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POSITIVE SOLUTION FOR m-POINT IMPULSIVE

TIME-SCALE BOUNDARY VALUE PROBLEMS

ON THE HALF-LINE

Aycan Sinanoglu and Ilkay Yaslan Karaca

Abstract. This paper uses Leray-Schauder Nonlinear Alternative theorem

to study the existence of at least one positive solution of m-point impulsive
time-scale boundary value problems on the half-line. An example is given to
demonstrate our main result.

1. Introduction

The theory of impulsive differential equations describe processes with experi-
ence a sudden change of their state at certain moments. Impulsive differential equa-
tions have become more important in recent years in some mathematical models of
real processes and phenomena studied in physics, chemical technology, population
dynamics, biotechnology and economics. For the introduction of the basic theory
of impulsive differential equations see [3, 4, 16, 19] and the references therein. In
the last few years boundary value problems for impulsive differential equations and
impulsive differences equations have received much attention [7, 8, 11, 12, 17, 24]
Especially, the study of impulsive dynamic equations on time scales has also at-
tracted much attention since it proves an unifying structure for differential equa-
tions in the continuous cases and finite difference equations in the discrete cases, see
[2, 9, 10, 15, 18, 21] and references therein. Some basic definitions and theorems
on time scales can be found in the books [5, 6]. In recent years, there are a few
authors studied the existence of positive solutions for time scale boundary value
problems on infinite intervals. We refer the reader to [13, 14, 22, 23]. Due to the
fact that an infinite interval is noncompact, the discussion about boundary value
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288 SINANOGLU AND YASLAN KARACA

problem on the half-line is more complicated. There is not work on positive solu-
tions for m− point impulsive time-scale boundary value problem on the half line
expect that in [13, 20]. Hence, these results can be considered as a contribution
to this field.

solutions of the following second-order m-point impulsive boundary value problem
(IBVP):

y∆∆(t) = f(t, y(t), y∆(t), (Ty)(t), (Sy)(t)), for all t ∈ R′

++,

y(0) =
m−2∑
i=1

αiy
∆(ξi), y∆(∞) = βy∆(0),

y(t+k )− y(t−k ) = Ik(y(t
−
k )), k = 1, 2, 3, · · · ,

y∆(t+k )− y∆(t−k ) = Ik(y
∆(t−k )), k = 1, 2, 3, · · ·

(1.1)

where T is a time scale, ξ1, ξ2, · · · , ξm−2 ∈ T, σ(0) < ξ1 < ξ2 < · · · < ξm−2 <

∞, 0 < t1 < · · · < tk < · · · , tk → ∞, R′

++ = R++ − {t1, t2, ..., tk, ...},
f ∈ C[R++×R++×R++×R+×R+,R+], Ik, Ik ∈ C[R++,R+], β > 0, αi > 0, (i =
1, 2, 3, ..., m− 2),

(Ty)(t) =

∫ t

0

D(t, s)y(s)∆s, (Sy)(t) =

∫ ∞

0

E(t, s)y(s)∆s.

D ∈ C[B,R+], B = {(t, s) ∈ R+ × R+ : t > s}, E ∈ C[R+ × R+,R+], R+ =
[0,∞), and R++ = (0,∞).

Throughout this paper we assume that following conditions hold:

(H1) sup
t∈R+

∫ t

0

D(t, s)∆s <∞, sup
t∈R+

∫ ∞

0

E(t, s)∆s <∞ and

lim
t′→t

∫ ∞

0

|E(t′, s)− E(t, s)| s∆s = 0, for all t ∈ R
′

+.

In this case, let

d∗ = sup
t∈R+

∫ t

0

D(t, s)∆s, e∗ = sup
t∈R+

∫ ∞

0

E(t, s)∆s.

(H2) There exist a, b ∈ C[R++,R+], G ∈ C[R++,R+], H ∈ C[R++ × R+ ×
R+,R+] and r > 0 such that

f(t, u, v, w, z) 6 a(t)G(u) + b(t)H(v, w, z) ∀t, u, v ∈ R++, ∀w, z ∈ R+,

and

a∗r =

∫ ∞

0

a(t)Gr(t)∆t <∞, b∗ =

∫ ∞

0

b(t)∆t <∞;

for any r > 0, where

Gr(t) = max

{
G(u) : β−2r

(
t+

m−2∑
i=1

αi

)
6 u 6 r

(
t+

m−2∑
i=1

αi

)}
.
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ηk ∈ R+ (k = 1, 2, 3, · · · ) such that

Ik(v) 6 tkIk(v) 6 tkηkF (v), ∀v ∈ R++

and

η =
∞∑
k=1

tkηk <∞ and, consequently, η∗ =
∞∑
k=1

ηk 6 t−1
1 η <∞.

This paper is organized as follows: In section 2, we give some preliminaries
lemmas. In section 3, we give the proof of necessary and sufficient conditions for
existence of at least one positive solution of IBVP (1.1). In section 4, an example
is also presented to illustrate our main result. The results are even new for the
difference equations and differential equations as well as for dynamic equations on
time scales.

