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a-MAXIMAL FILTERS
IN ALMOST DISTRIBUTIVE LATTICES

Santhi Sundar Raj. Ch., Nageswara Rao. S., and Ramanuja Rao. K.

ABSTRACT. In this paper, the concepts of a-dense element and a-maximal filter
in an ADL A (a, fixed arbitrary element in A) are introduced and discussed
certain properties of these. Mainly, a-maximal filters are characterized in
terms of relative a-annihilator ideals as well as a-pseudo complementations. A
one-to-one correspondence is exhibited between the set of a-maximal filters of
A and the set of all maximal filters of A/6,, where 6, is a congruence on A
corresponding to a. Furthermore, the concept of congruence relation on an a-
pseudo complemented ADL A is introduced and exhibited a congruence ¢, on
A for which A/¢q is a Boolean algebra.

1. Introduction

The axiomatization of Boole’s propositional two valued logic led to the concept
of Boolean algebra. M. H. Stone [2] has proved that any Boolean algebra can be
made into a Boolean ring and vice-versa. U. M. Swamy and G. C. Rao [5] have
introduced a common abstraction of several lattice theoretic and ring theoretic
generalizations of Boolean algebras and Boolean rings in the form of an Almost
Distributive Lattice (ADL) as an algebra (A, A, V, 0) of type (2,2,0) which satisfies
all the axioms of a distributive lattice with zero except the commutativity of the
operations V and A and the right distributivity of V over A. It is known that, in
an ADL the commutativity of V is equivalent to that of A and also to the right
distributivity of V over A. In a lattice (L, A, V), interchanging the operations A and
V yields a lattice again, known as the dual of L. An ideal of the dual (L,V,A) is
called as a filter of the lattice (L, A, V). Un like the case of a lattice, by interchanging
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the operations A and V in an ADL (A4, A,V,0), we do not get an ADL again. The
main reason is that in an ADL (A, A, V,0), A distributes over V both from left and
right, where as V distributes over A from left only. If V distributes A from right
also, then the ADL becomes a lattice and hence a distributive lattice. For all these
reasons, we deal the case of filters in an ADL separately.

J.C Varlet [7] introduced the notions of a-dense element and a-maximal filter of
a general semilattice S. An element z of a semilattice S is a-dense (a, fixed element
of S) if (x,a) C (a], that is, for every y € S, zy < a implies y < a. It is the natural
extension of the notion of dense element (that is, 0-dense element) in a semilattice S
bounded bellow by 0. The properties of a-dense elements are closely linked to those
of the filters maximal with respect to the property of not containing a, which are
called a-maximal filters. In this paper, we extend these notions to the case of ADL’s
and initiate the study of the properties of these. In [3], we have introduced the
notion of a-pseudo complementation on an ADL A for an arbitrary fixed element a
of A. It is the generalization of the notion of pseudo-complementation on an ADL.
It is proved that an ADL A is a-pseudo complemented if and only if the relative
a-annihilator (z, a), that is {y € A : x Ay € (a]} is a principal ideal, for each = € A.
Here, a-dense elements and a-maximal filters of an ADL A are characterized in
terms of relative a-annihilator ideals and a-pseudo complementations. Finally, the
concept of congruence relation on an ADL A with an a-pseudo complementation
is introduced and obtained a congruence ¢, on A for which A/¢, is a Boolean
Algebra.

2. Preliminaries

In this article, we recall certain elementary definitions and results concerning
Almost Distributive Lattices, that we need in sequel.

DEFINITION 2.1. ([5]) An algebra A = (A4,A,V,0) of type (2,2,0) is called
an Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following
independent identities

(i) 0ANa=0,
(i) aVO0=a,
(iii) aA(bVe)=(aAb)V(aAc),
(iv) (avbd)Ac=(anc)V (bAc),
(v) avV(bAce)=(aVbd)A(aVc),

(vi) (aVb)Ab=D.

Clearly any distributive lattice bounded below is an ADL, in which the smallest
element is the zero element. Further any non-empty set X can be made into an
ADL by fixing an arbitrarily chosen element zy in X and by defining the operations
A and V on X by

g fr== ifxe=x
T Ay = 0 ] % and TVy= Y ) 0
y ifx#x x if x # xg.

