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A NOTE ON 0-ADJOINED SOFT SEMIGROUPS

Nistala V.E.S. Murthy and Chundru Maheswari

Abstract. In this paper, we construct a Galois connection between the com-

plete lattice of (soft) substructures of a (soft) semigroup and the complete
lattice of (soft) substructures of the 0 (1)-adjoined (soft) semigroup, which
will be crucial in the Representation of Soft Substructures of a Soft Semigroup

by their Crisp Cousins.

1. Introduction

The term semigroup first appeared in Mathematical literature (in French) by J.
A. de Seguier in his book Elements de la Theorie des Groupes Abstraits (Elements
of the Theory of Abstract Groups) in 1904 and the first paper about semigroups was
a brief one by L. E. Dickson in 1905. But the theory really began from the paper
Uber die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit (On
finite groups without the rule of unique invertibility) written by A. Suschkewitsch
in 1928. In current terminology, he showed that every finite semigroup contains a
kernel (a simple ideal) and he completely determined the structure of finite simple
semigroups. From that point on, the foundations of semigroup theory were further
laid by D. Rees, J. A. Green, E. S. Lyapin, A. H. Clifford and G. Preston. The later
two published a two-volume monographs on semigroup theory in 1961 and 1967.

From a historical point of view, it may be interesting to know that in 1956, the
notion quasi-ideal of a semigroup was introduced by Steinfeld [18] as a generaliza-
tion of the notions (left, right) ideal of a semigroup and interestingly, the notion
of bi-ideal of a semigroup which further generalizes the notion of quasi-ideal of a
semigroup was introduced by Good-Hughes [10] much earlier in 1952.
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On the other side, Molodtsov [14] introduced the notion of soft set as a mathe-
matical tool for modelling uncertainties. Since its introduction, several mathemati-
cians imposed various algebraic (sub) structures on them and studied some of their
elementary properties. In 2010, Ali-Shabir-Shum [2] introduced the notions of soft
semigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) over a semigroup and
studied some of their properties.

In this paper, as in Grillet [11], we consider the empty set as a semigroup as
there are no two elements in the empty set whose product is not in the empty set.
Consequently, we modify the definitions of soft semigroup (left ideal, right ideal,
ideal, quasi-ideal, bi-ideal) over a semigroup introduced by Ali-Shabir-Shum [2] by
removing the conditions that the underlying soft set is neither empty nor null, so
that by our definition, the empty soft set and the null soft set are trivially a soft
(sub) semigroup, soft (left, right, quasi-, bi-) ideal. Next, we introduce the notions
of 0 (1)-adjoined soft semigroups and studied some of their (algebraic) lattice the-
oretic properties. Further, we construct a Galois connection between the complete
lattice of (soft) substructures of a (soft) semigroup and the complete lattice of (soft)
substructures of the 0 (1)-adjoined (soft) semigroup.

In this paper, some proofs are left for three reasons, firstly in most cases they
are simple or straight forward but a little involving, secondly we want to minimize
the size of the document and lastly, in order to make the document more self con-
tained, instead of proofs, we recall as many notions and results that are used in
subsequent sections, as possible.

2. Preliminaries

In what follows we recall some basic definitions and elementary results in the
theory of Lattices, Semigroups, Soft Sets and Soft Semigroups which are used in
the main results:

We assume the following notions from Lattice Theory: (meet/join) complete
poset, (meet/join) complete subposet, complete sublattice, (meet/join) complete
homomorphism (isomorphism) of (meet/join) complete posets, one can refer to any
standard text books on Lattice Theory for them. Observe that by a meet (join)
complete poset we mean a poset in which every non-empty subset S has infimum
(supremum), denoted by ∧S (∨S); by a complete poset or a complete lattice we
mean a poset which is both a meet complete poset and a join complete poset; a sub-
set of a meet (join) complete poset is a meet (join) complete subposet iff it is closed
under infimum (supremum) for all its non-empty subsets; a subset of a complete
lattice is a complete sublattice iff it is both a meet complete subposet and a join
complete subposet; by a meet (join) complete homomorphism we mean any map
between meet (join) complete posets which preserves infimums (supremums) for all
non-empty subsets; by a complete homomorphism we mean any map between com-
plete lattices which preserves infimums and supremums for all non-empty subsets
and by a complete isomorphism we mean any complete homomorphism between
complete lattices which is both one-one and onto.
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Lemma 2.1. For any index set I, for any family of sets (Ai)i∈I and for any
set B, the following are true:

(1) (∪i∈IAi) ∩ B = ∪i∈I (Ai ∩B)
(2) (∩i∈IAi) ∪B = ∩i∈I(Ai ∪B)
(3) (∪i∈IAi) ∪ B = ∪i∈I (Ai ∪B)
(4) (∩i∈IAi) ∩ B = ∩i∈I (Ai ∩B).

Lemma 2.2. For any pair of sets A,B and for any function f : A → B, the
following are true:

(1) f = ϕ iff A = ϕ
(2) B = ϕ implies f = ϕ but not conversely.

Definition 2.1. For any non-empty subset S of a meet (join) complete poset
L with the largest (least) element 1L (0L), one can define

∨S = ∧{β ∈ L/α∧β = α for all α ∈ S} (∧S = ∨{β ∈ L/α∧β = β for all α ∈ S})
called the meet (join) induced join (meet) in L. Then L is a complete lattice with
the ∨ (∧) called the associated complete lattice for the meet (join) complete poset
L.

Definition 2.2. A lattice L is said to be a distributive lattice iff for any
x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Further, L is a distributive complete
lattice iff it is both a distributive lattice and a complete lattice.

Definition 2.3. A lattice L is said to be a modular lattice iff for any x, y, z ∈ L
such that x 6 y implies x∨ (y ∧ z) = y ∧ (x∨ z). Further, L is a modular complete
lattice iff it is both a modular lattice and a complete lattice.

Definition 2.4. For any pair of posets P , Q and for any pair of order preserv-
ing maps f : P → Q, g : Q → P , (g, f) is a Galois connection between P and Q iff
for each (a, b) ∈ P ×Q, fa 6 b iff a 6 gb or equivalently, for any pair of posets P ,
Q and for any pair of maps f : P → Q, g : Q → P , (g, f) is a Galois connection iff
fg 6 IQ and IP 6 gf .

Definition 2.5. A set S together with a binary operation which is associative
is called a semigroup. Notice that the empty set is trivially a semigroup with the
empty binary operation called the empty semigroup.

Definition 2.6. For any pair of subsets A, B of a semigroup S, the set AB is
defined by AB = {ab ∈ S/a ∈ A and b ∈ B} and it is a subset of S.

Definition 2.7. For any subset A of a semigroup S,
(1) A is a subsemigroup of S iff A2 ⊆ A.

Notice that as in Grillet [11], the empty semigroup is trivially a subsemigroup of
any semigroup.