2. Preliminaries

In this section, to state the main result of this paper, we need the following
lemmas. Let

PC[R+,R] = {y : y is a real function on R+ such that y(t) is continuous at

t ̸= tk, left continuous at t = tk, and y(t
+
k ) exists, k = 1, 2, 3, ...},

PC∆[R+,R] = {y ∈ PC[R+,R] : y∆(t) is continuous at t ̸= tk, y
∆(t+k ) and

y∆(t−k ) exist for k = 1, 2, 3, ...} and

BPC∆[R+,R] = {y ∈ PC∆[R+,R] : sup
t∈R+

| y(t) |
t+

∑m−2
i=1 αi

<∞, sup
t∈R+

| y∆(t) |<∞}.

It is clear that BPC∆[R+,R] is a Banach space with the norm

||y|| = max{||y||1, ||y||2}

where

||y||1 = sup
t∈R+

| y(t) |
t+

∑m−2
i=1 αi

, ||y||2 = sup
t∈R+

| y∆(t) | .

Let

W = {y ∈ BPC1[R+,R] : y(t) > 0, y∆(t) > 0, ∀t ∈ R+}

and

Q =

{
y ∈ BPC1[R+,R] : inf

t∈R+

y(t)

t+
∑m−2

i=1 αi

> β−1||y||1, inf
t∈R+

y∆(t) > β−1||y||2

}
.

Obviously, W and Q are two cones in the space BPC∆[R+,R] and Q ⊂W. Let

Q+ = {y ∈ Q : ||y|| > 0} , Qpq = {u ∈ Q : p 6 ||y|| 6 q}

for q > p > 0.
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Lemma 2.1. For y ∈ Q, we have

∥y∥1 > β−1∥y∥2, ∥y∥2 > β−1∥y∥1,(2.1)

β−1∥y∥ 6 ∥y∥1 6 ∥y∥, β−1∥y∥ 6 ∥y∥2 6 ∥y∥,(2.2)

β−2∥y∥ 6 y(t)

t+
∑m−2

i=1 αi

6 ∥y∥, β−2∥y∥ 6 y∆(t) 6 ∥y∥.(2.3)

Proof. Since

y(t) =

∫ t

0

y∆(s)∆s+ y(0) =

∫ t

0

y∆(s)∆s+
m−2∑
i=1

αiy
∆(ξi)

> y∆(0)

[
t+

m−2∑
i=1

αi

]
,

we get
y(t)

t+
∑m−2

i=1 αi

> y∆(0).

By definition of Q and the fact that y∆ is nondecreasing, we have

β−1∥y∥2 6 inf
t∈R+

∆(t) = y∆(0) 6 y(t)

t+
∑m−2

i=1 αi

6 ∥y∥1,

i.e.,

β−1∥y∥2 6 ∥y∥1.
Since

y(t) =

∫ t

0

y∆(s)∆s+ y(0) 6 ty∆(t) +
m−2∑
i=1

αiy
∆(ξi)

6
(
t+

m−2∑
i=1

αi

)
sup
t∈R+

y∆(t).

we obtain
y(t)

t+
∑m−2

i=1 αi

6 sup
t∈R+

y∆(t).

By using definition of Q, we get

β−1∥y∥1 6 inf
t∈R+

y(t)

t+
∑m−2

i=1 αi

6 y(t)

t+
∑m−2

i=1 αi

6 sup
t∈R+

y∆(t).

So,

β−1∥y∥1 6 ∥y∥2.
Thus (2.1) inequality is shown.

By (2.1), we have

∥y∥ 6 max
{
∥y∥1, β∥y∥1

}
= β∥y∥1,
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and

∥y∥ 6 max
{
β∥y∥2, |y∥2

}
= β∥y∥2,

i.e.,

β−1∥y∥ 6 ∥y∥1 6 ∥y∥, β−1∥y∥ 6 ∥y∥2 6 ∥y∥.

Hence (2.2) inequality is shown.
Finally, we show (2.3) inequality. By definition of Q and (2.2), we get

β−2∥y∥ 6 β−1 sup
t∈R+

y(t)

t+
∑m−2

i=1 αi

6 y(t)

t+
∑m−2

i=1 αi

6 ∥y∥,

and

β−2∥y∥ 6 β−1 sup
t∈R+

y∆(t) 6 y∆(t) 6 ∥y∥,

i.e.,

β−2∥y∥ 6 y(t)

t+
∑m−2

i=1 αi

6 ∥y∥, β−2∥y∥ 6 y∆(t) 6 ∥y∥, ,

This completes the proof. �

We consider operator A defined by

(2.4)

(Ay)(t) =

m−2∑
i=1

αi[
1

β − 1
{
∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds

+
∞∑
k=1

Ik(y
∆(t−k ))}+

∫ ξi

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds

+
∑
tk<ξi

Ik(y
∆(t−k ))] +

t

β − 1
[

∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds

+
∞∑
k=1

Ik(y
∆(t−k ))] +

∫ t

0

(t− s)f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds

+
∑
tk<t

[(t− tk)Ik(y
∆(t−k )) + Ik(y

∆(t−k ))].