This ADL (X, A, V,xg) is called a discrete ADL, in which z( is the zero element.
In the following we give an example of a non-trivial ADL.
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EXAMPLE 2.1. Let A = {0,qa,b,c,d,e}. Define A and V on A as follows:

AlO|a|blc|d]|e VIiOlal|b|lc|d]|e
0[{0l0[0]|0O[0O]O 0|Ojal|blc|d]|e
al|l0|lal|lb|0|lalb alalalal|d|d|d
blO0Ola|b|0|al|b blb|b|blele]e
c|0][0]|0|c|c]|c cleld|elc|d]|e
d|0|lal|b|cl|d]e d|d|d|d|d|d|d
elO0|la|blc|d]|e elelelelel|e]e

Then (A, A,V,0) is an ADL but it is not a lattice (since a A b # b A a) and not a
discrete ADL (since a A ¢ =0 # ¢)

DEFINITION 2.2. ([5]) Let A = (A,V,A,0) be an ADL. For any a and b € A,
define

a<b ifandonlyif a=aAb (& aVb=Dh).

Then < is a partial order on A.

THEOREM 2.1 ([5]). The following holds for any a,b and ¢ in an ADL A =

) 0 is the zero element for the operation A (that is; aNO=0=0Aa)
) 0 is the identity for the operation V (that is; aV0=a=0Va)
) aNa=a=aVa
) aAnb<b<bVa
) (anb)Vb=b, aV(bAa)=aandaN(aVh)=a
) aANb=a<aVb=bandaANb=b&SaVb=a
(vii) (aAb)Ac=aA(bAc)
i) aV(bVa)=aVb
) aANb=bAha&aVb=bVa
) aAnb=bAa< inf{a,b} =aAb < sup{a,b} =aVb
) Ifa<b, thenaANb=a=bAaandaVb=b=bVa
) anbAc=bAaAcand (aVd)Ac=((bVa)Ac

LEMMA 2.1 ([5]). Let A = (A,A,V,0) be an ADL. Then for any m € A, the
following are equivalent.
(i) m is a mazimal element with respect to <;
(i1) mAz=x forallz e A;
(#it1) mVa=m fordlz e A.

In any discrete ADL A, every non-zero element is maximal; for, if a # 0, then
aNzx =z foral z € A. An ADL A = (A4, A,V,0) is called an associative ADL if
the operation V is associative; that is (aVb)Vec=aV (bVc) for all a, b and ¢ € A.
Throughout this paper, A stands for an associative ADL (A, A, V, 0) with maximal
elements unless otherwise mentioned.

DEFINITION 2.3. ([5]) Let I be a non empty subset of an ADL A. Then I is
called
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(i) anideal of Aifavbe I forallaandbe I and x Aa € forallz e
and a € A.

(1) afilter of AifanbeIforallaandbe I and aVa €l forall x € I and
ac A

As a consequence, for any ideal I of A, anx € I for allz € [ and a € A and for
any filter FF of A, zVa € F for all z € F and a € A. For any = € A, the smallest
ideal (filter) of A containing x is called the ideal (filter) generated by = in A and is
denoted by (x] and [x) respectively. It is known that

(z]={zAa:a€ A} and [zr) ={aVz:a € A}.
For any x,y € A, we have

@Vl =@vyl=@wval and (A (y]=(@Ay]=(yAz]

A principal ideal in an ADL may have more than one generator, unlike the case of
a lattice in which any principal ideal has a unique generator. However, for any x
and y in an ADL, we have (2] = (y] @ zAy=yand yAz =2z < zVy =2z and
yVa =y < [z) =[y) and we denote this situation by writing z ~ y and calling =
and y as associates to each other.

A proper ideal (filter) P of an ADL A is said to be prime if for any z,y €
A, x ANy (z Vy) € P implies either z € P or y € P. A prime ideal (filter) P
of A is said to be minimal if there exists no prime ideal (filter) @ of A such that
@ C P. Let us recall from [4], for any elements x and a in an ADL A, the relative
a-annihilator ideal of x is defined by

(r,a)={ye A:xz Ay € (a]}.

ProOPOSITION 2.1 ([4]). The following hold for any x,y and a in an ADL
A= (ANV,0).
(i) z<y= (y,a) € (z,q)

(i) (x Ay, a) ={yAz, a)

(1) (zVy, a)=(z,a)N(y,a)

(iv) (z,a) V(y,a) C(x Ay, a)
v) z € (a] & (z,a)=A

(vi) (a,a) =A=1{0,a)

(vii) a is mazimal < (x,a) = A for all x € A.

DEFINITION 2.4. ([6]) Let A = (A,A,V,0) be an ADL. A unary operation x*

on A is called a pseudo-complementation on A if, for any a,b € A;
(1) aNnb=0=a*ANb=1b;
(i) aNa*=0;

(i7) (aVb)* =a* AND*.

DEFINITION 2.5. ([3]) Let A = (A4, A, V,0) be an ADL and a be an arbitrary
fixed element in A. Then a unary operation « — x % a on A is called an a-pseudo
complementation on A if for any z,y € A, it satisfies the following conditions:

(1) (z,a) = (z*al.
(i) (xVy)*xa=(rxa)A(y=a).
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Clearly a 0-pseudo-complementation x — x %0 on an ADL is a pseudo-comple-
mentation and denoted x % 0 by z*.