(2) A is a left (right) ideal of S iff SA ⊆ A (AS ⊆ A)
(3) A is an ideal of S iff SA∪AS ⊆ A iff it is both a left and a right ideal of S
(4) A is a quasi-ideal of S iff SA ∩AS ⊆ A
(5) A is a bi-ideal of S iff AA ⊆ A and ASA ⊆ A.
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Lemma 2.3. In any semigroup S, the following are true:
(1) The empty semigroup is trivially a (left, right, quasi-, bi-) ideal of S
(2) Arbitrary union of (left, right) ideals of S is a (left, right) ideal of S but

arbitrary union of subsemigroups (quasi-ideals, bi-ideals) of S need not be a sub-
semigroup (quasi-ideal, bi-ideal) of S

(3) Arbitrary intersection of subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of S is a subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) of S

(4) The intersection of all subsemigroups (left ideals, right ideals, ideals, quasi-
ideals, bi-ideals) of S containing a given subset is a subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of S which is unique and smallest with respect to
the containment of the given subset

(5) For any subset A of a semigroup S, whenever ∗ = s (l, r, i, q, b), the unique
smallest subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) containing
the given subset A defined as in (4) above is called the subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) generated by A and is denoted by (A)s, S ((A)∗, S)

(6) For any pair of subsemigroups (left ideals, right ideals, ideals, quasi-ideals,
bi-ideals) A, B of a semigroup S, A is a subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of B iff A is a subset of B

(7) Whenever ∗ = s (l, r, i, q, b), for any subsemigroup (left ideal, right ideal,
ideal, quasi-ideal, bi-ideal) B of S and for any subset A of B, (A)s, S ((A)∗, S) is a
subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of B.

Definition 2.8. For any semigroup S, the semigroup S ∪ {0} such that S is
a subsemigroup of S ∪ {0}, where 00 = 0s = s0 = 0 for all s ∈ S, is called the
0-adjoined semigroup and is denoted by S0.

Definition 2.9. For any semigroup S and for any subset B of the 0-adjoined
semigroup S0, B − {0} is called the 0-contraction of B in S. Notice that the
0-contraction of S0 is S and ϕ is ϕ itself.

Definition 2.10. For any semigroup S, the semigroup S ∪ {1} such that S is
a subsemigroup of S ∪ {1}, where 1s = s1 = s for all s ∈ S and 11 = 1, is called
the 1-adjoined semigroup and is denoted by S1.

Definition 2.11. For any semigroup S and for any subset B of the 1-adjoined
semigroup S1, B − {1} is called the 1-contraction of B in S. Notice that the
1-contraction of S1 is S and ϕ is ϕ itself.

Notation: For any semigroup S, whenever ∗ = s (l, r, i, q, b), Ss(S) (S∗(S)) is
the set of all subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals)
of S and for any pair of subsemigroups (left ideals, right ideals, ideals, quasi-ideals,
bi-ideals) A, B of S, A 6s B (A 6∗ B) iff A is a subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of B.

Theorem 2.1. For any semigroup S, whenever ∗ = s, q, b, l, r, i, the set S∗(S)
is a complete lattice with

(1) the partial ordering defined by: for any A, B ∈ S∗(S), A 6 B iff A 6∗ B;
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(2) the largest and the least elements in S∗(S) are S and ϕ respectively;
(3) for any family (Ai)i∈I in S∗(S), ∧i∈IAi = ∩i∈IAi;
(4) for any family (Ai)i∈I in S∗(S),
(i) for ∗ = s, q, b, ∨i∈IAi = ∨i∈IAi,

where ∨ is the meet induced join in S∗(S). In fact, ∨i∈IAi = (∪i∈IAi)∗, S ;
(ii) for ∗ = l, r, i, ∨i∈IAi = ∪i∈IAi.

Theorem 2.2. For any semigroup S, whenever ∗ = l, r, i, the set S∗(S) of all
(left, right) ideals of S is a distributive complete lattice and so a modular complete
lattice.

The following Example shows that, whenever ∗ = s, q, b, the set S∗(S) is not
necessarily a modular lattice and hence not necessarily a distributive lattice.

Example 2.1. (1) Let S = {a, b, c} be a semigroup with the following Cayley
table:

·S a b c
a a b c
b c b c
c c b c

Then Ss(S) = {ϕ, {a}, {b}, {c}, {a, c}, {b, c}, S}. Let A = {a}, B = {a, c} and C
= {b}. Clearly, A 6 B. Now A ∨ (B ∧ C) = (A ∪ (B ∩ C))s,S = {a} ⊂ {a, c} =
B ∩ (A ∪ C)s, S = B ∧ (A ∨ C). Therefore Ss(S) is not a modular lattice.

(2) Let S = {a, b, c, d, e} be a semigroup with the following Cayley table:

·S a b c d e
a a a a a a
b a a a b c
c a b c a a
d a a a d e
e a d e a a

Then Sq(S) = {ϕ, {a}, {a, b}, {a, c}, {a, d}, {a, e}, {a, b, c}, {a, d, e}, {a, b, d},
{a, c, e}, S}. Let A = {a, c}, B = {a, b, c} and C = {a, d}. Clearly, A 6 B.
Now A ∨ (B ∧ C) = (A ∪ (B ∩ C))q,S = {a, c} ⊂ {a, b, c} = B ∩ (A ∪ C)q, S =
B ∧ (A ∨ C). Therefore Sq(S) is not a modular lattice.

(3) Let S be the semigroup same as in (2) above. Then Sb(S) = {ϕ, {a}, {a, b},
{a, c}, {a, d},{a, e}, {a, b, c}, {a, d, e}, {a, b, d}, {a, c, e}, S}. Let A = {a, c}, B =
{a, b, c} and C = {a, d}. Clearly, A 6 B. Now A ∨ (B ∧ C) = (A ∪ (B ∩ C))b, S =
{a, c} ⊂ {a, b, c} = B∩ (A∪C)b, S = B∧ (A∨C). Therefore Sb(S) is not a modular
lattice.

Lemma 2.4. In any semigroup S, the following are true:
(1) If A is a subsemigroup of S then A is also a subsemigroup of S0 Further,

Ss(S) is always a proper subset of Ss(S0)
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(2) If A is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
S then A0 is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
S0

(3) If ϕ ̸= B is a (left, right, quasi-, bi-) ideal of S0 then 0 ∈ B
(4) If B is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of

S0 then B−{0} is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)
of S.

Corollary 2.1. For any subset A of a semigroup S, whenever ∗ = s, l, r,
i, q, b, A 6∗ S iff A ∪ {0} 6∗ S0.

Lemma 2.5. In any semigroup S, the following are true:
(1) If A is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of

S then A is also a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
S1. In particular, S is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-
ideal) of S1. Further, whenever ∗ = s, l, r, i, q, b, S∗(S) is always a proper subset
of S∗(S1)

(2) If A is a subsemigroup of S then A1 is a subsemigroup of S1

(3) A1 is a (left, right, quasi-, bi-) ideal of S1 iff A1 = S1

(4) If B is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
S1 then B−{1} is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)
of S.

