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NEW TECHNIQUE IN ASYMPTOTIC STABILITY

FOR SECOND ORDER NONLINEAR DELAY

INTEGRO DIFFERENTIAL EQUATIONS

Hocine Gabsi, Abdelouaheb Ardjouni, and Ahcene Djoudi

Abstract. The second order nonlinear integro-differential equation

ẍ (t) + f (t, x (t) , ẋ (t)) ẋ (t) +
N∑

j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds = 0,

with variable delays τj (t) > 0, 1 6 j 6 N , is investigated with low restric-
tions on the delays. Omitting assumptions such as differentiability on τj or

inversibility of functions t− τj (t), makes the variation of parameters method
difficult to apply to the equation. To circumvent the difficulties we choose
conditions for f, aj , gj and we, carefully, amplify space of functions so that

the equation takes a suitable form that facilitates the inversion of the equation
into an equivalent one from which we derive a fixed point mapping. The end
result is not only conditions for existence and uniqueness of solutions of the
equation, but also for boundedness and stability of the zero solution of that

equation. We also provide conditions that make zero solution asymptotically
stable. The technique we use here avoids many difficulties which we often
encounter in studying any class of second order nonlinear equations with vari-
ables delays and offers, what we hope, a new way to investigate the stability by

fixed point theory. Our work extends and improves previous results in the lit-
erature such as, D. Pi: Study the stability of solutions of functional differential
equations via fixed points. Nonlinear Analysis, 74(2)(2011), 639–651.

1. Introduction

The theory of stability for delays nonlinear neutral integro-differential equa-
tions makes possible the treatment of physical and biological phenomena systems
such as nuclear reactors or neural networks systems. Such systems are often sources
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of instability and degradation in many control problems. This has motivated inves-
tigators to mathematically discuss problems of stability, instability and asymptotic
stability of these systems of great interest. For more than 100 years, the Lyapunov
direct method has been the ultimate key tool to study stability problems. The
direct method was widely used to study the stability of solutions of ordinary differ-
ential equations and functional differential equations. Nevertheless, the pointwise
nature of this method and the construction of the Lyapunov functionals have been,
and still are, an arduous task (see [7]).

Recently, many authors have realized that the fixed points theory can be used
to overcome the difficulties and to study the stability of the solutions (see [1]-[8],
[10], [12], [14]-[16], [18]-[20]). Levin and Nohel [13] studied the following nonlinear
system of differential equations of Liénard form

(1.1) ẍ+ h (t, x, ẋ) ẋ+ f (x) = a(t).

They obtained, by constructing a proper Lyapunov function, conditions under
which all solutions of (1.1) tend to zero as t → ∞. D. Pi (see [14]) studied the
asymptotic stability of the equation

(1.2) ẍ+ f (t, x, ẋ) ẋ+ g (x (t− τ (t))) = 0.

D. Pi result requires the assumption that τ (·) is continuous and its derivative
has an inverse. D. Pi has considered other equations related to (1.2) (see [15,
16]), nevertheless his results rely on the introduction of an arbitrary and unknown
continuous function which is contested by the public of this domain because there
is no real success at finding such a function. Many other interesting results on fixed
points and stability properties can be found in the references [1]-[7].

In this paper, we consider the equation

(1.3) ẍ+ f (t, x, ẋ) ẋ+

N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds = 0,

for t > 0 where, for j = 1, N , functions

τj : R+ −→ R+, aj(·, ·) : R+ × [−τj (0) ,∞) −→ R, f : R+ × R× R −→ R+

and gj (·, ·) : [−τj (0) ,∞)× R −→ R
are all continuous functions. We assume that,

(1.4) t− τj (t) −→ ∞ as t −→ ∞, j = 1, N.

For each t0 > 0, define

mj (t0) =: inf {s− τj (s) : s > t0} , j = 1, N

and let

m (t0) := min
{
mj (t0) , j = 1, N

}
.

Let C (t0) := C ([m (t0) , t0] ,R) be the space of continuous functions endowed with
supremum norm ∥·∥, that is, for ψ ∈ C (t0) ,

∥ψ∥ := sup {|ψ (s)| : m (t0) 6 s 6 t0} .
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We will also use ∥φ∥ := sup {|φ (s)| : s ∈ [m (t0) ,∞)} to express the supremum of
continuous bounded functions on [m (t0) ,∞) later. It is well known (see [11]) that,
for a given continuous function ψ, there exists a solution for equation (1.3) on an
interval [m (t0) , T ), and if the solution remains bounded, then T = ∞. We denote
by x (t) the solution x (t, t0, ψ). Now, let G(t) := f ((t, x(t), ẋ(t)). We can rewrite
equation (1.3) as

(1.5) ẍ+G (t) ẋ+
N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds = 0.