THEOREM 2.2 ([3]). Let x — x*xa be an a-pseudo complementation on an ADL
A. Then for any x,y € A, we have the following:
(i) mx*xa < xxa<0x*a for any maximal element m of A.

() (zxa)A(y*a)=(y+a)A(z*a).

(#it) z<y=yxa<z*a.

(iv) a*a is maximal and a xa = 0 * a.
(v) m+*a=aA(0x*a) for any maximal m of A
(vi) (z*xa)Na=a

(vit) ((x*xa)xa) Nz =z

(viii) ((z*a)*a)*a=z*a.

(iz) z € (a] & x * a is maximal.
(£) m=*a =mn=*a, for any maximal elements m and n of A.
(i) if z is maximal then x xa ~ a

(zii) (xAha)xa=axa

(ziit) (xAy)xa=(yAz)*a

(xiv) (zVy)*xa=(yVz)xa

(zv) ((xAy)*xa)xa=((xxa)*xa)A((y*a)*a)

)

(xvi) T~y=x*xa=1yx*a.

3. a-dense elements and a-maximal filters.

In this section we give the definitions of a-dense element and a-maximal filter
of an ADL A and provide example for these and discuss certain results.

DEFINITION 3.1. Let A be an ADL and a, fixed arbitrary element in A. Then
an element x of A is said to be a-dense, if (z,a) C (a] (and hence (z,a) = (al).
When a = 0, the expression 0-dense element is abbreviated to dense element.

ExAMPLE 3.1. Consider the ADL A defined in the Example 2.1. Then the
elements ¢, d, e are a-dense elements in A. Note that the element b is not a-dense,

since (b,a) = A # (a].

Let us denote the set of a-dense elements of an ADL A by D,. Then we have
the following those can be easily verified.

THEOREM 3.1. The following hold for any ADL A.

(i) D, is either empty or a filter of A, for every a € A.
(#4) a is mazimal < a € D, < D, = A.
(#i1) For any x,y € A, ifx € D, and x ANy = a then y = a.
(iv) If m is a mazimal element in A then m € D,.
(v) Foranya andbe€ A, if a ~ b then D, = Dy

DEFINITION 3.2. Let A be an ADL and a, fixed arbitrary non maximal element
in A. Then a filter F' of A is said to be a-maximal, if F' is maximal with respect to
the property of not containing a.
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ExXAMPLE 3.2. Consider the ADL A defined in the Example 2.1. Then the set
{¢,d, e} is an a-maximal filter of A. Note that the filter {d, e} is not a-maximal,
since {d,e} G {c,d,e} G A.

The following is an application of Zorn’s lemma which allow us to denote the
existence of a-maximal filters.

THEOREM 3.2. For any filter F of an ADL A and a ¢ F, there exists an
a-mazimal filter of A containing F.

In the following we furnish some characterizations of a-maximal filters.

THEOREM 3.3. A filter F' of an ADL A is a-maximal if and only if a ¢ F and,
for every x ¢ F, (x,a) N F # ¢.

PROOF. Suppose F is an a-maximal filter. Let z € A — F. Then F C [z) V F
and hence, by the maximality of F, a € [z) V F. Hence a = (¢t V z) Ay for some
te Aand y € F. Now,

aNzANy= (V) ANyAz Ay
=({tVz)AxzAyAy (by Theorem 2.1 (xiz))
=z Ay.

Therefore x Ay € (a] and hence y € (x,a) so that (x,a) N F # ¢.

Conversely, suppose that @ ¢ F and, for every z ¢ F, (z,a) N F # ¢. If F is
not a-maximal, then there exists a filter G of A such that F C G and a ¢ G. Then
select « € G such that © ¢ F. By supposition, let y € (z,a) N F. Then x Ay € (a]
and y € F. Hence a Az Ay =x Ay so that a V (x Ay) = a (by Theorem 2.1(vi)).
Asxz ANy € G, we get a € G; a contradiction. Hence F' is an a-maximal filter of
A. O

We observe that (x,0) = {y € A: x Ay =0} = {a}*, the annihilator ideal of
x. 0-maximal filter will be called as maximal filter. Now we give a characterization
of maximal filter of an ADL.

COROLLARY 3.1. Let F be a proper filter of an ADL A. Then F is maximal if
and only if for every x ¢ F,{x}* N F # ¢.

It is kown that, in an ADL A, the intersection of an arbitrary family of filters
is a filter if and only if A has a maximal element. A filter F' of an ADL A is A—
irreducible if F' = () F; where {F; : i € A} is a an arbitrary family of filtrs of A

ieA

then F = Fj for some 7 € A.