Remark 2.1. Observe that, in view of the Lemma 2.4(2), while 0-adjoining is
structure preserving, in view of the Lemma 2.5(1), 1-adjoining behaves like transi-
tivity.

The following Example shows that if A is a (left, right, quasi-, bi-) ideal of S
then A1 need not be a (left, right, quasi-, bi-) ideal of S1.

Example 2.2. Let S = {a, b} be a semigroup with the following Cayley table.
Then S1 = {a, b, 1} is also a semigroup with the following Cayley table:

·S a b
a a a
b a b

·S1 a b 1
a a a a
b a b b
1 a b 1

Let A = {a} be a (left, right, quasi-, bi-) ideal of S. Then A1 = A ∪ {1} = {a, 1}
is not a (left, right, quasi-, bi-) ideal of S1.

Corollary 2.2. In any semigroup S and for any subset A of S, the following
are true:

(1) A is a subsemigroup of S iff A ∪ {1} is a subsemigroup of S1

(2) Whenever ∗ = s, l, r, i, q, b, A 6∗ S iff A 6∗ S1.

Lemma 2.6. For any semigroup S, for any subset A of S and for any subset B
of S0 (S1) such that A ⊆ B, (A)∗, S ⊆ (B)∗, S0 for ∗ = s, q, b and (A)s, S ⊆ (B)s, S1 .
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Lemma 2.7. For any semigroup S, for any subset A of S and for any subset
B of S0 (S1), the following are true:

(1) (A)s, S = (A)s, S0 and (A)s, S ∪ {0} = (A ∪ {0})s, S0

(2) (A)∗, S ∪ {0} = (A ∪ {0})∗, S0 for ∗ = q, b
(3) (B)∗, S0 − {0} = (B − {0})∗, S for ∗ = s, q, b
(4) (A)s, S = (A)s, S1 and (A)s, S ∪ {1} = (A ∪ {1})s, S1

(5) (B)s, S1 − {1} = (B − {1})s, S
(6) (A)∗, S = (A)∗, S1 for ∗ = q, b.

Corollary 2.3. In any semigroup S, the following are true:
(1) For any family of subsemigroups (quasi-ideals, bi-ideals) (Ai)i∈I of S,
for ∗ = s (q, b), (∪i∈IAi)∗, S ∪ {0} = ((∪i∈IAi) ∪ {0})∗, S0

(2) For any family of subsemigroups (quasi-ideals, bi-ideals) (Bi)i∈I of S0,
for ∗ = s (q, b), (∪i∈IBi)∗, S0 − {0} = ((∪i∈IBi)− {0})∗, S
(3) For any family of subsemigroups (Ai)i∈I of S,
(∪i∈IAi)s, S ∪ {1} = ((∪i∈IAi) ∪ {1})s, S1

(4) For any family of subsemigroups (Bi)i∈I of S1,
(∪i∈IBi)s, S1 − {1} = ((∪i∈IBi)− {1})s, S.

Corollary 2.4. For any semigroup S, the following are true:
(1) The complete lattice Ss(S) of all subsemigroups of S is a complete sublattice

of the complete lattice Ss(S0) of all subsemigroups of S0

(2) Whenever ∗ = s (q, b, l, r, i), the complete lattice Ss(S) (S∗(S)) of all sub-
semigroups (quasi-ideals, bi-ideals, left ideals, right ideals, ideals) of S is a complete
sublattice of the complete lattice Ss(S1) (S∗(S1)) of all subsemigroups (quasi-ideals,
bi-ideals, left ideals, right ideals, ideals) of S1.

In what follows we construct a Galois connection, which follows from the Theorem
2.3 (2.4) (5) and (6) below, between the complete lattice of all substructures of a
given type for a semigroup and the complete lattice of all substructures of the same
type for the 0 (1)-adjoined semigroup.

Theorem 2.3. For any semigroup S, whenever ∗ = s, q, b, l, r, i, the maps
ε∗ : S∗(S) → S∗(S0) defined by for any A ∈ S∗(S), ε∗A = A∪{0} and δ∗ : S∗(S0) →
S∗(S) defined by for any C ∈ S∗(S0), δ∗C = C−{0}, satisfy the following properties:

(1) The map ε∗ is one-one;
(2) The map δ∗ is onto;
(3) For any A,B ∈ S∗(S), A 6 B implies ε∗A 6 ε∗B;
(4) For any C,D ∈ S∗(S0), C 6 D implies δ∗C 6 δ∗D;
(5) ε∗ ◦ δ∗ ⊇ 1S∗(S0), where 1S∗(S0) is the identity map on S∗(S0);
(6) δ∗ ◦ ε∗ = 1S∗(S), where 1S∗(S) is the identity map on S∗(S).
For any family (Ai)i∈I in S∗(S),
(7) ε∗(∩i∈IAi) = ∩i∈Iε∗Ai;
(8) (i) for ∗ = s, q, b, ε∗(∨i∈IAi) = ∨i∈Iε∗Ai;
(ii) for ∗ = l, r, i, ε∗(∪i∈IAi) = ∪i∈Iε∗Ai.
For any family (Ci)i∈I in S∗(S0),
(9) δ∗(∩i∈ICi) = ∩i∈Iδ∗Ci;
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(10) (i) for ∗ = s, q, b, δ∗(∨i∈ICi) = ∨i∈Iδ∗Ci;

(ii) for ∗ = l, r, i, δ∗(∪i∈ICi) = ∪i∈Iδ∗Ci.
(11) The map ε∗ is a complete monomorphism;
(12) The map δ∗ is a complete epimorphism.

Proof. (1): It is straightforward.
(2): It follows from the definition of δ∗ and the Lemma 2.4(2).
(3): It follows from the definition of ε∗ and the Lemmas 2.4(2), 2.3(6).
(4): It follows from the definition of δ∗ and the Lemmas 2.4(4) and 2.3(6).
(5): (a) For ∗ = s
Case I: Let C ∈ Ss(S) ⊆ Ss(S0). Then

(εs ◦ δs)(C) = εs(δs(C)) = εs(C) = C ∪ {0} ⊃ C.

Case II: Let D ∈ Ss(S0)− Ss(S). Then

(εs ◦ δs)(D) = εs(δs(D)) = εs(D − {0}) = (D − {0}) ∪ {0} = D.

From the above two Cases, we have

(εs ◦ δs)(X) ⊇ X for all X ∈ Ss(S0) or εs ◦ δs ⊇ 1Ss(S0),

where 1Ss(S0) is the identity map on Ss(S0).
(b) For ∗ = q
Case I: Let ϕ ∈ Sq(S0). Then

(εq ◦ δq)(ϕ) = εq(δq(ϕ)) = εq(ϕ) = ϕ ∪ {0} = {0} ⊃ ϕ.

