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f - DERIVATION AND da-DERIVATION

OF ORDERED-SEMIRINGS

Marapureddy Murali Krishna Rao

Abstract. In this paper, we introduce the concept of f -derivation and the
concept of da derivation of an ordered semiring. We study some of the prop-
erties of f and da derivations of ordered semirings. We prove that, if d is a

f -derivation of an ordered integral semiring M then kerd is a m− k−ideal of
M.

1. Introduction

The notion of a semiring was introduced by Vandiver [10] in 1934, but semirings
had appeared in earlier studies on the theory of ideals of rings. Semiring is a
generalization of ring but also of a generalization of distributive lattice. Semirings
are structually similar to semigroups than to rings. Semiring theory has many
applications in other branches of mathematics.

A natural example of semiring is the set of all natural numbers under usual
addition and multiplication of numbers. In particular, if I is the unit interval on the
real line, then (I,max,min) is a semiring in which 0 is the additive identity and 1
is the mutiplicative identity. The theory of rings and the theory of semigroups have
considerable impact on the development of the theory of semirings. In structure,
semiring lies between semigroup and ring. Many semirings have order structure in
addition to their algebraic structure. Over the last few decades, several authors
have investigated the relationship between the commutativity of ring R and the
existence of certain specified derivations of R. The first result in this derivation is
due to Posner [5] in 1957.

In the year 1990, Bresar and Vukman [2] established that a prime ring must
be commutative if it admits a non-zero left derivation. Kim [3], [4] studied right
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derivation and generalized derivation of incline algebra. The notion of derivation
of algebraic structures is useful for characterization of algebraic structures. The
notion of derivation has also been generalized in various directions such as right
derivation, left derivation, f -derivation, reverse derivation, orthogonal derivation,
generalized right derivation, etc. M. K. Rao and Venkateswarlu [6], [7] introduced
the notion of generalized right derivation of Γ− incline and right derivation of
ordered Γ−semiring. M. K. Rao [8], M.K.Sen [9] introduced and studied Γ-semiring
and Γ-semigroup respectively.

In this paper,we introduce the concepts of da- derivation and f -derivation of
ordered semirings. We study some of the properties of da, f -derivations of ordered
semirings. We prove that if a derivation da is non-zero on an integral semiring M
then it is non-zero on any non-zero ideal of M and we characterize k-ideal and
m− k ideal using derivations da, f of an ordered semiring.

2. Preliminaries

In this section, we will recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. ([1]) A set S together with two associative binary operations
called addition and multiplication (denoted by + and · respectively) will be called
a semiring provided

(i) addition is a commutative operation.
(ii) multiplication distributes over addition both from the left and from the

right.
(iii) there exists 0 ∈ S such that x+ 0 = x and x · 0 = 0 · x = 0 for all x ∈ S.

Example 2.1. Let M be the set of all natural numbers. Then (M, max, min)
is a semiring.

Definition 2.2. Let M be a semiring. If there exists 1 ∈ M such that a · 1 =
1 · a = a, for all a ∈ M, is called an unity element of M then M is said to be
semiring with unity.

Definition 2.3. An element a of a semiring S is called a regular element if
there exists an element b of S such that a = aba.

Definition 2.4. A semiring S is called a regular semiring if every element of
S is a regular element.

Definition 2.5. An element a of a semiring S is called a multiplicatively
idempotent (an additively idempotent) element if aa = a(a+ a = a).

Definition 2.6. An element b of a semiring M is called an inverse element of
a of M if ab = ba = 1.

Definition 2.7. A non-empty subset A of semiring M is called

(i) a subsemiring of M if A is an additive subsemigroup of M and AA ⊆ A.
(ii) a left (right) ideal of M if A is an additive subsemigroup of M and MA ⊆

A (AM ⊆ A).
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(iii) an ideal if A is an additive subsemigroup of M, MA ⊆ A and AM ⊆ A.
(iv) a k−ideal if A is a subsemiring of M , AM ⊆ A, MA ⊆ A and x ∈ M ,

x+ y ∈ A, y ∈ A then x ∈ A.

Definition 2.8. A semiring M is called a division semiring if for each non-zero
element of M has multiplication inverse.

Definition 2.9. A semiring M is called an ordered semiring if it admits a
compatible relation 6, i.e. 6 is a partial ordering on M satisfies the following
conditions. If a 6 b and c 6 d then

(i) a+ c 6 b+ d, c+ a 6 d+ b
(ii) ac 6 bd
(iii) ca 6 db, for all a, b, c, d ∈ M

Definition 2.10. An ordered semiring M is said to have zero element if there
exists an element 0 ∈ M such that 0+x = x = x+0 and 0x = x0 = 0, for all x ∈ M.

An ordered semiring M is said to be commutative semiring if xy = yx, for all
x, y ∈ M .