In what follows, we write J1 = [0, t1] and Jk = (tk−1, tk] (k = 2, 3, 4, ...).

Lemma 2.2. If conditions (H1)-(H3) are satisfied, then operator defined by
(2.4) is continuous operator from Q+ into Q; moreover, for any q > p > 0, A(Qpq)
relatively compact.
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Proof. Let y ∈ Q, and ∥y∥ = r. Then r > 0 and by (2.3),

(2.5)

β−2r

(
t+

m−2∑
i=1

αi

)
6 y(t) 6 r

(
t+

m−2∑
i=1

αi

)
, β−2r 6 y∆(t) 6 r ∀t ∈ [0,∞).

By conditions (H1), (H2) and (2.5), we have

f(t, y(t), y∆(t), (Ty)(t), (Sy)(t)) 6 a(t)Gr(t) +Hrb(t), ∀t ∈ [0,∞)(2.6)

where

Hr = max
{
G(v, w, z) | β−2r 6 v 6 r, 0 6 w 6 d∗r, 0 6 z 6 e∗r

}
,(2.7)

which implies the convergence of the infinite integral∫ ∞

0

f(t, y(t), y∆(t), (Ty)(t), (Sy)(t))∆t(2.8)

and ∫ ∞

0

f(t, y(t), y∆(t), (Ty)(t), (Sy)(t))∆t 6 a∗r +Hrb
∗.(2.9)

On the other hand, (H3) and (2.5), we have

Ik(y
∆(t−k )) 6 ηkF (y

∆(t−k )) 6 ηkMr(2.10)

where

Mr = max
{
F (v) | β−2r 6 v 6 r

}
(2.11)

which implies the convergence of the infinite series

∞∑
k=1

Ik(y
∆(t−k ))(2.12)

and

∞∑
k=1

Ik(y
∆(t−k )) 6

∞∑
k=1

Mrηk =Mr

∞∑
k=1

ηk =Mrη
∗.(2.13)

In addition, from (2.4) we get

(2.14)

(Ay)(t)

t+
∑m−2

i=1 αi

> 1

β − 1

[∫ ∞

0

f(t, y(t), y∆(t), (Ty)(t), (Sy)(t))∆t+
∞∑
k=1

Ik(y
∆(t−k ))

]
.
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Hence, by (2.4), we have

(Ay)(t) 6 1

β − 1

[
β

m−2∑
i=1

αi

∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s

+ β
m−2∑
i=1

αi

∞∑
k=1

Ik(y
∆(t−k )) + βt

∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s

+ βt

∞∑
k=1

Ik(y
∆(t−k ))

]

=
β

β − 1

[(
m−2∑
i=1

αi + t

)∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s

+

(
m−2∑
i=1

αi + t

) ∞∑
k=1

Ik(y
∆(t−k ))

]

so,

(2.15)

(Ay)(t)

t+
∑m−2

i=1 αi

6 β

β − 1

[∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∞∑
k=1

Ik(y
∆(t−k ))

]
.

On the other hand, by (2.4), we have

(2.16)

(Ay)∆(t) =
1

β − 1

[∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∞∑
k=1

Ik(y
∆(t−k ))

]

+

∫ t

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∑
tk<t

Ik(y
∆(t−k )),

so,

(2.17)

(Ay)∆(t) > 1

β − 1

[∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∞∑
k=1

Ik(y
∆(t−k ))

]
,

and

(2.18)

(Ay)∆(t) 6 β

β − 1

[∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∞∑
k=1

Ik(y
∆(t−k ))

]
.
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It follows from (2.4), (2.14)− (2.18), we get

β−1∥Ay∥1 6 inf
t∈[0,∞)

(Ay)(t)

t+
∑m−2

i=1 αi

β−1∥(Ay)∆∥2 6 inf
t∈[0,∞)

(Ay)∆(t)

and, by (2.9), (2.13), (2.15) and (2.18),

∥Ay∥1 6 β

β − 1
(a∗r +Hrb

∗ +Mrη
∗) <∞(2.19)

∥Ay∥2 6 β

β − 1
(a∗r +Hrb

∗ +Mrη
∗) <∞.(2.20)

Thus, we have proved that A maps Q+ into Q. Now, we are going to show that A
is continuous. Let yn, y ∈ Q+, ∥yn − y∥ → 0 (n → ∞). Write ∥y∥ = 2r, (r > 0)
and we may assume that

r 6 ∥yn∥ 6 3r (n = 1, 2, 3, ...).

So, (2.3) implies

β−2r 6 yn(t)

t+
∑m−2

i=1 αi

6 3r, β−2r 6 y(t)

t+
∑m−2

i=1 αi

6 3r,(2.21)

and

β−2r 6 y∆n (t) 6 3r, β−2r 6 y∆(t) 6 3r.(2.22)

By (2.4), we have

(2.23)

|(Ayn)(t)− (Ay)(t)|
t+

∑m−2
i=1 αi

6 β

β − 1

[∫ ∞

0

|f(s, yn(s), y∆n (s), (Tyn)(s), (Syn)(s))

− f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))|∆s

+
∞∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))|

]

+
1

t+
∑m−2

i=1 αi

∑
tk<t

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))|.