Case II: Let ϕ ̸= C ∈ Sq(S0). Then

(εq ◦ δq)(C) = εq(δq(C)) = εq(C − {0}) = (C − {0}) ∪ {0} = C.

From the above two Cases, we have

(εq ◦ δq)(X) ⊇ X for all X ∈ Sq(S0) or εq ◦ δq ⊇ 1Sq(S0),

where 1Sq(S0) is the identity map on Sq(S0).
For ∗ = b, l, r, i, the proofs follow in a similar way as in (b) above.
(6): It follows from the definitions of ε∗ and δ∗.
(7): It follows from the definition of ε∗ and the Lemma 2.1(2).
(8): It follows from the definition of ε∗, Lemma 2.1(3) and the Corollary 2.3(1).
(9): It follows from the definition of δ∗ and the Lemma 2.1(4).
(10): It follows from the definition of δ∗, Lemma 2.1(1) and the Corollary

2.3(2).
(11): It follows from (1), (7) and (8) above.
(12): It follows from (2), (9) and (10) above. �

The following Example shows that (1) ε∗ is not onto and (2) δ∗ is not one-one
in the above Theorem for ∗ = s, q, b, l, r, i.
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Example 2.3. Let S = {a, b} be the semigroup with the following Cayley table.
Then S0 = {a, b, 0} is the semigroup with the following Cayley table:

·S a b
a a a
b a b

·S0 a b 0
a a a 0
b a b 0
0 0 0 0

(1) For ∗ = s, q, b, l, r, i, let B = ϕ ∈ S∗(S0). Then there is no A ∈ Ss(S)
such that ε∗A = A ∪ {0} = B or ε∗ is not onto.

(2) For ∗ = s, q, b, l, r, i, let B = ϕ and D = {0} ∈ S∗(S0). Then δ∗B = ϕ =
δ∗D but B ̸= D or δ∗ is not one-one.

Theorem 2.4. For any semigroup S, the maps ε : Ss(S) → Ss(S1) defined
by for any A ∈ Ss(S), εA = A ∪ {1} and δ : Ss(S1) → Ss(S) defined by for any
C ∈ Ss(S1), δC = C − {1}, satisfy the following properties:

(1) The map ε is one-one;
(2) The map δ is onto;
(3) For any A,B ∈ Ss(S), A 6 B implies εA 6 εB;
(4) For any C,D ∈ Ss(S1), C 6 D implies δC 6 δD;
(5) ε ◦ δ ⊇ 1Ss(S1), where 1Ss(S1) is the identity map on Ss(S1);
(6) δ ◦ ε = 1Ss(S), where 1Ss(S) is the identity map on Ss(S).
For any family (Ai)i∈I in Ss(S),
(7) ε(∩i∈IAi) = ∩i∈IεAi;
(8) ε(∨i∈IAi) = ∨i∈IεAi.
For any family (Ci)i∈I in Ss(S1),
(9) δ(∩i∈ICi) = ∩i∈IδCi;
(10) δ(∨i∈ICi) = ∨i∈IδCi.
(11) The map ε is a complete monomorphism;
(12) The map δ is a complete epimorphism.

Proof. (1): It is straightforward.
(2): It follows from the definition of δ and the Lemma 2.5(2).
(3): It follows from the definition of ε and the Lemmas 2.5(2), 2.3(6).
(4): It follows from the definition of δ and the Lemmas 2.5(4), 2.3(6).
(5): It follows from the definitions of δ, ε and the Lemma 2.5(1).
(6): It follows from the definitions of ε and δ.
(7): It follows from the definition of ε and the Lemma 2.1(2).
(8): It follows from the definition of ε, Lemma 2.1(3) and the Corollary 2.3(3).
(9): It follows from the definition of δ and the Lemma 2.1(4).
(10): It follows from the definition of δ, Lemma 2.1(1) and the Corollary 2.3(4).
(11): It follows from (1), (7) and (8) above.
(12): It follows from (2), (9) and (10) above. �
The following Example shows that in the above Theorem (1) ε is not onto and

(2) δ is not one-one.



224 NISTALA V.E.S. MURTHY AND CH. MAHESWARI

Example 2.4. Let S and S1 be the semigroups same as in the Example 2.2.
(1) Let B = {a} ∈ Ss(S1). Then there is no A ∈ Ss(S) such that εA = A∪{1}

= B or ε is not onto.
(2) Let B = {a} and D = {a, 1} ∈ Ss(S1). Then δB = {a} = δD but B ̸= D

or δ is not one-one.

Remark 2.2. Observe that from the Example 2.2, it is clear that adjoining of 1
does not preserve (left, right, quasi-, bi-) ideals. Consequently, the above Theorem
has no analogues in the case of (left, right, quasi-, bi-) ideals.

Definition 2.12. ([14]) Let U be a universal set, P (U) be the power set of
U and E be a set of parameters. A pair (F,E) is called a soft set over U iff
F : E → P (U) is a mapping defined by for each e ∈ E, F (e) is a subset of U .

Notice that a collective presentation of all the notions algebras, soft sets, fuzzy
soft sets, f-soft algebras, f-fuzzy soft algebras in the single paper, Murthy-Maheswari
[15] raised some serious notational conflicts and to fix the same we deviated from
the above notation for a soft set and adapted the following notation for convenience
as follows:

Let U be a universal set. A typical soft set over U is an ordered pair E =
(σE , E), where E is a set of parameters, called the underlying parameter set for E,
P (U) is the power set of U and σE : E → P (U) is a map, called the underlying set
valued map for E.

Definition 2.13. ([4]) The empty soft set over U is a soft set with the empty
parameter set, denoted by Φ = (σϕ, ϕ). Clearly, it is unique.

Definition 2.14. ([4]) A soft set E over U is said to be a null soft set iff σEe
= ϕ for all e ∈ E.

Definition 2.15. ([17]) For any pair of soft sets A, B over U , A is a soft subset
of B, denoted by A ⊆ B, iff (i) A ⊆ B (ii) σAa ⊆ σBa for all a ∈ A.

Definition 2.16. For any family of soft subsets (Ai)i∈I of E,
(1) ([8]) the soft union of (Ai)i∈I , denoted by ∪i∈IAi, is defined by the soft set

A, where
(i) A = ∪i∈IAi

(ii) σAa = ∪i∈IaσAia for all a ∈ A, where Ia = {i ∈ I/a ∈ Ai}
(2) the soft intersection of (Ai)i∈I , denoted by ∩i∈IAi, is defined by the soft

set A, where
(i) A = ∩i∈IAi

(ii) σAa = ∩i∈IσAia for all a ∈ A.

Definition 2.17. ([2]) A soft set (F,A) over a semigroup S which is neither
empty nor null is said to be a soft semigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) over S iff F (a) is a subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of S for all a ∈ A whenever F (a) ̸= ϕ.