Definition 2.11. A non zero element a in an ordered semiring M is said to
be zero divisor if there exists non zero element b ∈ M, such that ab = ba = 0.

Definition 2.12. An ordered semiring M with unity 1 and zero element 0 is
called an integral ordered semiring if it has no zero divisors.

Definition 2.13. An ordered semiring M is said to be totally ordered semiring
M if any two elements of M are comparable.

Definition 2.14. In an ordered semiring M

(i) the semigroup (M,+) is said to be positively ordered , if a 6 a + b and
b 6 a+ b, for all a, b ∈ M.

(ii) the semigroup (M,+) is said to be negatively ordered, if a + b 6 a and
a+ b 6 b, for all a, b ∈ M.

(iii) the semigroup (M, ·) is said to be positively ordered, if a 6 ab and b 6
aαb, for all ∈ Γ, a, b ∈ M.

(iv) the semigroup (M, ·) is said to be negatively ordered if ab 6 a and ab 6
b for all a, b ∈ M.

Definition 2.15. A non-empty subset A of an ordered semiring M is called a
subsemiring M if (A,+) is a subsemigroup of (M,+) and ab ∈ A for all a, b ∈ A.

Definition 2.16. Let M be an ordered semiring. A non-empty subset I of M
is called a left (right) ideal of an ordered semiring M if I is closed under addition,
MI ⊆ I (IM ⊆ I) and if for any a ∈ M, b ∈ I, a 6 b ⇒ a ∈ I. I is called an ideal
of M if it is both a left ideal and a right ideal of M.

Definition 2.17. A non-empty subset A of an ordered Γ−semiring M is called
a k−ideal if A is an ideal and x ∈ M, x+ y ∈ A, y ∈ A then x ∈ A.
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Definition 2.18. Let M and N be ordered semirings. A mapping f : M → N
is called a homomorphism if

(i) f(a+ b) = f(a) + f(b)
(ii) f(ab) = f(a)f(b), for all a, b ∈ M,∈ Γ.

Definition 2.19. Let M be an ordered semiring. A mapping f : M → M is
called an endomorphism if

(i) f is an onto ,
(ii) f(a+ b) = f(a) + f(b),
(iii) f(ab) = f(a)f(b), for all a, b ∈ M.

Definition 2.20. Let M be an ordered semiring. A mapping d : M → M is
called a derivation if it satisfies

(i) d(x+ y) = d(x) + d(y)
(ii) d(xy) = d(x)y + xd(y) for all x, y ∈ M.

3. f-derivation of ordered semirings

In this section, we introduce the concept of f -derivation of ordered semirings
and study some of their properties.

Definition 3.1. Let M be an ordered semiring and f be an endomorphism on
M. A mapping d : M → M is called an f -derivation if it satisfies

(i) d(x+ y) = d(x) + d(y)
(ii) d(xy) = d(x)f(y) + xd(y) for all x, y ∈ M .

Theorem 3.1. Let d be a f -derivation of an ordered semiring M. If f(x) = x
for all x ∈ M then d is a derivation of M.

Proof. Let x, y ∈ M . Then d(xy) = d(x)f(y)+xd(y) = d(x)y+xd(y). Hence
d is a derivation of M. Therefore f -derivation of M is a generalization of derivation
d of M. �

Theorem 3.2. Let d be a f -derivation of an ordered semiring M. If f(0) = 0
then d(0) = 0.

Proof. Suppose d is a f -derivation of M . Then

d(0) = d(00) = d(0)f(0) + 0d(0) = d(0)0 + 0d(0) = 0 + 0 = 0.

�
Theorem 3.3. Let f be an endomorphism on idempotent commutative ordered

semiring M and x 6 f(x) for all x ∈ M . Then f is a f -derivation of M.

Proof. Let x, y ∈ M .Then

f(xy) = f(x)f(y)

= f(x)f(y) + f(x)f(y)

= f(x)f(y) + [x+ f(x)]f(y)

= f(x)f(y) + xf(y) + f(x)f(y)

= f(x)f(y) + xf(y).
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Also, we have f(x + y) = f(x) + f(y) since f is an endomorphism of M. Hence f
is a derivation of M. �

Theorem 3.4. Let I be a non-zero ideal of an integral ordered semiring M
in which multiplcative semigroup M is negatively ordered. If d is a non-zero f
derivation on M , where f is a non-zero function on I then d is a non-zero f
derivation on I.

Proof. Let d be a f derivation on I. Suppose that x ∈ I such that x ̸= 0 ,
d(x) = 0 and y ∈ M . We have that xy 6 x implies d(xy) 6 d(x) and d(xy) = 0.
Then d(x)f(y) + xd(y) = 0 and xd(y) = 0.. Thus d(y) = 0. since M is an integral
ordered semiring. This contradicts that d is a non-zero f - derivation on M. Hence
d is a non-zero f -derivation on I. �

Theorem 3.5. Let M be an idempotent ordered semiring and d be a f - deriva-
tion on M. If d ◦ d = d and f ◦ d = f then d(xd(x)) = d(x) for all x ∈ M.