THEOREM 3.4. The following statements are equivalent for any ADL A.

(1) F is a-mazimal filter for some a € A.

(i4) F is A—irreducible.
(tit) FCG=\{I:1isafilter of A and F C I}.
(iv) F is x-mazimal filter of A for some x € G — F.
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PROOF. (i) = (ii): Let F = [\ F;, where {F; : i € A} is an arbitrary family
i€EA
of filters of A. Since F is a-maximal, a ¢ F and hence a ¢ F; for some i € A. As
F C F; and by the maximality of F' we get F' = F;. Thus F' is A— irreducible.

(#4) == (#1): If possible suppose that
F:G:ﬂ{I:IisaﬁlteroanndFCI}.

Then, since F' is A— irreducible, F'=1I for some filter I of A contains F' properly; a
contradiction. Hence F' C G.

(i#1) = (iv): Assume that F C G = () {[ : [ is a filter of A and F C I}.
Then there exists x € G such that « ¢ F. If F is not z-maximal filter of A,
then there exists a filter J of A such that x ¢ J and F C J. Therefore J €
{I : I isafilter of A and F C I}. So that z € J, a contradiction. Hence F is
x-maximal filter of A for any x € G — F.

(tv) = (1): It is clear. O

Let us recall that, a proper filter F' of an ADL A is prime filter if and only if
for any filters F; and Fy of A, F = Fy N F, implies either F' = F} or F = F5.
COROLLARY 3.2. FEvery a-mazximal filter is prime filter.

REMARK 3.1. The converse of the above Corollary is not true; that is, there
are prime filters of ADL’s which are not a-maximal; even when ADL is a lattice.
For, consider the following example.

EXAMPLE 3.3. Let L be a bounded chain (totally ordered set). Then L is a
distributive lattice in which every proper filter is a prime filter (since xVy =y or =
depending up on z < y or y < z) . For example, let L be the four element chain
represented by the Hassee diagram given bellow. Then {1}, {b,1},{a,b,1} are all
prime filters of L but {1} is not an a-maximal filter of L, since {1} & {b,1} & L.

1

a

o0

Now we prove some properties of a-dense elements which are closely linked to
those of a-maximal filters.

THEOREM 3.5. In an ADL A, the intersection of the a-maximal filters is equal
to D,.

PRrROOF. Let {F; : i € A} be the family of a-maximal filters of A. Let € D,
such that x ¢ F; for some i € A. Since F; is a-maximal A, we have (x,a) N F; # ¢
(by Theorem 3.3). Hence we can find y € F; such that y € (z,a). Since z is
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a-dense, (x,a) = (a] and therefore y € (a] and hence a Ay = y. Since y € F; we get
a € F; which is contradiction . Therefore x € F;. Thus D, C F; for all i € A. On
the other hand, let = € F; for all i € A and = ¢ D,. Then (z,a) ¢ (a] and hence
there exists y € A such that x Ay € (a] and y ¢ (a]. Now consider the class.

C={F:Fisafilterof A, y€ Fand a ¢ F}.

Now a ¢ [y), for; a € [y) = a=aVy =y = aAy = y € (a], which is contradiction.
Therefore [y) € C so that C is non-empty. It can be easily prove that C is closed
under union of chains in C. By the Zorn’s lemma, C has a maximal member, say F.
We have y € F and a ¢ F. Clearly F' = F; for some ¢ € A. Therefore z € F' and
y € F and hence Ay € F. This implies a € F, which is a contradiction. Therefore
x € D,y. Thus D, = N{F; :i € A}. O

THEOREM 3.6. The following statements (i) and (it) are equivalent for any
ADL A and any one of them implies (i7).
(i) A has unique a-mazimal filter.
(ii) D, is an a-mazximal filter of A.
(iti) D, is a prime filter of A.

ProOF. It follows from the above theorem and the fact that the class of all
a-maximal filters of A is not a chain. Therefore (i), (i7) are equivalent. (ii3) is a
consequence of Corollary 3.2. (]

Let us recall from [8] that an element p in an ADL A is said to be A—irreducible
if, for any x and y € A,
p=xAy=yAx=eitherp=zorp=y
LEMMA 3.1. Let a be non-mazimal element in an ADL A. Then a is A—
irreducible if and only if the principle ideal (a] is prime.