Notice that the definitions of soft semigroup, soft subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) used in this paper are different from the above
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ones in two ways. Firstly, the substructure notions defined above are over/of a crisp
semigroup and the substructure notions defined below are a slight generalizations of
the above, namely, those of a soft semigroup and secondly, as empty set is trivially
a (sub) semigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) for us, in our
definitions below, we do not need the two pre-conditions that a soft set (F,A) be
neither empty nor null, as in the above definitions.

3. Soft Substructures of a Soft Semigroup

In what follows we introduce the notions of soft (sub) semigroup, soft (left,
right, quasi-, bi-) ideal of a soft semigroup and make a (algebraic) lattice theoretic
study of (sub) collections of them. Notice that throughout this section U is a
semigroup unless otherwise explicitly stated.

Definition 3.1. A soft set E over a semigroup U is said to be a soft semigroup
over U iff σEe is a subsemigroup of U for all e ∈ E. Consequently, for us the empty
soft set Φ and the null soft set ΦE over U are trivially soft semigroups over U .

Definition 3.2. For any soft subset A of a soft semigroup E over U , A is a
soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of E iff σAa
is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of σEa for all
a ∈ A. Notice that the empty soft subset Φ and a null soft subset ΦA of E are
trivially soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals)
of E.

Lemma 3.1. For any soft semigroup E over U , the following are true:
(1) For any pair of soft subsemigroups (left ideals, right ideals, ideals, quasi-

ideals, bi-ideals) A, B of E, A is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of B iff A is a soft subset of B

(2) Arbitrary union of soft (left, right) ideals of E is always a soft (left, right)
ideal of E but arbitrary union of soft subsemigroups (quasi-ideals, bi-ideals) of E
need not be a soft subsemigroup (quasi-ideal, bi-ideal) of E

(3) Arbitrary intersection of soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of E is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E

(4) The intersection of all soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) containing a given soft subset is a soft subsemigroup (left
ideal, right ideal, ideal, quasi-ideal, bi-ideal) which is unique and smallest with
respect to the containment of the given soft subset.

Proof. (1) follows from the Definition 3.2 and the Lemma 2.3(6).
(2) follows from the definition 2.16(1) and the Lemma 2.3(2).
(3) and (4) follows from the definition 2.16(2) and the Lemma 2.3 (3) and

(4). �

Definition 3.3. For any soft subset A of a soft semigroup E over U , whenever ∗
= s (l, r, i, q, b), the unique smallest soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E containing A defined as in the Lemma 3.1(4) is called the
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soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) generated by A
and is denoted by (A)s, E ((A)∗, E).

Lemma 3.2. For any soft subset A of a soft semigroup E over U , whenever
∗ = s (l, r, i, q, b), the soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal,
bi-ideal) generated by A, (A)s, E ((A)∗, E), is given by C, where C = A and σCe =
(σAe)s, σEe ((σAe)∗, σEe) for all e ∈ C.

Proof. It is straightforward. �

Notation: For any soft semigroup E over U , whenever ∗ = s (l, r, i, q, b),
Ss(E) (S∗(E)) is the set of all soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of E and for any pair of soft subsemigroups (left ideals, right
ideals, ideals, quasi-ideals, bi-ideals) A, B of E, A 6s B (A 6∗ B) iff A is a soft
subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of B.

Theorem 3.1. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i,
the set S∗(E) is a complete lattice with

(1) the partial ordering defined by: for any A, B ∈ S∗(E), A 6 B iff A 6∗ B;
(2) the largest and the least elements in S∗(E) are E and Φ respectively;
(3) for any family (Ai)i∈I in S∗(E), ∧i∈IAi = ∩i∈IAi;
(4) for any family (Ai)i∈I in S∗(E), however,
(i) for ∗ = s, q, b, ∨i∈IAi = ∨i∈IAi, where ∨ is the meet induced join in S∗(E)

and ∨i∈IAi = A, where A = ∪i∈IAi and σAe = (∪i∈IeσAie)∗, σEe for all e ∈ A,
where Ie = {i ∈ I/e ∈ Ai}, and

(ii) for ∗ = l, r, i, ∨i∈IAi = ∪i∈IAi.

Proof. It is straightforward. �

Theorem 3.2. For any soft semigroup E over U , whenever ∗ = (l, r) i, the set
(S∗(E)) Si(E) of all soft (left, right) ideals of E is a distributive complete lattice and
so a modular complete lattice.

Proof. It follows from the Definitions 2.16 and 2.2 and the Theorem 3.1. �

The Examples to show that, whenever ∗ = s (q, b), the set Ss(E) (S∗(E)) of
all soft subsemigroups (quasi-ideals, bi-ideals) of E is neither a distributive nor a
modular lattice, follow from that of Example 2.1.

4. 0 (1)-Adjoined Soft Semigroups

In this section, we introduce the notions of 0 (1)-Adjoined Soft Semigroups
and studied some of their properties. Further, we construct a Galois connection
between the complete lattice of soft substructures of a soft semigroup and the
complete lattice of soft substructures of the 0 (1)-adjoined soft semigroup.

Definition 4.1. For any soft semigroup E over U , the soft semigroup E0 =
(σE0 , E0) over U0 (cf.Definition 2.8), where E0 = E and σE0e = σEe ∪ {0} for
all e ∈ E0, such that E is a soft subsemigroup of E0 is called the 0-adjoined soft
semigroup.
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Notice that
(1) Φ0 = Φ
(2) if E = ΦE then E0 = F, where F = E and σF e = {0} for all e ∈ F
(3) if E is the whole soft semigroup over U then E0 is the whole soft semigroup

over U0.

Definition 4.2. For any soft semigroup E over U and for any soft subset B of
the 0-adjoined soft semigroup E0, the soft subset B− {0} = C of E, where C = B
and σCe = σBe− {0} for all e ∈ C, is called the 0-contraction of B in E.

Notice that
(1) the 0-contraction of Φ is Φ itself and
(2) the 0-contraction of E0 is E.

Definition 4.3. For any soft semigroup E over U , the soft semigroup E1 =
(σE1 , E1) over U1 (cf.Definition 2.10), where E1 = E and σE1e = σEe ∪ {1} for
all e ∈ E1, such that E is a soft subsemigroup of E1 is called the 1-adjoined soft
semigroup.

Notice that
(1) Φ1 = Φ
(2) if E = ΦE then E1 = F, where F = E and σF e = {1} for all e ∈ F
(3) if E is the whole soft semigroup over U then E1 is the whole soft semigroup

over U1.

Definition 4.4. For any soft semigroup E over U and for any soft subset B of
the 1-adjoined soft semigroup E1, the soft subset B − {1} = C, where C = B and
σCe = σBe− {1} for all e ∈ C, is called the 1-contraction of B in E.

Notice that
(1) the 1-contraction of Φ is Φ itself and
(2) the 1-contraction of E1 is E.

Lemma 4.1. For any soft semigroup E over U , the following are true:
(1) If A is a soft subsemigroup of E then A is also a soft subsemigroup of E0.