Proof. Let x ∈ M. Then x = xx. Thus

d(xd(x)) = d(x)f(d(x)) + xd(d(x)) = d(x)f(x) + xd(x) = d(xx) = d(x).

�
Definition 3.2. An ordered semiring M is called a prime ordered semiring if

aMb = 0 then a = 0 or b = 0.

Definition 3.3. An ordered semiring M is called a 2− torsion free if 2a =
0 ⇒ a = 0, for all a ∈ M .

Theorem 3.6. Let M be a prime ordered semiring and I be a non-zero ideal
of M. If there exists f - derivation d on M and d(I)x = 0 then x = 0.

Proof. Suppose d(I)x = 0. Then d(γa)x = 0 for all γ ∈ I and a ∈ M. Thus
(d(γ)f(a) + γd(a))x = 0. Hence

d(γ)f(a)x+ γd(a)x = 0

⇒ d(γ)f(a)x+ γd(a)x = 0

⇒ 0 + γd(a)x = 0

⇒ γd(a)x = 0.

Replacing a by ab, we have

γd(ab)x = 0

⇒ γ[d(a)f(b) + ad(b)]x = 0

⇒ γad(b)x = 0

⇒ d(b)x = 0, since d ̸= 0

⇒ x = 0

Hence the theorem. �
Theorem 3.7. Let M be a 2-torsion free prime ordered semiring, d be an f -

derivation on M such that f ◦ d = d ◦ f . If d2 = 0 then d = 0.
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Proof. Suppose d2 = 0, x, y ∈ M . Then d2(xy) = 0. Thus d[d(x)f(y) +
xd(y)] = 0. From here it follows

d2(x)f(f(y)) + (d(x))d(f(y)) + d(x)f(d(y)) + xd(d(y)) = 0

⇒ d(x)d(f(y)) + d(x)f(d(y)) = 0

⇒ d(x)[d(f(y)) + f(d(y))] = 0

⇒ d(x)[2d(f(y))] = 0.

Therefore d(x) = 0 for all x ∈ M . Hence d = 0. �

Theorem 3.8. Let d be a f - derivation on a prime ordered semiring M . If
a ∈ M such that ad(x) = 0 or d(x)a = 0, then a = 0 or d = 0.

Proof. Let x, y ∈ M . Suppose that ad(x) = 0, for all x ∈ M . Then ad(xy) =
0. Thus a[d(x)f(y) + xd(y)] = 0 and

ad(x)f(y) + axd(y) = 0

⇒ ad(x)f(y) + axd(y)] = 0

⇒ axd(y) = 0

⇒ a = 0 or d = 0.

Similarly we can prove d(x)a = 0 then a = 0 or d = 0. �

Theorem 3.9. Let d be a f - derivation of an ordered idempotent semiring M .
If d ◦ d = d and f ◦ d = f then for each x ∈ M d(xd(x)) = d(x).

Proof. Suppose d is a f - derivation of the ordered idempotent semiring M
such that d ◦ d = d , f ◦ d = f and x ∈ M. Then xx = x. Now

d(xd(x)) = d(x)f(d(x)) + xd(d(x))

= d(x)f(x) + xd(x)

= d(xx)

= d(x).

Therefore d(xd(x)) = d(x). �

Theorem 3.10. Let M be an ordered semiring in which (M,+) is cancellative.
Let d be a f - derivation of M, I be a subsemiring of M such that f(I) = I and
d(xy) = d(x)d(y) for all x, y inI. Then d(x)yf(x) = xyd(x) = d(x)yd(x) for all
x, y ∈ I.

Proof. Let x, y ∈ I. Then

d(xyx) = d(x)f(yx) + xd(yx)

= d(x)f(y)f(x) + xd(y)d(x)−−−−− (1)

and
d(xyx) = [d(x)f(y) + xd(y)]d(x)

= d(x)f(y)d(x) + xd(y)d(x)−−−−− (2).
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From (1) and (2), we have d(x)f(y)f(x) = d(x)f(y)d(x). Hence d(x)zf(x) =
d(x)zd(x) for all x, z ∈ I. Now

d(yxy) = d(yx)f(y) + g(yx)d(y)

= d(y)d(x)f(y) + yxd(y)−−−−− (3)

and
d(yxy) = d(y)d(xy)

= d(y)[d(x)f(y) + xd(y)]

= d(y)d(x)f(y) + d(y)xd(y)

= d(y)d(x)f(y) + d(y)xd(y)−−−−− (4).