It follows from (2.23) that

(2.24)
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∥Ayn −Ay∥1 6 1∑m−2
i=1 αi

∞∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))|

+
β

β − 1

[∫ ∞

0

|f(s, yn(s), y∆n (s), (Tyn)(s), (Syn)(s))

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))|∆s

+
∞∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))|

]
.

It is clear that

(2.25)

f(t, yn(t), y
∆
n (t), (Tyn)(t), (Syn)(t)) → f(t, y(t), y∆(t), (Ty)(t), (Sy)(t))

as n→ ∞, ∀t ∈ R++,

and similar to (2.6) and observing (2.21), we have for ∀t ∈ R++,

(2.26)

|f(t, yn(t), y∆n (t), (Tyn)(t), (Syn)(t)) − f(t, y(t), y∆(t), (Ty)(t), (Sy)(t))|
6 2[a(t)G(t) +Hb(t)], n = 1, 2, · · ·

where

G(t) = max

{
G(u) : β−2r

(
t+

m−2∑
i=1

αi

)
6 u 6 3r

(
t+

m−2∑
i=1

αi

)}
,

H = max

{
G(v, w, z) : β−2r 6 v 6 3r, 0 6 w 6 3d∗r, 0 6 z 6 3e∗r

}
.

It is easy to see that condition (H2) implies

a∗pq =

∫ ∞

0

a(t)Gpq(t)∆t <∞(2.27)

for any q > p > 0, where

Gpq(t) = max

{
G(u) : β−2p

(
t+

m−2∑
i=1

αi

)
6 u 6 q

(
t+

m−2∑
i=1

αi

)}
(2.28)

So, ∫ ∞

0

a(t)G(t)∆t <∞

and therefore

2

∫ ∞

0

[a(t)G(t) +Hb(t)]∆t <∞.(2.29)
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It follows from (2.25), (2.26), (2.29) and the dominated convergence theorem that

(2.30)

lim
n→∞

∫ ∞

0

|f(t, yn(t), y∆n (t), (Tyn)(t), (Syn)(t))− f(t, y(t), y∆(t), (Ty)(t), (Sy)(t))|∆t = 0.

On the other hand, similar to (2.10) and observing (2.22), we have

Ik(y
∆
n (t−k )) 6Mrηk, Ik(y

∆(t−k )) 6Mrηk (k, n = 1, 2, 3, · · · )(2.31)

where

Mr = max{F (v) : β−2r 6 v 6 3r}.
For any given ϵ > 0, by (2.31) and condition (H3), we can choose a positive
integer k0 such that

∞∑
k=k0+1

tkIk(y
∆
n (t−k )) < ϵ (n = 1, 2, 3, · · · )

and
∞∑

k=k0+1

tkIk(y
∆(t−k )) < ϵ

so,

∞∑
k=k0+1

Ik(y
∆
n (t−k )) < ϵ (n = 1, 2, 3, · · · ),(2.32)

∞∑
k=k0+1

Ik(y
∆(t−k )) < ϵ,(2.33)

∞∑
k=k0+1

Ik(y
∆
n (t−k )) 6

1

t1

∞∑
k=k0+1

tkIk(y
∆
n (t−k )) < t−1

1 ϵ(2.34)

and
∞∑

k=k0+1

Ik(y
∆(t−k )) 6

1

t1

∞∑
k=k0+1

tkIk(y
∆(t−k )) < t−1

1 ϵ.(2.35)

It is clear that

Ik(y
∆
n (t−k )) → Ik(y

∆(t−k )), n→ ∞
and

Ik(y
∆
n (t−k )) → Ik(y

∆(t−k )), n→ ∞,

so, we can choose a positive integer n0 such that

k0∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))| < ϵ ∀n > n0(2.36)
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and

k0∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))| < ϵ, ∀n > n0.(2.37)

From (2.32)− (2.37), we get

∞∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))| < 3ϵ, ∀n > n0

and
∞∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))| < (1 + 2t−1

1 )ϵ, ∀n > n0,

hence

lim
n→∞

∑
|Ik(y∆n (t−k ))− Ik(y

∆(t−k ))| = 0(2.38)

and

lim
n→∞

∞∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))| = 0.(2.39)

It follows from (2.24), (2.30), (2.38) and (2.39),

lim
n→∞

∥Ayn −Ay∥1 = 0.(2.40)

On the other hand, from (2.4) it is easy to get

(2.41)

∥Ayn −Ay∥2 6 β

β − 1

[∫ ∞

0

|f(s, yn(s), y∆n (s), (Tyn)(s), (Syn)(s))

− f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))|∆s

+
∞∑
k=1

|Ik(y∆n (t−k ))− Ik(y
∆(t−k ))|

]
.

So, (2.30), (2.39) and (2.41) imply

lim
n→∞

∥Ayn −Ay∥2 = 0.(2.42)

It follows from (2.40) and (2.42) that limn→∞ ∥Ayn −Ay∥ = 0 as n→ ∞,
and the continuity of A is proved.