PROOF. Suppose that a is A—irreducible. Suppose zAy € (a]. Then yAz € (a].
Sothat t Ay =aAsand y Ax =a At for some s,t € A. Now, we have

a=aV(aANs)=aV(xAy)=(aVz)A(aVy)
anda=aV(aAt)=aV (yNz)=(aVy A(aVz).
Since a is A—irreducible, either a =aVzora=aVy

a=aVz=x=aAz (by Theorem 2.2 (vi))
=z € (d
anda=aVy=>y=aAy
=y € (a].
Hence z € (a] or y € (a]. Thus (a] is a prime ideal of A. Also, note that (a] # A,
since @ is not maximal.

Conversely, suppose (a] is a prime ideal of A. Let = as y € A such that
rAy=yAzxz=a. Sincexz ANy <yand yAzx <z weget that a < y and a < z.
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Now, since z Ay = a € (a] and (a] is prime it follows that either x € (a] or y € (a].
x € (a] = x=aAsforsomeseA
= rc=xNrx=aANsANz=sNaANrx=sNa<a
= a=ux.
Similarly, we can show that y € (a] = a = y. Therefore a = « or a = y. Thus
a is A—irreducible element in A. O

Now, we prove the following

THEOREM 3.7. Let a be a non-maximal element in an ADL A. Then a is
A—irreducible if and only if D, = A — (d]

PROOF. Suppose a is A— irreducible. Then, by Lemma 3.1, (a] is a prime ideal
of A. For any maximal element m of A and x € A,

x¢ A—(a] = z € (d
= zAmé€ (a] and m ¢ (a]
m € (x,a) and m ¢ (a]

=
= (z,a) £ (d]
=

z is not a-dense element in A.

Therefore z ¢ D, and hence D, C A—(a]. On the other hand, let z € A—(a]. Then
x ¢ (a] and for any y € A, x Ay € (a] = y € (a] (since (a] is prime ideal). Therefore
(x,a) C (a]. So that z is a-dense and hence © € D,. Therefore A — (a] C D,. Thus
D, =A—(a].

Conversely, suppose D, = A—(a]. Let z and y € A such that ztAy =yAz =a
and a # z. Then z ¢ (a]. For,

r€(al= ahz=x
= zAa=aAz =2z (sincea=yAz<x)
= x < a and hence x = a; a contradiction.

Therefore x € D, and hence (z,a) = (a]. Since x Ay = a, we have y € (z, a) so that
aANy =1y. Sincea =x Ay <y, yAa =aAy =y and hence y < a. Therefore a = y.
Thus a is A— irreducible. (]

Let us re call that an equivalence relation # on an ADL A = (4, A, V,0) is said
to be a congruence if # is compatible with A and V on A; that is

(p, q) and (r, s) €0 = (pAr, gAs)€bBand (pVr, qVs)eb

If 6 is a congruence on A, then for any © € A, the set /0 ={y € A: (z,y) € 6} is
called the congruence class of  corresponding to 6. If =0, then 0/60 = {y € A :
(0,y) € A} is called the kernal of 8 and is denoted kerf. kerf is a unique congruence
class which is an ideal of A. In general, for any ADL A and 6 a congruence on A,
the Quotient A/0 = {x/0 : x € A} is an ADL under the operation A and V on A/6
defined by

x/ONy/0=(xAy)/0 and x/O0V y/0 =(xVy)/0
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and its zero element is 0/6.

Finally, in this section we consider the congruence 6, on an ADL A correspond-
ing to a € A.

DEFINITION 3.3. ([5]) For any a € A, define
O ={(z,y) €eAXxA:aVz=aVuy}
Then 6, is a congruence on A.

THEOREM 3.8. Let A be an ADL and a € A. For any a-mazximal filter F of
A, let F={x/0,:x € F}. Then F is a maximal filter of A/0, and the map F
F is an one-to-one correspondence between the set of a-maximal filters of A on to
the set of all mazimal filters of A/8,.

PROOF. Let F be an a- maximal filter of A. Put F = {x/0, : * € F} then
clearly F is a filter of A/6, as F is a filter of A. First observe that, for any
r € A, x/0, € F ifandonlyif z € F. For, /0, € F implies that z/0, =
y/0, for some y € F. So that (z,y) € 8, and hence aVe =aVy. NowaVy € F
since y € F. Hence aVx € F and a ¢ F. Thus x € F since F is prime filter of A
(by Corollary 3.2).

Converse is trivial.

Now, we prove that F is a maximal filter of 4/6,. Since aVa = a V0, (a,0) € 6,
and hence a/f, = 0/6,. If 0/0, € F then a/f, € F so that a € F contradicting
the fact F is a- maximal. Thus 0/6, ¢ F so that F is proper. Let if possible there
exists a proper filter G of A/f, such that F C G. Select /0, € G — F so that
x ¢ F. As I is a-maximal and x ¢ F', we get (xz,a) N F' # 6 (by Theorem 3.3).
Hence there exists y € F such that x Ay € (a]. So that a Az Ay =z Ay and hence
aV (x Ay) = a (by Theorem 2.1(vi)). Asy € F, y/0, € F and hence y/0, € G.
Now, (x Ay)/0, = 2/0, Ny/0, € G and hence, a/0,V (x ANy)/0, € G. This implies
(aV (zAy))/0. € G. Hence a/0, € G; a contradiction since G is proper. Hence F
is a maximal filter of A/6,. Clearly the mapping F ~ F is one-one.