From (3) and (4), we get d(y)xd(y) = yxd(y), for all y ∈ I. Therefore d(x)yd(x) =
xyd(x) for all y ∈ I. Hence d(x)yd(x) = xyd(x) = d(x)yf(x). �

Theorem 3.11. Let M be a commutative ordered semiring and d1, d2 be f -
derivations of M, f◦d2 = f◦d1 d1◦f = d2◦f , f◦f = f . Define d1d2(x) = d1(d2(x))
for all x ∈ M . If d1d2 = 0 then d2d1 is a f -derivation of M .

Proof. Suppose d1d2 = 0,x, y ∈ M . Then d1d2(xy) = 0 and d1[d2(x)f(y) +
xd2(y)] = 0. Thus d1(d2(x)f(y)) + d1(xd2(y)) = 0. Hence

d1d2(x)f(f(y)) + d2(x)d1(f(y)) + (d1(x))f(d2(y)) + xd1d2(y) = 0.

Therefore d2(x)d1(f(y) + d1(x)f(d2(y)) = 0 and

g(d1(x))d2(f(y)) + d2(x)f(d1(y)) = 0.−−−−− (1).

Now
d2d1(xy) = d2[d1(xy)]

= d2[d1(x)f(y) + xd1(y)]

= d2[d1(x)f(y)] + d2[xd1(y)]

= d2d1(x)f ◦ f(y) + d1(x)d2(f(y))

+ d2(x)f(d1(y)) + xd2(d1(y))

= d2d1(x)f ◦ f(y) + d1(y) from (1)

= d2d1(x)f(y) + xd2d1(y).

Hence d2d1 is a f -derivation of M. �
Theorem 3.12. Let d be a f -derivation of idempotent ordered semiring M. If

d(1) = 1, x 6 d(x). Then the following hold for all x, y ∈ M .
(i) d(xy) 6 d(x)
(ii) d(xy) 6 d(y)
(iii) d is an isotone derivation.

Proof. Let x, y ∈ M . Then:
(1) d(xy) = d(x)f(y) + xd(y) 6 d(x) + x 6 d(x) + d(x) = d(x).
(ii) Proof of (ii) is similar to proof of (i).
(iii) Let x 6 y. Then x + y = y. Thus d(x) + d(y) = d(y). Therefore

d(x) 6 d(y). �
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Theorem 3.13. Let M be an ordered semiring with unity in which (M,+) is
positively ordered, and d be a f -derivation. If d(1) = 1 then x 6 d(x) for all x ∈ M.

Proof. Let x ∈ M. Then x1 = x.. Therefore

d(x) = d(x1) = d(x)f(1) + xd(1) > xd(1) = xd(1).

Suppose d(1) = 1. Then x1 6 d(x). Thus x 6 d(x). �
Theorem 3.14. Let M be an idempotent ordered semiring in which multiplica-

tive semigroup M is negatively ordered and d be a f -derivation such that f(x) 6 x
for all x ∈ M . Then d(x) 6 x.

Proof. Let x ∈ M . Then x = xx. Thus

d(x) = d(xx) = d(x)f(x) + xd(x) 6 f(x) + x 6 x+ x = x.

Therefore d(x) 6 x. �
Theorem 3.15. Let M be an idempotent ordered semiring with unity in which

(M,+) is positively ordered and multiplicative semigroup M is negatively ordered
and d be a f -derivation of M, such that f(x) 6 x for all x ∈ M. Then d(1) = 1 if
and only if d(x) = x.

Proof. Suppose d(1) = 1. By Theorem 3.13, we have x 6 d(x) and by
Theorem 3.14, we have d(x) 6 x. Therefore d(x) = x.

Converse is obvious. �
Corollary 3.1. Let M be an idempotent ordered semiring in which multi-

plicativ semigroup M is negatively ordered, semigroup (M,+) is positively ordered,
and d(1) = 1. Then d is a f -derivation such that f(x) 6 x for all x ∈ M if and
only if d(x) = x.

Proof. Suppose d is a f - derivation of the ordered semiring M such that
f(x) 6 x for all x ∈ M. By Theorem 3.15, we have d(x) = x.

Conversely, suppose that d(x) = x, for x ∈ M. Then there exists ∈ Γ such that
xx = x. Thus d(x) = d(xx) and x = xf(x)+xx and x 6 f(x)+x. Hence x 6 f(x).
Now, we have x > xf(x) and xx > xf(x). So, x > f(x). Therefore f(x) = x. �

Theorem 3.16. Let d be a f - derivation of an ordered semiring M in which
multiplicative semigroup M is negatively ordered and semigroup (M,+) is positively
ordered. Then kerd is a k−ideal of M.

Proof. Let x, y ∈ kerd . Then d(x) = d(y) = 0. and d(x+ y) = d(x)+ d(y) =
0+ 0 = 0. Thus d(xy) = d(x)f(y) + xd(y) = 0f(y) + x0 = 0+ 0 = 0. Therefore xy,
x+ y ∈ M . Hence kerd is a subsemiring of M.