Finally, we prove that A(Qpq) is relatively compact, where q > p > 0 are
arbitrarily given. Let yn ∈ Qpq, (n = 1, 2, 3, ...). Then, by (2.3),

β−2p

(
t+

m−2∑
i=1

αi

)
6 yn(t) 6 q

(
t+

m−2∑
i=1

αi

)
, β−2p 6 y∆n (t) 6 q.(2.43)
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Similar to (2.6), (2.10), (2.19) and observing (2.43), we have

f(t, yn(t), y
∆
n (t), (Tyn)(t), (Syn)(t)) 6 a(t)Gpq(t) +Hpqb(t)(2.44)

Ik(y
∆
n (tk)) 6Mpqηk (k, n = 1, 2, 3, ...)(2.45)

and

∥Ayn∥1 6 β

β − 1
(a∗pq +Hpqb

∗ +Mpqη
∗)(2.46)

where Gpq(t) ve a
∗
pq are defined by (2.27) and (2.28), respectively, and

Hpq = max{G(v, w, z) | β−2p 6 v 6 q, 0 6 w 6 d∗q, 0 6 z 6 e∗q}
Mpq = max{F (v) | β−2p 6 v 6 q}.

From (2.46) we see that functions {(Ayn)(t)} n = 1, 2, 3, ... are uniformly bounded
on [0, r] for any r > 0. On the other hand, by (2.4) and (2.44) − (2.46) we have

0 6 (Ayn)(t
′)− (Ayn)(t)

=
t′ − t

β − 1

[∫ ∞

0

f(s, yn(s), y
∆
n (s), (Tyn)(s), (Syn)(s))∆s+

∞∑
k=1

Ik(y
∆
n (tk))

]

+(t′ − t)

∫ t

0

f(s, yn(s), y
∆
n (s), (Tyn)(s), (Syn)(s))∆s

+

∫ t′

t

(t′ − s)f(s, yn(s), y
∆
n (s), (Tyn)(s), (Syn)(s))∆s

6 t′ − t

β − 1
(a∗pq +Hpqb

∗ +Mpqη
∗) + (t′ − t)(a∗pq +Hpqb

∗)

+(tk−tk−1)

∫ t′

t

[a(s)Gpq(s)+Hpqb(s)]∆s, ∀t, t′ ∈ Jk, t
′ > t (k, n = 1, 2, 3, · · · ),

which implies that functions {γn(t)} (n = 1, 2, 3, ...) defined by (for any fixed k)

γn(t) =


(Ayn)(t), ∀t ∈ Jk = (tk−1, tk],

(Ayn)(t
+
k−1), ∀t = tk−1.

are equicontinuous on Jk = [tk−1, tk] (k = 1, 2, 3, ...). Consequently, by the
Ascoli-Arzela theorem, {γn(t)} has a subsequence which is convergent uniformly
on Jk. So, funvtions {Ayn(t)} (n = 1, 2, 3, ...) have a subsequence which is con-
vergent uniformly on Jk. Now, by the diagonal method, we can choose a sub-
sequence {Ayni

(t)} (i = 1, 2, 3, ...) of {Ayn(t)} (n = 1, 2, 3, ...) such that
{Ayni

(t)} (i = 1, 2, 3, ...) is convergent uniformly on each Jk (k = 1, 2, 3, ...).
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Let

lim
i→∞

(Ayni
)(t) = γ(t), ∀t ∈ R+.(2.47)

Similarly, we can discuss {(Ayn)∆(t)} (n = 1, 2, 3, ...). Similar to (2.20) and by
(2.16), we have

∥Ayn∥2 6 β

β − 1
(a∗pq +Hpqb

∗ +Mpqη
∗), (n = 1, 2, 3, ...)(2.48)

and

(Ayn)
∆(t′)− (Ayn)

∆(t) =

∫ t′

t

f(s, yn(s), y
∆
n (s), (Tyn)(s), (Syn)(s))∆s

6
∫ t′

t

[a(s)Gpq(s) +Hpqb(s)]∆s

∀t, t′ ∈ Jk, t
′ > t (n = 1, 2, 3, ...)

and by a similar method, we can prove that {(Ayn)∆(t)} (n = 1, 2, 3, ...) has a
subsequence which is convergent uniformly on each Jk (k = 1, 2, 3, ...). For the
sake of simplicity of notation, we may assume that {(Ayni

)∆(t)}(i = 1, 2, 3, ...)
itself converges uniformly on each Jk (k = 1, 2, 3, ...). Let

lim
i→∞

(Ayni
)∆(t) = τ(t), ∀t ∈ R+.(2.49)

By (2.47), (2.49) and the uniformly convergence, we have

γ∆(t) = τ(t), ∀t ∈ R+,(2.50)

and so, γ ∈ PC∆[R+,R]. From (2.46) and (2.48), we get

∥γ∥1 6 β

β − 1
(a∗pq +Hpqb

∗ +Mpqη
∗)

and

∥γ∥2 6 β

β − 1
(a∗pq +Hpqb

∗ +Mpqη
∗).