Further, Ss(E) is a proper subset of Ss(E0)
(2) If A is a soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-

ideal) of E then A0 is a soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal,
bi-ideal) of E0

(3) If B is a soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-
ideal) of E0 then B − {0} = C is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E. Further, for any B ∈ Ss(E) ⊆ Ss(E0), B− {0} = B.

Proof. It follows from the Lemma 2.4. �

Lemma 4.2. For any soft semigroup E over U , the following are true:
(1) If A is a soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)

of E then A is also a soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-
ideal) of E1. In particular, E is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E1. Further, whenever ∗ = s, l, r, i, q, b, S∗(E) is a proper
subset of S∗(E1)
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(2) If A is a soft subsemigroup of E then A1 is a soft subsemigroup of E1

(3) If B is a soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)
of E1 then B− {1} = C is a soft subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) of E. Further, whenever ∗ = s, l, r, i, q, b, for any B ∈ S∗(E) ⊆
S∗(E1), B− {1} = B.

Proof. It follows from the Lemma 2.5. �

Remark 4.1. Observe that, in view of the Lemma 4.1(2), while 0-adjoining is
structure preserving, in view of the Lemma 4.2(1), 1-adjoining behaves like transi-
tivity.

The Example to show that if A is a soft (left, right, quasi-, bi-) ideal of E
then A1 need not be a soft (left, right, quasi-, bi-) ideal of E1, follow from that of
Example 2.2.

Corollary 4.1. For any soft semigroup E over U , the following are true:
(1) The complete lattice Ss(E) of all soft subsemigroups of E is a complete

sublattice of the complete lattice Ss(E0) of all soft subsemigroups of E0

(2) Whenever ∗ = s (q, b, l, r, i), the complete lattice Ss(E) (S∗(E)) of all soft
subsemigroups (quasi-ideals, bi-ideals, left ideals, right ideals, ideals) of E is a com-
plete sublattice of the complete lattice Ss(E1) (S∗(E1)) of all soft subsemigroups
(quasi-ideals, bi-ideals, left ideals, right ideals, ideals) of E1.

Proof. It is straightforward. �

In what follows we construct a Galois connection, which follows from the Theo-
rem 4.1 (4.2) (5) and (6) below, between the complete lattice of all soft substructures
of a given type for a soft semigroup and the complete lattice of all soft substructures
of the same type for the 0 (1)-adjoined soft semigroup.

Theorem 4.1. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i,
the maps ε∗ : S∗(E) → S∗(E0) defined by for any A ∈ S∗(E), ε∗A = A0, where A0

= A and σA0e = σAe ∪ {0} for all e ∈ A0, and δ∗ : S∗(E0) → S∗(E) defined by for
any C ∈ S∗(E0), δ∗C = C − {0} = F, where F = C and σF e = σCe − {0} for all
e ∈ F , satisfy the following properties:

(1) The map ε∗ is one-one;
(2) The map δ∗ is onto;
(3) For any A, B ∈ S∗(E), A 6 B implies ε∗A 6 ε∗B;
(4) For any C, D ∈ S∗(E0), C 6 D implies δ∗C 6 δ∗D;
(5) ε∗ ◦ δ∗ ⊇ 1S∗(E0), where 1S∗(E0) is the identity map on S∗(E0);
(6) δ∗ ◦ ε∗ = 1S∗(E), where 1S∗(E) is the identity map on S∗(E).
For any family (Ai)i∈I in S∗(E),
(7) ε∗(∩i∈IAi) = ∩i∈Iε∗Ai;
(8) (i) for ∗ = s, q, b, ε∗(∨i∈IAi) = ∨i∈Iε∗Ai;
(ii) for ∗ = l, r, i, ε∗(∪i∈IAi) = ∪i∈Iε∗Ai.
For any family (Ci)i∈I in S∗(E0),
(9) δ∗(∩i∈ICi) = ∩i∈Iδ∗Ci;
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(10) (i) for ∗ = s, q, b, δ∗(∨i∈ICi) = ∨i∈Iδ∗Ci;

(ii) for ∗ = l, r, i, δ∗(∪i∈ICi) = ∪i∈Iδ∗Ci.
(11) The map ε∗ is a complete monomorphism;
(l2) The map δ∗ is a complete epimorphism.

Proof. In (a) below, we prove the Theorem for ∗ = s. Then in (b) below,
the proof is outlined for ∗ = q, b. Finally, in (c) below, for ∗ = l, r, i, the proof is
outlined.

(a): (1): It is straightforward.

(2): It follows from the definition of εs and the Lemma 4.1 (1) and (3).

(3) and (4): Follows from the definitions of εs and δs and the Lemmas 3.1(1)
and 2.15.

(5): Case I: Let C ∈ Ss(E) ⊆ Ss(E0). Then

(εs ◦ δs)(C) = εs(δs(C)) = εs(C− {0}) = εs(C) = C0 ⊃ C.

Case II: Let C ∈ Ss(E0) − Ss(E). Then (εs ◦ δs)(C) = εs(δs(C)). Let δsC =
C−{0} = F. Then F = C and σF e = σCe−{0} for all e ∈ F . Let εsF = F0. Then
F0 = F and σF0e = σF e ∪ {0} for all e ∈ F0.

We show that F0 = C or (i) F0 = C (ii) σF0e = σCe for all e ∈ F0.
(i): F0 = F = C.
(ii): Let e ∈ F0 = C be fixed.
Now σF0e = σF e ∪ {0} = (σCe− {0}) ∪ {0} = σCe.
Now (i) and (ii) imply F0 = C or (εs ◦ δs)(C) = εs(δs(C)) = C.
From the above two Cases, we get that

(εs ◦ δs)(X) ⊇ X for all X ∈ Ss(E0) or εs ◦ δs ⊇ 1Ss(E0),

where 1Ss(E0) is the identity map on Ss(E0).

(6): Case I: Φ ∈ Ss(E), (δs ◦ εs)(Φ) = δs(εs(Φ)) = δs(Φ) = Φ.
Case II: If Φ ̸= A ∈ Ss(E) then (δs ◦ εs)(A) = δs(εs(A)).
Let εsA = A0. Then A0 = A and σA0e = σAe ∪ {0} for all e ∈ A0.
Let δsA0 = A0 − {0} = F. Then F = A0 and σF e = σA0e− {0} for all e ∈ F .
We show that F = A or (i) F = A (ii) σF e = σAe for all e ∈ F .
(i): F = A0 = A.
(ii): Let e ∈ F = A be fixed.
Now σF e = σA0e− {0} = (σAe ∪ {0})− {0} = σAe.
Now (i) and (ii) imply F = A or (δs ◦ εs)(A) = δs(εs(A)) = A.
From the above two Cases, we get that

(δs ◦ εs)(A) = A for all A ∈ Ss(E) or δs ◦ εs = 1Ss(E),

where 1Ss(E) is the identity map on Ss(E).