Suppose x ∈ kerd and y ∈ M . Then d(x) = 0. We have xy 6 x. Thus
d(xy) 6 d(x) and d(xy) = 0. So, xy ∈ kerd.

Suppose x 6 y and y ∈ kerd. Then x+ y 6 y+ y and x+ y 6 y 6 x+ y. Thus
x+y = y and hence d(x+y) = d(y). So, d(x)+d(y) = 0 and therefore d(x)+0 = 0.
Finally, we have d(x) = 0. Hence x ∈ kerd.

Suppose x + y ∈ kerd, x ∈ kerd. Then d(x + y) = 0 and d(x) = 0. Thus
d(y) = 0. This means y ∈ kerd. Hence kerd is a k−ideal. �
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Definition 3.4. An ideal I of an ordered semiring M is said to be m−k−ideal
if xy ∈ I, x ∈ I, 1 ̸= y ∈ M then y ∈ I.

Theorem 3.17. Let d be a f -derivation of an ordered integral semiring M in
which multiplicative semigroup M is negatively ordered and semigroup (M,+) is
positively ordered. Then kerd is a m− k ideal of M.

Proof. By Theorem 3.16, kerd is an ideal of M. Suppose xy ∈ kerd, x ∈ kerd,
y ∈ M . Then d(xy) = d(x)f(y) + xd(y) and 0 = 0f(y) + xd(y). Thus 0 = xd(y).
Therefore d(y) = 0, since M is an f ordered integral semiring. So, y ∈ kerd. Hence
kerd is a m− k−ideal of the ordered integral semiring M. �

Theorem 3.18. Let d be a f -derivation of an idempotent commutative ordered
semiring M in which multiplicaative semigroup M is negatively ordered. If f(x) 6 x
for all x ∈ M then d(x) 6 x for all x ∈ M .

Proof. Suppose f(x) 6 x, for all x ∈ M . Then f(x) + x = x. Let x ∈ M .
Then x = xx. Thus

d(x) = d(xx) = d(x)f(x) + xd(x) = d(x)[f(x) + x] = d(x)x 6 x.

�

Theorem 3.19. Let d be a f - derivation of a commutative idempotent ordered
semiring M in which multiplicative semigroup M is cancellative negatively ordered,
semigroup (M,+) is a band. Define a set {x ∈ M : f(x) 6 x ∧ d(x) = x} and it is
denoted by Fixd(M). Then Fixd(M) is a m− k−ideal of M.

Proof. Let x, y ∈ Fixd(M) . Then f(x) 6 x, d(x) = x, f(y) 6 y, d(y) = y.
Therefore f(xy) = f(x)f(y) 6 xy and f(x+ y) = f(x) + f(y) 6 x + y. from here
it follows d(x+ y) = x+ y. Therefore xy ∈ Fixd(M) and x+ y ∈ Fixd(M).

Suppose x 6 y and y ∈ M . Then by Corollary 3.17, d(y) = y. Now from x 6 y
it follows x+y 6 y+y = y 6 x+y and x+y = y. Thus d(x+y) = d(y) implies that
d(x) + d(y) = d(y) and d(x) + y = y = x+ y. So, d(x) = x. Hence x ∈ Fixd(M).

Suppose x + y ∈ Fixd(M) and y ∈ Fixd(M). Then d(x + y) = x + y and
d(y) = y. Thus d(x) + d(y) = x + y. So, d(x) + y = x + y and d(x) = x. Hence
Fixd(M) is a k−ideal of M.

Suppose xy ∈ Fixd(M) and x ∈ Fixd(M). Then f(xy) 6 xy and d(xy) = xy.
Thus f(x) 6 x and d(x) = x. Hence f(x)f(y)+xy = xy and f(x)+x = x. Now, we
have f(x)f(y)+(f(x)+x)y = (f(x)+x)y and f(x)f(y)+f(x)y+xy = f(x)y+xy.
From here, it follows f(x)f(y) + f(x)y = f(x)y and f(x)(f(y) + y) = f(x)y. So,
f(y) + y = y. Therefore f(y) 6 y.

First, from d(xy) = xy and d(xy) = d(x)f(y)+xd(y) it follows xy = d(x)f(y)+
xd(y) and xy = d(x)f(y) + xd(y) 6 xy + xd(y). Thus xy 6 xy + xd(y) and
y 6 y+d(y). So, we have y 6 d(y) 6 y.. This means y = d(y). Hence y ∈ Fixd(M).
Thus Fixd(M) is a m− k−ideal of M. �
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4. Derivation da of ordered semirings

In this section, we introduce the notion of derivation of the form da of ordered
semirings. We study some of the properties of derivation da of ordered semirings.

Let M be an ordered semiring. Then for any a ∈ M we define a mapping
d : M → M by d(x) = xa, for all x ∈ M .This function d is denoted by da.