Consequently, γ ∈ BPC∆[R+,R] and ∥γ∥ 6 β

β − 1
(a∗pq +Hpqb

∗ +Mpqη
∗).

Let ϵ > 0 be arbitrarily given. Choose a sufficiently large positive number µ
such that ∫ ∞

µ

a(t)Gpq(t)∆t+Hpq

∫ ∞

µ

b(t)∆t+Mpq

∑
tk>µ

ηk < ϵ.(2.51)
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For any µ < t <∞, we have, by (2.16), (2.44) and (2.45),

0 6 (Ayni
)∆(t)− (Ayni

)∆(µ)

=

∫ t

µ

f(s, yni
(s), y∆ni

(s), (Tyni
)(s), (Syni

)(s))∆s+
∑

µ6tk<t

Ik(y
∆
ni
(t−k ))

6
∫ ∞

µ

a(s)Gpq(s)∆s+Hpq

∫ ∞

µ

b(s)∆s+Mpq

∑
µ6tk<t

ηk (i = 1, 2, 3, ...)

which implies by virtue of (2.51) that

(Ayni
)∆(t)− (Ayni

)∆(µ) < ϵ, ∀t > µ (i = 1, 2, 3, ...)(2.52)

Letting i→ ∞ in (2.52) and obseving (2.49) and (2.50), we get

0 6 γ∆(t)− γ∆(µ) 6 ϵ, ∀t > µ(2.53)

On the other hand, since {(Ayni
)∆(t)} converges unifomly to γ∆(t) on [0, µ] as

i→ ∞, there exists a positive integer i0 such that

∣∣(Ayni
)∆(t)− γ∆(t)

∣∣ < ϵ, ∀t ∈ [0, µ], i > i0(2.54)

It follows from (2.52)− (2.54) that

(2.55)∣∣(Ayni
)∆(t)− γ∆(t)

∣∣ 6
∣∣(Ayni

)∆(t)− (Ayni
)∆(µ)

∣∣+ ∣∣(Ayni
)∆(µ)− γ∆(µ)

∣∣
+

∣∣γ∆(µ)− γ∆(t)
∣∣ < 3ϵ, ∀t > µ, i > i0.

By (2.54) and (2.55), we have∣∣(Ayni
)∆(t)− γ∆(t)

∣∣ 6 3ϵ, ∀i > i0,

hence

lim
i→∞

||Ayni
− γ ||2 = 0(2.56)

It is clear that (2.4) implies

(Ayni
)(t+k )− (Ayni

)(t−k ) = Ik(y
∆
ni
(t−k )) (k, i = 1, 2, 3, ...).(2.57)

By virtue of the uniformity of convergence of {(Ayni
)(t)}, we see that

lim
i→∞

(Ayni
)(t−k ) = γ(t−k ) lim

i→∞
(Ayni

)(t+k ) = γ(t+k )

so, (2.57) implies that

lim
i→∞

Ik(y
∆
ni
(t−k )) (k = 1, 2, 3, ...).
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exist and
γ(t+k )− γ(t−k ) = lim

i→∞
Ik(y

∆
ni
(t−k )) (k = 1, 2, 3, ...).

Let
lim
i→∞

Ik(y
∆
ni
(t−k )) = ψk, (k = 1, 2, 3, ...).

Then ψk > 0 (k = 1, 2, 3, ...) and

γ(t+k )− γ(t−k ) = ψk, (k = 1, 2, 3, ...).(2.58)

By (2.45) and condition (H3), we have

Ik(y
∆
ni
(t−k )) 6Mpqtkηk (k, i = 1, 2, 3, ...).(2.59)

so,

ψk 6Mpqtkηk (k = 1, 2, 3, ...).(2.60)

For any given ϵ > 0, choose a sufficiently large positive integer k0 such that
∞∑

k=k0+1

ψk 6Mpq

∞∑
k=k0+1

tkηk < ϵ(2.61)

and then, choose another sufficiently large integer i1 such that∣∣Ik(y∆ni
(t−k ))− ψk

∣∣ < ϵ

k0
, ∀i > i1 (k = 1, 2, ..., k0).(2.62)

It follows from (2.59)− (2.62) that

∞∑
k=1

∣∣Ik(y∆ni
(t−k ))− ψk

∣∣ 6
k0∑
k=1

∣∣Ik(y∆ni
(t−k ))− ψk

∣∣+ ∞∑
k=k0+1

Ik(y
∆
ni
(t−k ))

+

∞∑
k=k0+1

ψk

6 ϵ+ ϵ+ ϵ = 3ϵ, ∀i > i1,

hence

lim
i→∞

∞∑
k=1

∣∣Ik(y∆ni
(t−k ))− ψk

∣∣ = 0.(2.63)

By (2.57) and (2.58), we have

(Ayni
)(t) = (Ayni

)(0) +

∫ t

0

(Ayni
)∆(s)∆s+

∑
0<tk<t

Ik(y
∆
ni
(t−k ))

and

γ(t) = γ(0) +

∫ t

0

γ∆(s)∆s+
∑

0<tk<t

ψk

which imply

(2.64)
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∣∣(Ayni
)(t)− γ(t)