Finally we prove that F + F is onto. Let M be a maximal filter of A/6,. Put
F={xeA:z/0, € M}. Then, as M is proper filter of A, F is a filter of A
not containing a. Suppose « ¢ F then ©/60, ¢ M. As M is maximal in A/, and
x/0, ¢ M, we get that {z/0,}* N M # 0 (by Corollary 3.1). Hence there exists
y/0, € M such that /6, A y/0, = 0/0,. So that (x Ay)/0, = 0/0, and hence
aV (zAy) =aV 0 =a. Thisin turn implies that F is an a- maximal filter of A
and clearly F' = M. Hence F — F is onto. O

4. a-pseudo complemented ADL

In this section, we describe a-dense elements and a-maximal filters in an a-
pseudo complemented ADL A and exhibit the congruence ¢, on A such that the
quotient A/¢, is a Boolean algebra.

First we recall from 3 that an ADL A is said to be a-pseudo complemented,
if there exists an a-pseudo complementation x — x * a on A. In the following we
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exhibit an a-pseudo complementation x — z * a on a non-trivial discrete ADL as
follows.

EXAMPLE 4.1. Let (X, A,V,0) be a non-trivial discrete ADL. Fix y # 0 and
a # 0 in X. Define for any = € X,

if
rx0= 0 %m;éO and rxa =y.
y ifxz=0

Then z +— z * 0 is 0-pseudo complementation on X and x — x * a is an a-pseudo
complementation on X. Thus X is a-pseudo complemented for every a € X.

LEMMA 4.1. The following are equivalent:
(1) x € D,.

(i1) z*a~a.

(#ii) (xxa)*xa=ax*a.

PROOF. (i) = (i1) : © € Dy = x is a — dense

= (z,a) = (a]
= (eva)=(d

=T *xan~ a.

(1) = (iii) :xxa~a= (x+xa)ANa=aand a A (x *a) =z *a.
Now, (zxa)*xa=(aA(z*a))*a
= ((x xa) A a) *a) (by Theorem 2.2(xiit))
=ax*a (by 2.1(vi))

(iii)) = (i) : (zxa)xa=ax*a
= ((z*a)*xa)xa=(a*xa)xa
= z*xa = (ax*a)*a (by Theorem 2.2 (viii))
= (z,a) = (xxa] = ((a*a) xa] = (a]
(since a x a is maximal and (by Theorem 2.2 (x1))
= x is a — dense
=z € D,.

LEMMA 4.2. The following holds
(i) Foreveryze€ A, xV (rx+*a)€ D,.
(1) If a is N-irreducible and © ¢ (a] then x € D,
(i4i) The interval [a,00) = {x € A: a < z < oo} is pseudo-complemented
ADL.
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PROOF. (i). Consider
((xV (z*xa))*xa)*xa= ((x+xa)A((xxa)*a))*a (by definition 2.5(77)))
aN(zxa)A((z+*a)*a))*a (by definition 2.5(2))
(xxa) ANaA ((z+*a)*a))*a (by Theorem 2.2(xi7))
a A (xxa)*a))*a (by Theorem 2.2(vi))
(z*xa)*a)Aa)xa (by Theorem 2.2(xii7))
= a * a. (by Theorem 2.2(vi))

Hence by Lemma 4.2(ii), x V (z * a) is a-dense. So that x V (z xa) € D,.

(i4). Suppose a is A-irreducible. Then the principal ideal (a] is prime. Let
x € A—(a]. Then for any y € A, x Ay € (a] = y € (a] = (z,a) C (a]. Hence z is
a-dense, so that z € D,,.

(7i7). Clearly the interval [a,00) = {z € A:a < & < oo} is an ADL under the
induced operations A and V with a as its smallest element. Since z — z * a is an
a-pseudo complementation on A, its restriction on the interval [a, 00) is a pseudo-
complementation on the ADL [a,00) and hence [a,00) is pseudo-complemented
ADL. O

THEOREM 4.1. Let A be an a-pseudo complemented ADL and F a filter of A.
Then F' is a-maximal if and only if F' contains exactly one of the elements x and
x *a, for every x € A.