Definition 4.1. Let M be an ordered semiring and da be a function. Then
the function da is said to be derivation of M if

(i) da(x+ y) = da(x) + da(y) and
(ii) da(xy) = da(x)y + xda(y), for all x, y ∈ M .

If da be a derivation of an ordered semiring M and f(x)=x for all x ∈ M then
derivation dais a f derivation. Hence f derivation is a generalization of da derivation.

Example 4.1. Let M = {0, a, b, 1} . If we define the the additive and multi-
plictive operations on M by

+ 0 a b 1
0 0 a b 1
a a a b 1
b b b b 1
1 1 1 1 1

. 0 0 b 1
0 0 a 0 0
a 0 a b 1
b 0 b b 1
1 0 1 1 1

and x 6 y if and only if x+ y = y, for all x, y ∈ M then M is an ordered semiring.
Let a ∈ M Define da, = xa, for all x ∈ M. Obviously da, is a derivation of M

Example 4.2. Let M = [0, 1]. Define the binary operations + on M by
a + b = max{a, b} and binary operation by ab = min{a, b}, for all a, b ∈ M , and
a 6 b if and only if a+ b = b, for all a, b ∈ M. Then M is an ordered semiring. Let
a ∈ M . Define da(x) = xa, for all x ∈ M. Obviously da is a derivation of M.

Lemma 4.1. Let M be an ordered commutative semiring in which semigroup
(M,+) is a band. Then da is a derivation of M.

Proof. LetM be an ordered commutative semiring in which semigroup (M,+)
is a band and x, y ∈ M. Then da(xy) = (xy)a and

d(x)y + xda(y) = (xa)y + xya

= y(xa) + xya

= (yx)a+ xya

= xya+ xya

= xya.

Hence da is a derivation of M. �

Lemma 4.2. Let M be an ordered commutative semiring in which semigroup
semigroup (M,+) is a band with unity element 1. Then there exists a derivation
d1, such that d1(x) = x.
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Proof. Let x ∈ M . Then x1 = x. By Lemma 4.1, d1 is a derivation and
d1(x) = x1 = x. �

Theorem 4.1. Let M be an ordered semiring in which semigroup (M,+) is is
a band and positively ordered,multiplicative semigroup M is negatively ordered and
da be a derivation.Then

(i) da(xy) 6 da(x) + da(y)
(ii) da(x) 6 x
(iii) if x 6 y then da(xy) 6 y.

Proof. Let x, y ∈ M. Then:

da(xy) = (xy)a = (x+ x)ya = xya+ xya 6 xa+ ya = da(x) + da(y).

(ii) da(x) = xa 6 x.
(iii) Suppose x 6 y. Then x+ y 6 y+ y and x+ y 6 y 6 x+ y. This x+ y = y.

Now

da(xy) 6 da(x) + da(y) 6 x+ y = y.

This completes the proof. �

Theorem 4.2. Let da be a derivation of an ordered semiring M . Then da(0) =
0.

Proof. By Definition 4.1, da(x) = xa, for all x ∈ M. Then da(0) = 0a = 0.
Therefore da(0) = 0. �

Theorem 4.3. Let da be a derivation of an idempotent ordered semiring M
in which multiplicative semigroup M is negatively ordered, semigroup (M,+) is a
band. Then da(x) 6 x, for all x ∈ M.

Proof. Let da be a derivation of an idempotent ordered semiring M in which
semigroup M is negatively ordered. Suppose x ∈ M . Then there exists such that
xx = x. Then

da(x) = da(xx) = da(x)x+ xda(x) 6 x+ x.

Therefore da(x) 6 x. This completes the proof. �

Theorem 4.4. Let M be an ordered semiring in which multiplicaative semi-
group M is negatively ordered. Then da(xy) 6 da(x+ y), for all x, y ∈ M.

Proof. Let M be an ordered semiring in which multiplicaative semigroup M
is negatively ordered. Suppose x, y ∈ M. Then da(x)y 6 da(x) and xda(y) 6 da(y).
Therefore

da(xy) = da(x)y + xda(y) 6 da(x) + da(y) = da(x+ y).

This completes the proof. �

Theorem 4.5. Let M be an idempotent ordered semiring in which multiplica-
tive semigroup M is negatively ordered and semigroup (M,+) is a band. Then the
following hold for all x, y ∈ M :

(i) da(xy) 6 da(x) + da(y)
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(ii) If x 6 y then da(xy) 6 y
(iii) da(x) 6 x.

Proof. (i)

da(xy) = da(x)y + xda(y) 6 da(x) + da(y).

(ii) Suppose x 6 y. Then xda(y) 6 yda(y) 6 y and da(x)y 6 y. Thus

da(xy) = da(x)y + xda(y) 6 y + y = y.

(iii) Let x ∈ M. Then xx = x. Then

da(x) = da(xx) = da(x)x+ xda(x) 6 x+ x = x.