∣∣ 6
(
t+

m−2∑
i=1

αi

)
∥Ayni

− γ∥2

+

(
t+

m−2∑
i=1

αi

) ∞∑
k=1

∣∣Ik(y∆ni
(t−k ))− ψk

∣∣

+

t+

m−2∑
i=1

αi

m−2∑
i=1

αi

∣∣(Ayni
)(0)− γ(0)

∣∣

(2.64) implies

sup
t∈R+

∣∣(Ayni
)(t)− γ(t)

∣∣
t+

∑m−2
i=1 αi

6 ∥Ayni
− γ∥2 +

∞∑
k=1

∣∣Ik(y∆ni
(t−k ))− ψk

∣∣
+

∣∣(Ayni
)(0)− γ(0)

∣∣∑m−2
i=1 αi

.

By (2.56), (2.63) and (2.64), we have

lim
i→∞

∥Ayni
− γ∥1 = 0.(2.65)

It follows from (2.56) and (2.65) that ∥Ayni
− γ∥ → 0, i → ∞, and the relative

compactness of A(Qpq) is proved. �

Lemma 2.3. Let (H1)-(H3) be satisfied. Then y ∈ Q+ ∩ C∆2

[R++,R] is a
positive solution of IBVP (1.1) if and only if y ∈ Q+ is a solution of the following
impulsive integral equation

(2.66)

y(t) =
m−2∑
i=1

αi[
1

β − 1
{
∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds+
∞∑
k=1

Ik(y
∆(t−k ))}

+

∫ ξi

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds+
∑
tk<ξi

Ik(y
∆(t−k ))]

+
t

β − 1
[

∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds+
∞∑
k=1

Ik(y
∆(t−k ))]

+

∫ t

0

(t− s)f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))ds

+
∑
tk<t

[(t− tk)Ik(y
∆(t−k )) + Ik(y

∆(t−k ))].
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Proof. First, suppose that y ∈ Q+∩C∆2

[R++,R] is a solution of IBVP (1.1).
It is easy to see by integration of (1.1) that

(2.67)

y∆(t) = y∆(0) +

∫ t

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∑
tk<t

Ik(y
∆(t−k )).

Under conditions (H1)− (H3), we have shown in the proof of Lemma 2.2 that the
infinite integral (2.8) and the infinite series (2.12) are convergent. So, by taking
limits as t→ ∞ in both sides of (2.67) and using the relation y∆(∞) = βy∆(0), we
get

(2.68)

y∆(0) =
1

β − 1

[∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∞∑
k=1

Ik(y
∆(t−k ))

]
∆s

Integrating (2.67) from 0 to t, we obtain

(2.69)

y(t) = y(0) + ty∆(0) +

∫ t

0

∫ s

0

f(τ, y(τ), y∆(τ), (Ty)(τ), (Sy)(τ))∆r∆s

+
∑
tk<t

Ik(y
∆(t−k )) +

∫ t

0

∑
tk<s

Ik(y
∆(t−k ))∆s.

Now, substituting (2.68) into (2.67) and using the relation y(0) =
m−2∑
i=1

αiy
∆(ξi)

we see that y(t) satisfies equation (2.66).

Conversely, if y ∈ Q+ is a solution of equation (2.66), then direct differen-
tion of (2.66) gives

(2.70)

y∆(t) =
1

β − 1

[∫ ∞

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∞∑
k=1

Ik(y
∆(t−k ))

]

+

∫ t

0

f(s, y(s), y∆(s), (Ty)(s), (Sy)(s))∆s+
∑
tk<t

Ik(y
∆(t−k )),

and

y∆∆(t) = f(t, y(t), y∆(t), (Ty)(t), (Sy)(t)), ∀t ∈ R
′

++.

So, y ∈ Q+ ∩ C∆2

[R++,R] and

y(t+k )− y(t−k ) = Ik(y
∆(t−k )), y∆(t+k )− y∆(t−k ) = Ik(y

∆(t−k )), (k = 1, 2, 3, · · · ).
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By (2.66) and (2.70), we have y(0) =

m−2∑
i=1

αiy
∆(ξi). Moreover, taking limits as

t→ ∞ in (2.70), we see that y∆(∞) = βy∆(0).
Hence, y(t) is a positive solution of IBVP (1.1). �

3. Main Results

In this section, we show that IBVP (1.1) has at least one position solution
by using fixed point theorem which is given below.

Theorem 3.1. (Leray − Schauder Nonlinear Alternative Theorem) [1]
Let C be a convex subset of a Banach space, U be a open subset of C with 0 ∈ U .
Then every completely continuouns map T : Ū → C has at least one of the two
following properties:

(E1) There exist an u ∈ Ū such that Tu = u.
(E2) There exist an u ∈ ∂U and λ ∈ (0, 1) such that u = λTu.