ProOF. We suppose for every x € A, F' contains exactly one of z and x * a.
Since a * @ is maximal, a*xa € F and hence a ¢ F. Let t € A— F. Then x*a € F.
Since (x,a) = (z * a], we have z * a € (x,a) N F so that (x,a) N F # ¢. Hence, (by
Theorem 3.3) F is a-maximal.

Conversely suppose F' is a-maximal, then a ¢ F. For any = € A, if x and
xxa € F, Then x A (x*a) € F and hence a € F (since aAz A (xxa) =x A (x*a)
and hence by 2.1(vi), a V (z A (x x a)) = a) which is contradiction. Let € A such
that © ¢ F and xxa ¢ F. Since F' is a-maximal and = ¢ F, again (by Theorem 3.3),
(z,a) N F # ¢. Hence these exists y € A such that y € F and y € (z,a) = (x * a]
and hence (xxa) Ay =y. Asy € F, x * a € F which is contradiction. Therefore,
for every x € A, F contains exactly one of x and z * a. O

COROLLARY 4.1. Let © — x* be a pseudo-complementation on an ADL A.
Then a filter F' of A is mazximal if and only if F' contains exactly one of x and z*,
for every x € A.

THEOREM 4.2. Let A be an a-pseudo complemented ADL and P a prime filter
of A such that D, C P and a ¢ P. Then P is a-mazimal filter of A.

PRrROOF. For every x € A, zV (z *a) € D,. Therefore 2V (z*a) € P. Since P
is prime, x € P or x *a € P but not both as a ¢ P. Therefore P contains exactly
one of z and x x a. Hence P is a-maximal (by Theorem 4.1). g

COROLLARY 4.2. D, is a prime filter of A if and only if it is a-mazimal.
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COROLLARY 4.3. Let A be a pseudo complemented ADL. Then every prime
filter of A which contains the dense set D is maximal.

Note that an ADL can have more than one a-pseudo complementations. Infact,
it is observed that the a-pseudo complementations on an ADL are in one-to-one
correspondence with the maximal elements (refer [3]). Finally, we conclude this
paper by introducing the concept of congruence on a-pseudo complemented ADL
and exhibiting a congruence on an a-pseudo complemented ADL with respect to
which the Quotient is a Boolean algebra . First we need the following.

LEMMA 4.3. Let 0 be an equivalence relation on an ADL A and suppose that
T — xxa and x — x+ a be a-pseudo complementation on A. Then, for any x and
yeA, (x*xa, yxa) €O if and only if (x +a, y+a) €0.

PRrROOF. It follows from the fact that, for any x € A, we have
zxa=(r+a)AN(0xa)and x +a= (x*a)A(0+a).
O

DEFINITION 4.1. Let A = (A, A,V,0) be an ADL and = — z * a an a-pseudo
complementation on A. An equivalence relation 6 on A is said to be a congruence
relation if

(i) 6 is compatible with A and V on A.
() (x,y) € 0 = (x*xa, y*a) € 0 (this condition is independent of any
a-pseudo complementatin on A (by Lemma 4.3))

THEOREM 4.3. Let A be an ADL and x — x *xa an a-pseudo complementation
on A. Define a relation ¢, on A by

(z,y) € ¢q if and only if v xa =1y *a.
Then ¢, is a congruence on the a-pseudo complemented ADL A.

PROOF. Clearly ¢, is an equivalence relation on A. Let (p,q), (r,s) € ¢q.
Then p*xa = qg*a and r *x a = s x a. Therefore

(p*a)*a)A((r+a)*a) (by Theorem 2.2 (xv))
gxa)*a)A((s*xa)*a)

(pAT)*a)*xa=
=((

(g A s)xa)*a.

)

(
(
(
This implies (((pAr)*a)*a)*a = (((¢As)*a)*a)*a and hence (pAr)*a = (gAs)*a
(by Theorem 2.2 (viii)). Therefore (p Ar, g As) € ¢o. Again (pVr)xa =
(pxa)A(rxa) = (gxa)A(sxa) = (qVs)*a. Therefore (pVr, qVs) € ¢,. Clearly
(p,q) € da = (pxa, q*a) € ¢q. Thus ¢, is a congruence on A. O

In the following we prove certain properties of the congruence classes of ¢,.

LEMMA 4.4. We have the following.
(1) 0/¢da =a/da = (a] and is the smallest element in A/d,.
(#) For any mazimal elements m and n in A, m/¢q =n/¢pq = Dy and is the
greatest element in A/¢q.
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(#it) The restriction of ¢, on the ADL [a,00) is the congruence on the pseudo
complemented ADL [a,0).

(iv) Foreveryx € A, (xxa)*a € x/¢q.