(7): Let ∩i∈IAi = A. Then A = ∩i∈IAi and σAe = ∩i∈IσAie for all e ∈ A. Let
εsA = A0. Then A0 = A and σA0e = σAe ∪ {0} for all e ∈ A0. Let εsAi = Bi0.
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Then Bi0 = Ai and σBi0
e = σAie ∪ {0} for all e ∈ Bi0. Let ∩i∈IBi0 = B0. Then

B0 = ∩i∈IBi0 and σB0e = ∩i∈IσBi0
e for all e ∈ B0.

We show that A0 = B0 or (i) A0 = B0 (ii) σA0e = σB0e for all e ∈ A0.
(i): A0 = A = ∩i∈IAi = ∩i∈IBi0 = B0.
(ii): Let e ∈ A0 = B0 be fixed.
Now σA0e = σAe∪ {0} = (∩i∈IσAie)∪ {0} = ∩i∈I(σAie∪ {0}) = ∩i∈IσBi0

e =
σB0e.

Now (i) and (ii) imply A0 = B0 or εs(∩i∈IAi) = ∩i∈IεsAi.

(8): Let ∨i∈IAi = A. Then A = ∪i∈IAi and σAe = (∪i∈IeσAie)s, σEe for
all e ∈ A, where Ie = {i ∈ I/e ∈ Ai}. Let εsA = A0. Then A0 = A and σA0e =
σAe∪{0} for all e ∈ A0. Let εsAi = Bi0. Then Bi0 = Ai and σBi0

e = σAie∪{0} for
all e ∈ Bi0. Let ∨i∈IBi0 = B0. Then B0 = ∪i∈IBi0 and σB0e = (∪i∈IeσBi0

e)s, σE0e

for all e ∈ B0, where Ie = {i ∈ I/e ∈ Bi0}.
We show that A0 = B0 or (i) A0 = B0 (ii) σA0e = σB0e for all e ∈ A0.
(i): A0 = A = ∪i∈IAi = ∪i∈IBi0 = B0.
(ii): Let e ∈ A0 = B0 be fixed.
Now σB0e = (∪i∈IeσBi0

e)s, σE0e
= (∪i∈Ie(σAie ∪ {0}))s, σE0e

= ((∪i∈IeσAie) ∪
{0})s, σE0e

= (∪i∈IeσAie)s, σEe ∪ {0} = σAe ∪ {0} = σA0e.

Now (i) and (ii) imply A0 = B0 or εs(∨i∈IAi) = ∨i∈IεsAi.

(9): Let ∩i∈ICi = C. Then C = ∩i∈ICi and σCe = ∩i∈IσCie for all e ∈ C. Let
δsC = C− {0} = F. Then F = C and σF e = σCe− {0} for all e ∈ F . Let δsCi =
Ci − {0} = Gi. Then Gi = Ci and σGie = σCie− {0} for all e ∈ Gi. Let ∩i∈IGi =
G. Then G = ∩i∈IGi and σGe = ∩i∈IσGi

e for all e ∈ G.
We show that F = G or (i) F = G (ii) σF e = σGe for all e ∈ F .
(i): F = C = ∩i∈ICi = ∩i∈IGi = G.
(ii): Let e ∈ F = G be fixed.
Now σF e = σCe−{0} = (∩i∈IσCie)−{0} = (∩i∈IσCie)∩ {0}c = ∩i∈I(σCie∩

{0}c) = ∩i∈I(σCie− {0}) = ∩i∈IσGie = σGe.
Now (i) and (ii) imply F = G or δs(∩i∈ICi) = ∩i∈IδsCi.

(10): Let ∨i∈ICi = C. Then C = ∪i∈ICi and σCe = (∪i∈IeσCie)s, σE0
e for all

e ∈ C, where Ie = {i ∈ I/e ∈ Ci}. Let δsC = C − {0} = F. Then F = C and
σF e = σCe − {0} for all e ∈ F . Let δsCi = Ci − {0} = Gi. Then Gi = Ci and
σGie = σCie − {0} for all e ∈ Gi. Let ∨i∈IGi = G. Then G = ∪i∈IGi and σGe =
(∪i∈IeσGie)s, σEe for all e ∈ G, where Ie = {i ∈ I/e ∈ Gi}.

We show that F = G or (i) F = G (ii) σF e = σGe for all e ∈ F .
(i): F = C = ∪i∈ICi = ∪i∈IGi = G.
(ii): Let e ∈ F = G be fixed.
Now
σGe = (∪i∈IeσGie)s, σEe = (∪i∈Ie(σCie−{0}))s, σEe = (∪i∈Ie(σCie∩{0}c))s, σEe

= ((∪i∈IeσCi
e)∩ {0}c)s, σEe = ((∪i∈IeσCi

e)− {0})s, σEe = (∪i∈IeσCi
e)s, σE0

e − {0}
= σCe− {0} = σF e.

Now (i) and (ii) imply F = G or δs(∨i∈ICi) = ∨i∈IδsCi.

(11): It follows from (1), (7) and (8)(i) above.
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(12): It follows from (2), (9) and (10)(i) above.

(b): (1): It follows in a similar way as in (a)(1) above.

(2): Let F ∈ Sq(E). Then F0 ∈ Sq(E0). Now δqF0 = F0 − {0} = G implies G
= F0 and σGe = σF0e − {0} for all e ∈ G which implies G = F0 = F and σGe =
σF0e − {0} = (σF e ∪ {0}) − {0} = σF e for all e ∈ G implying G = F or δqF0 = G
= F or δq is onto.

(3) and (4): Follow in a similar way as in (a) (3) and (4) above.

(5): Case I: Φ ∈ Sq(E0), (εq ◦ δq)(Φ) = εq(δq(Φ)) = εq(Φ) = Φ.
Case II: Let Snq (E0) = {ΦA0/A0 ⊆ E0 and σA0e = ϕ for all e ∈ A0} be the set

of all null soft quasi-ideals of E0. Clearly, S
n
q (E0) ⊆ Sq(E0).

If C ∈ Snq (E0) then (εq ◦ δq)(C) = εq(δq(C)) = εq(C− {0}) = εq(C) = C0 ⊃ C.
Case III: If Φ ̸= C ∈ Sq(E0)− Snq (E0) then (εq ◦ δq)(C) = εq(δq(C)).
Let δqC = C− {0} = F. Then F = C and σF e = σCe− {0} for all e ∈ F . Let

εqF = F0. Then F0 = F and σF0e = σF e ∪ {0} for all e ∈ F0.
We show that F0 = C or (i) F0 = C (ii) σF0e = σCe for all e ∈ F0.
(i): F0 = F = C.
(ii): Let e ∈ F0 = C be fixed.
Now σF0e = σF e ∪ {0} = (σCe− {0}) ∪ {0} = σCe.
Now (i) and (ii) imply F0 = C or (εq ◦ δq)(C) = εq(δq(C)) = C.
From the above three Cases, we get that (εq ◦ δq)(X) ⊇ X for all X ∈ Sq(E0) or

εq ◦ δq ⊇ 1Sq(E0), where 1Sq(E0) is the identity map on Sq(E0).