Theorem 3.2. Assume Let that conditions (H1)−(H3) hold anad the following
condition is satisfied: there exist positive constant r such that

β

β − 1

[
a∗r +Hrb

∗ +Mrη
∗
]
6 r.(3.1)

where a∗r . b
∗ and η∗ are defined (H2) and (H3), and Hr and Mr are two equalities

below (2.7) and (2.11), respectively. Then the IBVP (1.1) has a positive solution
y = y(t) such that

0 <
y(t)

t+
∑m−2

i=1 αi

6 r, 0 < y∆(t) 6 r, t ∈ R++.

Proof. Let us consider the following IBVP:

y∆∆(t) = λ(t)f(t, y(t), y∆(t), (Ty)(t), (Sy)(t)), ∀t ∈ R′

++,

y(0) =
m−2∑
i=1

αiy
∆(ξi), y∆(∞) = βy∆(0),

y(t+k )− y(t−k ) = Ik(y
∆(t−k )), k = 1, 2, 3, · · · ,

y∆(t+k )− y∆(t−k ) = Ik(y
∆(t−k )), k = 1, 2, 3, · · ·

(3.2)

We know that solving (3.2) is equivalent to solving the fixed point problem y = λAy.
Assume that

Ωr = {y ∈ Q : ∥y∥ < r}.

We claim that there is no y ∈ ∂Ωr such that y = λAy for λ ∈ (0, 1). The proof is
immediate, because if there exist y ∈ ∂Ωr with y = λAy, then by (2.19), (2.20),
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we have for y ∈ Q ∩ ∂Ωr and λ ∈ (0, 1),

∥y(t)∥ = ∥λ(Ay)(t)∥ 6 λ
β

β − 1

[
a∗r +Hrb

∗ +Mrη
∗
]

<
β

β − 1

[
a∗r +Hrb

∗ +Mrη
∗
]
,

Therefore, we conclude that ∥y∥ = ∥λAy∥ < β

β − 1

[
a∗r +Hrb

∗+Mrη
∗
]
. This yields

that

r <
β

β − 1

[
a∗r +Hrb

∗ +Mrη
∗
]
,

which is contradiction with (3.1). Then by means of Theorem 3.1, the IBVP (1.1)
has a positive solution y = y(t) such that

0 <
y(t)

t+
∑m−2

i=1 αi

6 r, 0 < y∆(t) 6 r, t ∈ R++.

�

4. Example

To illustrate how our main result can be used in practice we present an example.

Example 4.1. In IBVP (1.1), suppose that T = R, β = 2, m = 4, α1 = α2 =
1

2
, µ1 =

1

5
, µ2 =

1

6
, tk = 2k, i.e.,

(4.1)

y′′(t) =
3−2t

100
√
t+ 1

(
1√

y(t) + 1
+ ln(1 + y′(t))

)

+
3−3t

90
√
t+ 1

(∫ t

0

(1 + ts+ s2)−1y(s)ds+

∫ ∞

0

e−ssin2(t− s)y(s)ds

)

∆y |t=tk= Ik(v), ∆y′ |t=tk= Ik(v),

y(0) =
1

2
y′
(1
5

)
+

1

2
y′
(1
6

)
,

y′(∞) = 2y′(0)

where

D(t, s) = (1 + ts+ s2)−1, E(t, s) = e−ssin2(t− s)

f(t, u, v, w, z) =
3−2t

100
√
t+ 1

(
1√
u+ 1

+ ln(1 + v)) +
3−3t

90
√
t+ 1

(w + z),

Ik(v) =
2.3−k

√
v + 2

2k, Ik(v) =
e−k + 3−k

√
v + 2

.



306 SINANOGLU AND YASLAN KARACA

It is easy to see that condition (H1) is satisfied and d∗ 6 π

2
, e∗ 6 1

f(t, u, v, w.z) 6 a(t)G(u) + b(t)H(v, w, z)

=
3−2t

100
√
t+ 1

1√
u+ 1

+
3−2t

√
t+ 1

[
1

100
ln(1 + v) +

1

90
(w + z)

]
,

so, condition (H2) is satisfied for

a(t) =
3−2t

100
√
t+ 1

, G(u) =
1√
u+ 1

, b(t) =
3−2t

√
t+ 1

with

Hr(t) =
2√

r(t+ 1) + 4

a∗r =

∫ ∞

0

a(t)Gr(t)dt <
1

50

1√
r

∫ ∞

0

3−2t

t+ 1
dt <

1√
r
.0, 01487 <∞

and

b∗ =

∫ ∞

0

e−3t

√
t+ 1

dt <

∫ 1

0

dt

(1 + t)
1
2

+

∫ ∞

1

3−2tdt = 0, 850 <∞.

It is obvious that condition (H3) is satisfied for ηk = e−k +3−k (η∗ =
1

e− 1
+

1

2
=

1, 0819) and F (v) =
1√
v + 1

.

Since
β

β − 1

[
a∗r +Grb

∗ +Mrγ
∗
]
< 1, 7661 < r = 4,

the condition (3.1) is satisfied. Then all conditions of Theorem 3.2 hold. Hence,
we find that the IBVP (4.1) has at least one positive solution y = y(t) such that

0 <
y(t)

t+
∑m−2

i=1 αi

6 4, 0 < y∆(t) 6 4, t ∈ R++.
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