Our purpose is to give a necessary and sufficient condition ensuring that the zero
solution of the above equation is asymptotically stable. Being free of the intro-
duction of the unknown function used in Pi work (see [15, 16]), we hope that the
present method will offers not only results of stability but a new way to investigate
second order nonlinear integro-differential equations as well.

2. Preliminaries

Some asymptotic properties on integral equations are needed in this work. So,
let f be a real or complex-valued function of the variable t > 0 and p be a real or
a complex parameter such that ℜ (p) > 0. We define the Laplace transform (see
[9],[17]) of f as

(2.1) F (p) = L (f (t))(p) =

∫ ∞

0

e−ptf (t) dt.

Also, recall that the Laplace transform (2.1) of power function tγ is given by

L (tγ)(p) =

∫ ∞

0

e−pttγdt =
Γ (γ + 1)

pγ+1
, γ > −1, p > 0,

with Gamma function Γ (z) is defined by the integral

Γ (z) =

∫ ∞

0

e−ttz−1dt = L
(
tz−1

)
(1)
,

which converges in the right half of the complex plane ℜ (z) > 0. Now, let −∞ 6
α < β 6 +∞, φ : [α, β] → R and define, for λ ∈ R, the integral

F (λ) =

∫ β

α

e−λφ(t)f (t) dt.

We assume that there exists a constant λ0 > 0 such that for every λ > λ0 we have,∫ β

α

e−λφ(t) |f (t)| dt <∞.

The following theorem is crucial to reach our goal (see [9, Theorem VII.3.1]).
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Theorem 2.1. Let φ : [α, β) −→ R+ be a function such that φ is of class C1,
φ′ > 0 on [α, β). Assume that f is a continuous function at α with f (α) ̸= 0.
Then,

(2.2) F (λ) ∼ f (α)

φ′ (α)

1

λ
e−λφ(α), as λ→ +∞.

Proof. (a) To begin with, suppose φ (t) = t and α = 0. Then,

F (λ) =

∫ β

0

e−λtf (t) dt.

We check that F (λ) satisfies the property (2.2). Indeed, since f is continuous at
α = 0, then, for any given ε > 0, one can choose η sufficiently small, such that

|f (t)− f (0)| 6 ε, for 0 6 t 6 η.

Next, we decompose F (λ) in the following manner

(2.3) F (λ) = f (0)

∫ η

0

e−λtdt+

∫ η

0

e−λt (f (t)− f (0)) dt+

∫ β

η

e−λtf (t) dt.

From (2.3) we can establish the following estimates∫ η

0

e−λtdt =
1

λ

(
1− e−λη

)
.∫ η

0

e−λt (f (t)− f (0)) dt 6 ε

∫ ∞

0

e−λtdt =
ε

λ
.

For t > η we have (λ− λ0) (t− η) > 0. Thus, −λt 6 −λt+ (λ− λ0) (t− η) and so∫ β

η

e−λtf (t) dt 6 e−η(λ−λ0)

∫ β

η

e−λ0tf (t) dt.

(b) Let us return to the general case. For this purpose, consider the function

g : [α, β) −→ [0, β0) , t 7−→ g (t) := φ (t)− φ (α) ,

where β0 = φ (β) − φ (α). We observe that g is bijective on [α, β). Denote the
reciprocal function of g by

ψ : [0, β0) −→ [α, β) , u 7−→ ψ (u) .

The change of variables t = ψ (u) yields the integral formula

(2.4) F (λ) = e−λφ(α)
∫ β0

0

e−λuf (ψ (u))ψ′ (u) du.

We see that

dψ (u)

dt
= ψ′ (φ (t)− φ (α))φ′ (t) = 1 and ψ′ (0) =

1

φ′ (α)
.

Define

f̃ (u) := f (ψ (u))ψ′ (u) .
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Clearly, the function f̃ is continuous at 0. Moreover,

f̃ (0) = f (ψ (0))ψ′ (0) =
f (α)

φ′ (α)
.

Thus, equation (2.4) is as

(2.5) F (λ) = e−λφ(α)
∫ β0

0

e−λuf̃ (u) du,

Now, by applying a similar argumentation as in (a) to the integral term of (2.5)
we obtain ∫ β0

0

e−λuf̃ (u) du ∼ f̃ (0)
1

λ
=

f (α)

φ′ (α)

1

λ
, as λ→ +∞.