(6)-(12): Follow in a similar way as in (a) (6)-(12) above.
For ∗ = b, the proof follows in a similar way as in (b) above.

(c): (1): It is straightforward.

(2): It follows in a similar way as in (b)(2) above.

(3) and (4): Follow in a similar way as in (a) (3) and (4) above.

(5): It follows in a similar way as in (b)(5) above.

(6) and (7): Follow in a similar way as in (a) (6) and (7) above.

(8): Let ∪i∈IAi = A. Then A = ∪i∈IAi and σAe = ∪i∈IeσAie for all e ∈ A,
where Ie = {i ∈ I/e ∈ Ai}. Let εlA = A0. Then A0 = A and σA0e = σAe ∪ {0}
for all e ∈ A0. Let εlAi = Bi0. Then Bi0 = Ai and σBi0

e = σAie ∪ {0} for all
e ∈ Bi0. Let ∪i∈IBi0 = B0. Then B0 = ∪i∈IBi0 and σB0e = ∪i∈IeσBi0

e for all
e ∈ B0, where Ie = {i ∈ I/e ∈ Bi0}.

We show that A0 = B0 or (i) A0 = B0 (ii) σA0e = σB0e for all e ∈ A0.
(i): A0 = A = ∪i∈IAi = ∪i∈IBi0 = B0.
(ii): Let e ∈ A0 = B0 be fixed.
Now σB0

e = ∪i∈IeσBi0
e = ∪i∈Ie(σAi

e ∪ {0}) = (∪i∈IeσAi
e)∪ {0} = σAe∪ {0}

= σA0e.
Now (i) and (ii) imply A0 = B0 or εl(∪i∈IAi) = ∪i∈IεlAi.

(9): It follows in a similar way as in (a)(9) above.
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(10): Let ∪i∈ICi = C. Then C = ∪i∈ICi and σCe = ∪i∈IeσCie for all e ∈ C,
where Ie = {i ∈ I/e ∈ Ci}. Let δlC = C − {0} = F. Then F = C and σF e =
σCe − {0} for all e ∈ F . Let δlCi = Ci − {0} = Gi. Then Gi = Ci and σGie =
σCie−{0} for all e ∈ Gi. Let ∪i∈IGi = G. Then G = ∪i∈IGi and σGe = ∪i∈IeσGie
for all e ∈ G, where Ie = {i ∈ I/e ∈ Gi}.

We show that F = G or (i) F = G (ii) σF e = σGe for all e ∈ F .
(i): F = C = ∪i∈ICi = ∪i∈IGi = G.
(ii): Let e ∈ F = G be fixed.
Now

σGe = ∪i∈IeσGie = ∪i∈Ie(σCie− {0}) = ∪i∈Ie(σCie ∩ {0}c)
= (∪i∈IeσCie) ∩ {0}c = (∪i∈IeσCie)− {0} = σCe− {0} = σF e.

Now (i) and (ii) imply F = G or δl(∪i∈ICi) = ∪i∈IδlCi.

(11): It follows from (1), (7) and (8)(ii).

(12): It follows from (2), (9) and (10)(ii).
For ∗ = r, i, the proofs follow in a similar way as in (c) above. �

The following Example shows that in the above Theorem whenever ∗= s, q, b, l,
r, i, (1) the map ε∗ is not onto and (2) the map δ∗ is not one-one.

Example 4.1. Let S and S0 be the semigroups same as in the Example 2.3,
E = ({(e, S)}, {e}) and E0 = ({(e, S0)}, {e}) be the whole soft semigroups over S
and S0 respectively.

(1) For ∗ = s, q, b, l, r, i, let ΦE0 = ({(e, ϕ)}, {e}) ∈ S∗(E0). Clearly, there is
no A ∈ S∗(E) such that ε∗A = ΦE0 . Therefore ε∗ is not onto.

(2) For ∗ = s, q, b, l, r, i, let C = ({(e, ϕ)}, {e}) and D = ({(e, {0})}, {e}) ∈
S∗(E0). Then δ∗C = ({(e, ϕ)}, {e}) = δ∗D but C ̸= D. Therefore δ∗ is not one-one.

Theorem 4.2. For any soft semigroup E over U , the maps ε : Ss(E) → Ss(E1)
defined by for any A ∈ Ss(E), εA = A1, where A1 = A and σA1e = σAe ∪{1} for all
e ∈ A1, and δ : Ss(E1) → Ss(E) defined by for any C ∈ Ss(E1), δC = C− {1} = F,
where F = C and σF e = σCe− {1} for all e ∈ F , satisfy the following properties:

(1) The map ε is one-one;
(2) The map δ is onto;
(3) For any A, B ∈ Ss(E), A 6 B implies εA 6 εB;
(4) For any C, D ∈ Ss(E1), C 6 D implies δC 6 δD;

(5) ε ◦ δ ⊇ 1Ss(E1), where 1Ss(E1) is the identity map on Ss(E1);
(6) δ ◦ ε = 1Ss(E), where 1Ss(E) is the identity map on Ss(E).
For any family (Ai)i∈I in Ss(E),
(7) ε(∩i∈IAi) = ∩i∈IεAi;
(8) ε(∨i∈IAi) = ∨i∈IεAi.
For any family (Ci)i∈I in Ss(E1),
(9) δ(∩i∈ICi) = ∩i∈IδCi;
(10) δ(∨i∈ICi) = ∨i∈IδCi.
(11) The map ε is a complete monomorphism;
(12) The map δ is a complete epimorphism.
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Proof. It follows in a similar way as in the case of ∗ = s of the Theorem
4.1. �

The following Example shows that in the above Theorem (1) the map ε is not
onto and (2) the map δ is not one-one.

Example 4.2. Let S and S1 be the semigroups same as in the Example 2.2,
E = ({(e, S)}, {e}) and E1 = ({(e, S1)}, {e}) be the whole soft semigroups over S
and S1 respectively.

(1) Let ΦE1 = ({(e, ϕ)}, {e}) ∈ Ss(E1). Clearly, there is no A ∈ Ss(E) such that
εA = A1 = ΦE1 . Therefore ε is not onto.

(2) Let C = ({(e, ϕ)}, {e}) and D = ({(e, {1})}, {e}) be in Ss(E1).
Then δC = ({(e, ϕ)}, {e}) = δD but C ̸= D. Therefore δ is not one-one.

Remark 4.2. Observe that from the Example 2.2, it is clear that adjoining of
1 does not preserve soft (left, right, quasi-, bi-) ideals. Consequently, the above
Theorem has no analogues in the case of soft (left, right, quasi-, bi-) ideals.

Conclusion: These results are crucial in the Representation of Soft Substructures
of a Soft Semigroup as certain type of Crisp Substructures of a crisp Semigroup.

Acknowledgments: The second author expresses her indebtedness to the first
author for his enormous patience and meticulous supervision without which this
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