(v) For every x,y € A, if there exists d € D, such that xt ANd = y A d, then
(%, 9) € ¢a-

PROOF. (i): Since 0*xa = a*a, (0,a) € ¢, and hence 0/¢, = a/¢,. Also,
0/¢a = kerg, and hence an ideal of A containing a. Therefore (a] C 0/¢,. Let
x € 0/¢q. Then x * a = 0 % a which is maximal. Therefore, by Theorem 2.2 (ix),
x € (a]. Therefore 0/¢, C (a]. Thus 0/¢, = (a]. Clearly 0/¢, is the smallest
element in A/¢,.

(#4): For any maximal elements m and n in A, by 2.2 (x), m*a = n % a so

that m/¢q, = n/dq.
Now, r€ D, < xz*xa~a

S xxa~m#*a (since a ~mx*a)
& (xxa)*a=(mx*a)x*a (by Theorem 2.2(zvi))
S ((xxa)xa)xa=((m+*a)*xa)*xa
< xxa=m=+a (by Theorem 2.2(viiz))
< (x,m) € ¢q
ST €m/dq.

Therefore m/¢p, = D,. Also for any z € A, we have (xt Am)*xa = (mAz)*a=
x*a (by Theorem 2.2 (ziii)), it follows that x/¢, Am/de = m/ds A2 /@, Therefore
/e Cm/d, so that m/¢, is the largest element in A/@,.

(#4i) Tt is clear obviously.

(i) Tt follows by Theorem 2.2 (viii).

(v) Let x,y € A such that x Ad =y Ad for some d € D,. Then

((xAd)*a)*xa=((yAd)*a)=*aand (dx*a)
(z40)+a) A ((d %) *a)

xa = a* a (by Theorem 2.2(zv))

( ~ ((y+a)ra) A((dxa)*a)
((xxa)xa)A(axa)=((y*a)xa)A(ax*a)
(axa)A((x*a)*a)=(axa)A((y=*a)=*a) (by Thm 2.2(7))
(r*a)*xa) = (y*a)=*a) (since a * a is maximal)
((xxa)*xa)*xa=((y*a)*a)*a

= 2% a =y *a (by Theorem 2.2 (viii))

= (z,y) € ¢a.

O

THEOREM 4.4. Let A be an ADL with a mazimal element m and x — x *a an
a-pseudo complementation on A. Then the quotient A/¢, is a Boolean algebra.

ProoF. For any z and y € A, we have that, (x Ay) xa = (y A x) x a and
(xVy)*xa=(yVz)x*a, it follows that, 2/¢q A y/da = (x ANy)/da = (YA x)/Ps =
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Y/ba Nx/pq and x/po Vy/da = (£ VY)/ba = YV X))/ b0 = Y/Pa V 2/@a. Therefore
the induced operations A and V on the quotient A/¢, are commutative and hence

A/pq is a lattice. The distributivity of A/¢, follows from that of A. Hence A/d,
is a bounded distributive lattice in which a/¢, is the smallest element and m/¢,
is the largest element (by Lemma 4.4). Finally, let 2/¢, € A/¢, with € A. Since
xA(zxa) € (a], xA(zxa) = aAzA(z*a) and it follows that (zA(z*a))xa = (zAa)*a.
Also, since a/¢p, C x/dq, (x Aa)*a=axa. Hence (x A (z*a)) *a = axa. This
implies (z A (x*a), a) € ¢, and hence x /Py A (xxa)/Pps = (x A(x*x0a))/dg = a/Pq.
From Lemma 4.2 (i), x V (x*a) € D,, it follows that  V (z*a) € m/¢,. Therefore
/P V(xxa)/da = (xV(r*a))/ds = m/¢,. Therefore (xxa)/p, is the complement
of 2/, in A/p,. Thus A/¢, is a Boolean algebra. O

REMARK 4.1. The converse of above theorem need not be true. For, see the
following example.

ExAMPLE 4.2. Let A = {0, a,b} be a discrete ADL. Define
O0x0=banda*x0=a=0x0.

Then ¢¢ = {(0,0), (a,a), (b,b), (a,b),(b,a)} and it is a congruence on A. Now the
quotient A/¢o = {0/¢o, a/¢po} which is a two-element Boolean algebra but the
unary operation z — x * 0 on A is not a 0-pseudo complementation on A, since
aN(ax0)=aNa=a##0.

5. Conclusions

In this work, the notion of a-dense elements and a-maximal filters of semilat-
tices introduced by J. C. Varlet is extended to the case of ADL’s and obtained
certain results of these. In our future of work, we will focus on to investigate
a-minimal prime ideals of ADL’s and their characterizations in terms of relative
a-annihilator ideals and a-pseudo complementations. Also, we will study the space
of a-minimal prime ideals with the Hull-Kernel topology and characterize a-Stone
ADL’s with respect to this space.
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