Therefore,

F (λ) ∼ f (α)

φ′ (α)

1

λ
e−λφ(α), as λ→ +∞.

This ends the proof. �

Stability definitions, fixed point technique and more details on delay differential
equations can be found in ([11, 7]).

Definition 2.1. The zero solution of (1.3) is stable if for each ε > 0 there
exists δ = δ (ε, t0) > 0 such that [ψ ∈ C (t0) , ∥ψ∥ < δ] implies that |x (t, t0, ψ)| < ε
for t > t0.

Definition 2.2. The zero solution of (1.3) is asymptotically stable if it is
stable and there is a δ1 = δ1 (t0) > 0 such that [ψ ∈ C (t0) , ∥ψ∥ < δ1] implies that
|x (t, t0, ψ)| −→ 0 as t −→ ∞.

3. Main Results

In this section, we will prove Theorem 3.1 and Theorem 3.2 on stability and as-
ymptotic stability, respectively, for equation (1.3) by using the contraction mapping
principle. But our equation is second order, nonlinear and has no non trivial edo
term so the inversion of that equation needs some preparations to be domesticated.
In fact, we have to transform (1.3) but, as we shall see, such a transformation is
not simple to find nevertheless remains crucial for our work. Lemmas 3.1 and 3.2
are the subject of these esthetic works. More precisely, we give some conditions
that will help to better rewrite equation (1.3) for the integration. We, then, use
the variation of parameter to the given equation in Lemma 3.3 to invert it into an
equivalent one and derive a fixed point mapping a solution of which is the solution
of (1.3). For all that we shall need some functional preparations. First, let β be
such that

(3.1) β > σ := sup

∫ t

0

e−
∫ t
s
a(v)dvds.
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Let X := C ([t0,∞) ,R+) to be the Banach space of real-valued bounded continuous
functions on [t0,∞) with the supremum norm ∥·∥. Next consider Kβ the subset of
X defined by

Kβ :=

{
η ∈ C ([t0,∞) ,R+) : η 6 1

2β

}
.

HenceKβ is closed subset ofX. Then, (Kβ , ∥·∥) is also a Banach space of continuous
real-valued functions with supremum norm defined by

∥φ∥ = sup {|φ (t)| : t ∈ [t0,∞)} .
Next, an important special case of a first order differential equation is the first

order nonlinear differential equation given by

(A) φ′ + aφ− φ2 = b,

together with the initial condition

(B) φ (t0) = φt0 ,

where a and b are arbitrary functions. Assume that φ, ϕ : [t0,∞) −→ R+ are
continuous with

(C) ϕ = a− φ.

In this section, we begin by studying such nonlinear equations involving multiple
unknown functions. Next lemma shows that, under certain assumptions on a, the
nonlinear equation (A) can always be solved inKβ . So, we will present some criteria
for the existence of positive solutions of differential equations of first order (A)–(C).

Lemma 3.1. Suppose that a, b : [t0,∞) −→ R+ are continuous functions and
(3.1) holds. Assume that

(3.3) a (t) > φt0 +
1

2β
,

for t > t0. Then, there exist two positive continuous functions ϕ, φ that satisfy
(A)–(C).

Proof. Let d (x, y) = ∥x− y∥ be the associate metric. Then, (Kβ , d) is a
complete metric space. Having in mind (A), we observe that

(3.4)
(
φe

∫ t
t0
a(v)dv

)′
=

(
φ2 + b

)
e
∫ t
t0
a(v)dv

.

Consequently, the integration of (3.4) from t0 to t gives

φ (t) = φt0e
−

∫ t
t0
a(v)dv

+

∫ t

t0

e−
∫ t
s
a(v)dvφ2 (s) ds+

∫ t

t0

e−
∫ t
s
a(v)dvb (s) ds.

Define the map T on Kβ by the expression, for ω ∈ Kβ

(Tω) (t) := φt0e
−

∫ t
t0
a(v)dv

+

∫ t

t0

e−
∫ t
s
a(v)dvω2 (s) ds+

∫ t

t0

e−
∫ t
s
a(v)dvb (s) ds.
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Observe that, if we choose φt0 such that

(3.5) 0 6 φt0e
−

∫ t
t0
a(v)dv

+

∫ t

t0

e−
∫ t
s
a(v)dvb (s) ds <

1

4β
,

then, one can show that T maps Kβ into itself. Indeed, let ω ∈ Kβ , by making use
of (3.1) and (3.1), we have

|Tω (t)| 6 φt0e
−

∫ t
t0
a(v)dv

+

∫ t

t0

e−
∫ t
s
a(v)dvb (s) ds+

∫ t

t0

e−
∫ t
s
a(v)dvω2 (s) ds

6 1

4β
+ ∥ω∥2

∫ t

t0

e−
∫ t
s
a(v)dvds

6 1

4β
+

(
1

2β

)2

β 6 1

2β
.

