolean algebra. �

Remark 4.1. The converse of above theorem need not be true. For, see the
following example.

Example 4.2. Let A = {0, a, b} be a discrete ADL. Define

0 ∗ 0 = b and a ∗ 0 = a = b ∗ 0.

Then ϕ0 = {(0, 0), (a, a), (b, b), (a, b), (b, a)} and it is a congruence on A. Now the
quotient A/ϕ0 = {0/ϕ0, a/ϕ0} which is a two-element Boolean algebra but the
unary operation x 7→ x ∗ 0 on A is not a 0-pseudo complementation on A, since
a ∧ (a ∗ 0) = a ∧ a = a ̸= 0.

5. Conclusions

In this work, the notion of a-dense elements and a-maximal filters of semilat-
tices introduced by J. C. Varlet is extended to the case of ADL’s and obtained
certain results of these. In our future of work, we will focus on to investigate
a-minimal prime ideals of ADL’s and their characterizations in terms of relative
a-annihilator ideals and a-pseudo complementations. Also, we will study the space
of a-minimal prime ideals with the Hull-Kernel topology and characterize a-Stone
ADL’s with respect to this space.
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