This completes the proof. �
Theorem 4.6. Let M be an idempotent ordered semiring with unity 1 in which

semigroup (M,+) is a band and positively ordered, multiplicative semigroup M is
negatively ordered and da be a derivation of M. Then the following hold for all
x ∈ M :

(i) xda(1) 6 da(x).
(ii) If da(1) = 1 then da(x) = x, for all x ∈ M.

Proof. (i) Let x ∈ M. Then x1 = x. Then da(x1) = da(x) and da(x)1 +
xda(1) = da(x). Thus xda(1) 6 da(x).

(ii) Suppose da(1) = 1. We have xda(1) 6 da(x). From here, ir follows x1 6
da(x). Therefore x 6 da(x). By Theorem 4.5, holds da(x) 6 x. Hence da(x) = x,
for all x ∈ M. �

Theorem 4.7. Let M be an ordered semiring with unity 1 in which semigroup
(M,+) is is a band and positively ordered, multiplicative-semigroup M is negatively
ordered and da be a derivation of M. If x ∈ M then

(i) xda(1) 6 da(x)
(ii) If da(1) = 1 then x 6 da(x).

Proof. (i) Let M be an ordered -semiring with unity 1, da be a derivation of
M and x ∈ M. Then x1 = x. Thus

da(x) = da(x1) = da(x)1 + xda(1).

So, it follows xda(1) 6 da(x)1 + xda(1) = da(x).
(ii) Suppose da(1) = 1 and xda(1) 6 da(x). Then x1 6 da(x) and x 6 da(x).

This completes the proof. �
Theorem 4.8. Let M be an idempotent ordered semiring in which multi-

plicative semigroup M is negatively ordered and semigroup (M,+) is a band. If
d2a,(x) = da(da(x)) = da(x) then da(xda(x)) 6 da(x), for all x ∈ M.

Proof. Let M be an idempotent ordered semiring and d2a,(x) = da(da(x)) =
da(x), for all x ∈ M. Then

da(xda(x)) = da(x)da(x) + xd(da(x)) = da(x) + xda(x)

6 da(x) + da(x) = da(x).
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Therefore da(xda(x)) 6 da(x). This completes the proof. �
Theorem 4.9. Let da be a derivation of an ordered integral-semiring M with

unity and a ∈ M . If ada(x) = 0 for all x ∈ M , then either a = 0 or da = 0.

Proof. Suppose ada(x) = 0 for all x ∈ M , Let y ∈ M . Replace x by xy,
then ada(xy) = 0 and a[da(x)y + xda(y)] = 0. Thus axda(y) = 0 and a1da(y) = 0.
Hence ada(y) = 0. Therefore a = 0 or da(y) = 0 since M has no zero divisors. �

Definition 4.2. An ideal I of an ordered semiring M is said to be m− k ideal
if xy ∈ I , x ∈ I, 1 ̸= y ∈ M then y ∈ I.

Definition 4.3. Let da be a derivation of an ordered semiring M . Derivation
da is called an isotone derivation if x 6 y then da(x) 6 da(y) for all x, y ∈ M .

Theorem 4.10. Let da be an isotone derivation of an ordered semiring M .
Define ker da = {x ∈ M/da(x) = 0}. Then ker da is a k−ideal of an ordered
semiring M.

Proof. Let x, y ∈ ker da. Then xa = ya = 0. Thus da(x+ y) = (x+ y)a = 0.
Therefore x+ y ∈ ker da. Now, we have

da(xy) = da(x)y + xda(y) = (xa)y + x(ya) = 0y + x0 = 0.

Therefore xy ∈ ker da.
Suppose y ∈ ker da, x ∈ M and x 6 y. Then da(x) 6 da(y). It follows

xa 6 ya = 0 and xa = 0.. So, x ∈ ker da. Hence ker da is an ideal.
Suppose x+y ∈ ker da and y ∈ ker da. Then da(x+y) = 0 and da(x)+da(y) =

0. Thus da(x) = 0. Hence x ∈ ker da. This completes the proof. �
Theorem 4.11. Let da be an isotone derivation of an integral ordered semiring

M . Then ker da is a m− k ideal of M.

Proof. By Theorem 4.10, ker da is an ideal of an ordered semiring M . Let
0 ̸= y ∈ ker da, x ∈ M and xy ∈ ker da. Then da(xy) = 0 and da(x)y+xda(y) = 0.
Thus da(x)y = 0. So, da(x) = 0, since M is an integral ordered semiring. Therefore
ker da is a m− k ideal of M. �

Theorem 4.12. Let da be a derivation of multiplicative cancellative commuta-
tive ordered semiring M where (M,+) is positively ordered and band, semigroup M
is negatively ordered and da(1) = 1. Define a set Fixda(M) = {x ∈ M : da(x) = x}.
Then Fixda(M) is a m− k ideal.