That is, Tω ∈ Kβ . Further, T is a contraction on Kβ , since for ϕ, φ ∈ Kβ

|Tϕ (t)− Tφ (t)| 6
∫ t

t0

e−
∫ t
s
a(v)dv

∣∣ϕ2 (s)− φ2 (s)
∣∣ ds

6 ∥ϕ− φ∥
∫ t

t0

e−
∫ t
s
a(v)dv |ϕ (s) + φ (s)| ds

6 2

2β
∥ϕ− φ∥

∫ t

t0

e−
∫ t
s
a(v)dvds

6 σ

β
∥ϕ− φ∥ ,

where σ is defined in (3.1). Consequently, T has, by the contraction mapping
principle, a unique solution φ∗ which satisfies the following inequality

a (t)− φ∗ (t) > a (t)− 1

2β
> 1

2β
− 1

2β
= 0,

from which the proof of the lemma becomes immediate. �

We now turn our attention to study the asymptotic stability of (1.3) and we
begin first by transforming it into an equivalent equation which conserves the same
properties.

Lemma 3.2. Suppose all conditions in Lemma 3.1 hold. Then, there exist
p, q : [t0,∞) −→ R+ such that the equation (1.3) is equivalent to

d

dt
(ẋ (t) + p (t)x (t)) + q (t) (ẋ (t) + p (t)x (t))

+

N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds = 0.(3.6)

for t ∈ [t0,∞).
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Proof. It is clear that by differentiating the first term in brackets of equation
(3.6) and by comparing it with the equation (1.3), we see that p is a solution of
equation p′+qp = 0 and p+q = G. Substituting q = G−p into equation p′+qp = 0,
we obtain p′ +Gp = p2. By Lemma 3.1 we observe that p, q : [t0,∞) −→ R+. �

Lemma 3.3. If x (t) is a solution of equation (1.3) on an interval [t0, T ) satis-
fying the initial condition x(t) = ψ(t) on [m(t0), t0] and ẋ(t0) = ẋt0 , then x (t) is a
solution of the following integral equation

x (t) = xt0e
−

∫ t
t0
p(v)dv

+ (ẋt0 + p0xt0)

∫ t

t0

e−
∫ t
s
p(v)dve

−
∫ s
t0
q(v)dv

ds

−
N∑
j=1

∫ t

t0

e−
∫ t
s
p(v)dv

∫ u

t0

e−
∫ s
u
q(v)dv

∫ u

u−τj(u)
aj(u, v)gj (v, x (v)) dvduds,(3.7)

on [t0, T ). Conversely, if a continuous function x (·) is equal to ψ (·) for t ∈
[m(t0), t0] and is the solution of above integral equation on an interval [t0, T1),
then x (·) is a solution of (1.3) on [t0, T1).

Proof. By Lemma 3.2, equation (1.3) can be written as

d

dt
(ẋ (t) + p (t)x (t)) + q (t) (ẋ (t) + p (t)x (t))

+
N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds = 0.(3.8)

By letting z (t) := ẋ (t) + p (t)x (t) for t > t0, equation (3.8) can be expressed as

ż + q (t) z = −
N∑
j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds.

Multiplying both sides of the above equation by e
∫ t
t0
q(v)dv

and integrating from t0
to t, we obtain

ẋ (t) + p (t)x (t) = (ẋt0 + p0xt0) e
−

∫ t
t0
q(v)dv

−
N∑
j=1

∫ t

t0

e−
∫ t
u
q(v)dv

∫ u

u−τj(u)
aj(u, v)gj (v, x (v)) dvdu.(3.9)

Similarly, multiplying both sides of (3.9) by e
∫ t
t0
p(v)dv

and integrating from t0 to
t, we find exactly (3.7). Conversely, suppose that a continuous function x (·) is
equal to ψ (·) on [m (t0) , t0] and satisfies (3.7) on an interval [t0, T1). Then it is
twice differentiable on [t0, T1). Differentiating (3.7) with the aid of Leibniz’s rule,
we obtain (1.3). �

Next, we shall define a mapping directly from (3.7) such that a fixed point
of this map will be a solution of (3.7) and, hence, a solution of equation (1.3) by
Lemma 3.3. To obtain stability of the zero solution of (1.3), we need the mapping
defined by (3.7) to map bounded functions into bounded functions. For that, we
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let (C, ∥·∥) to be the Banach space of real-valued bounded continuous functions on
[m(t0),∞) with the supremum norm ∥·∥, that is for φ ∈ C

∥φ∥ := sup {|φ (t)| ; t ∈ [m (t0) ,∞)} .