Proof. Obviously Fixda(M) = {x ∈ M : da(x) = x} is an ideal of M.
Suppose xy ∈ Fixda(M), x ∈ Fixda(M). Then da(xy) = xy. Thus

da(x)y + xda(y) = xy

⇒ xy + xda(y) = xy

⇒ x[y + da(y)] = xy

⇒ y + da(y) = y

⇒ da(y) 6 y + da(y) = y.
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By Theorem 4.7, we have y 6 da(y). Hence da(y) = y and y ∈ Fixda(M). So,
Fixda(M) is a m− k−ideal of M. �

Theorem 4.13. Let M be an ordered commutative semiring and da, db be
derivations of M. If da db = 0 then db da is a derivation of M.

Proof. Let x, y ∈ M . Then

0 = da db (xy) = da[ db (x)y + x db (y)]

= da( db (x))y + db (x)da(y) + da(x) db (y) + xda( db (y))

and

0 = db (x)da(y) + da(x) db (y).

Thus

db da(x+ y) = db [da(x) + da(y)] = db (da(x)) + db (da(y)).

and

db da(xy) = db [da(x)y + xda(y)]

= db da(x)y + da(x) db (y) + db (x)da(y) + x db (da(y))

= db (da(x))y + x db (da(y)).

Hence db da is a derivation of M. �

Theorem 4.14. Let da be a derivation of an ordered integral semiringM with
unity and b ∈ M . If bda(x) = 0, for all x ∈ M , then either b = 0 or da is zero.

Proof. Suppose bda(x) = 0 for all x ∈ M . Let y ∈ M . Replace x by xy we
have bda(xy) = 0. Then b[da(x)y + xda(y)] = 0 and bxda(y) = 0. Since b ∈ M and
b1 = b we have bda(y) = 0. Thus b = 0 or da(y) = 0. hence b = 0 or da = 0. �

Theorem 4.15. Let M be an ordered semiring in which (M,+) is positively
ordered and band, multiplicative semigroup M is negatively ordered and da be a
derivation of M . Then the following hold:

(i) da(xy) 6 da(x)
(ii) da(xy) 6 da(y)
(iii) x 6 y then da(x) 6 da(y) for all x, y ∈ M .

Proof. (i) Let x, y ∈ M,. Then da(xy) = (xy)a 6 xa = da(x).
(ii) Similarly we can prove da(xy) 6 da(y).
(iii) Suppose x 6 y. Then it follows x + y 6 y + y and x + y 6 y 6 x + y.

Thus x+ y = y. From here, it follows da(x+ y) = da(y) and da(x)+ da(y) = da(y).
Therefore da(x) 6 da(y). �

Theorem 4.16. Let da be a derivation of an integral ordered semiring M in
which semigroup (M,+) is a band. Define d2a(x) = da(da(x)), for all x ∈ M. If
d2a = 0, then da = 0.
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Proof. Let x, y ∈ M Then d2a(xy) = 0 and

da[da(xy)] = 0

⇒ da[da(x)y + xda(y)] = 0

⇒ d2a(x)y + da(x)da(y) + da(x)da(y) + xd2a(y) = 0

⇒ da(x)da(y) + da(x)da(y) = 0

⇒ da(x)da(y) = 0

⇒ da(x) = 0 or da(y) = 0, for all x, y ∈ M..

Therefore in both the cases we have da = 0. �

Theorem 4.17. Let I be a non-zero ideal of an integral ordered semiring M
in which semigroup M is negatively ordered. If da is a non-zero derivation of M
then da is non-zero on I.

Proof. Suppose da is a non-zero derivation of M and da(x) = 0 for all x ∈ I.
Let y ∈ M,∈ Γ and x ∈ I. Then xy 6 x. Therefore xy ∈ I. From here it follows
da(xy) = 0 and da(x)y+xda(y) = 0. So, xda(y) = 0. Since M has no zero divisors,
we have x = 0 or da(y) = 0, for all y ∈ M. Since I is a non-zero ideal, we get
da(y) = 0 for all y ∈ M which is a contradiction to da ̸= 0 on M. Hence da is
non-zero derivation on I. �

Theorem 4.18. Let da be a non-zero derivation of an integral ordered semiring
M. If I is a non-zero ideal of M and t ∈ M such that tda(I) = 0 then t = 0.

Proof. By Theorem 4.17, there exists x ∈ I such that da(x) ̸= 0. Suppose
tda(I) = 0. Then tda(xx) = 0. Now, we have

t[da(x)x+ xda(x)] = 0

⇒ tda(x)x+ t(xda(x)) = 0

⇒ t(xda(x)) = 0.

Therefore t = 0. �

5. Conclusion

In this paper, we introduced the concept of f -derivation and derivation da of
an ordered semiring We characterized m−k−ideal using f and da -derivations of an
ordered semiring M. We studied some of the properties of the f and da derivations
of ordered semirings.
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