Our investigations will be carried out on the complete metric space (C, ρ), where ρ
is the uniform metric. That is, for φ, ϕ ∈ C we set ρ (φ, ϕ) := ∥φ− ϕ∥ .

Let ψ ∈ C([m(t0), t0],R) be fixed and define

(3.10) Sψ := {φ : [m(t0),∞) → R | φ ∈ C, φ(t) = ψ(t) for t ∈ [m(t0), t0]}.

Being closed in C, (Sψ, ρ) is itself complete. There is no confusion if we use the
norm ∥·∥ on [m(t0), t0] or on [m(t0),∞).

Below we want to force the mapping suggested by (3.7) and explicitly defined
in the next lemma to map Sψ into itself. For that reason we assume that the
followings conditions hold.

i.

(3.11) lim inf
t−→∞

∫ t

t0

p(s)ds > −∞.

ii. There exists some functions Rj (·) ∈ C (R,R+) such that, for x1, x2 ∈ R

|gj (t, x1)− gj (t, x2)| 6 Rj (t) |x1 − x2| , j = 1, ..., N for all t ∈ R,(3.12)

gj (t, 0) = 0, j = 1, ..., N for t ∈ R+.(3.13)

iii. For t > t0, there is a constant α > 0 satisfying

(3.14)
N∑
j=1

∫ t

t0

e−
∫ t
s
p(v)dv

∫ s

t0

e−
∫ s
u
q(v)dv

∫ u

u−τj(u)
|aj(u, v)|Rj (v) dvduds 6 α.

There exist constants a0 > 0, γ > 0, Q0 > 0 such that, for each t > u > Q0 > t0
we have

(3.15)

∫ t

u

p (υ) dυ +

∫ u

t0

q (υ) dυ > a0u
γ + b, b ∈ R.

Lemma 3.4. Define the mapping P on Sψ as follows, for φ ∈ Sψ,

(Pφ)(t) = ψ(t) if t ∈ [m(t0), t0],

while for t > t0

Pφ(t) = x (t0) e
−

∫ t
t0
p(v)dv

+ (ẋ (t0) + p0x (t0))

∫ t

t0

e−
∫ t
s
p(v)dve

−
∫ s
t0
q(v)dv

ds

−
N∑
j=1

∫ t

t0

e−
∫ t
s
p(v)dv

∫ s

t0

e−
∫ s
u
q(v)dv

∫ u

u−τj(u)
aj(u, v)gj (v, φ (v)) dvduds.(3.16)

Suppose that the conditions, (3.12), (3.13), (3.14) and (3.15) hold true. Then
P : Sψ → Sψ.
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Proof. First, due to condition (3.11) one can define

(3.17) M = sup
t>t0

e
−

∫ t
t0
p(v)dv

.

Obviously, if φ is continuous then, due to the definition of P , Pφ is continuous and
agrees with ψ on [m(t0), t0]. For t > t0, note that from (3.11), (3.12), (3.13) and
(3.14), it follows that

|Pφ (t)| 6 ∥ψ∥M + (|ẋ (t0)|+ p0 ∥ψ∥)
∫ t

t0

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du+ α ∥φ∥ .

To prove that P : Sψ → Sψ it is necessary to show that the term∫ t

t0

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du

is bounded. For that, we decompose the last integral term in the following manner∫ t

t0

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du =

∫ J

t0

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du

+

∫ t

J

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du,(3.18)

for some J > Q0. The first term on the right hand side of (3.18) is obviously
bounded. For the second term on the right hand side of (3.18), we use (3.15) to
have

(3.19)

∫ t

J

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du 6 e−b
∫ t

J

e−a0u
γ

du.

Now, put

(3.20) F (J) :=

∫ ∞

J

e−a0u
γ

du.

Performing the change of variables u = θ
1
γ , we obtain

(3.21) F (J) =
1

γ

∫ ∞

Jγ

e−a0θθ
1
γ −1dθ 6 1

γ

∫ ∞

0

e−a0θθ
1
γ −1dθ =

Γ (1/γ)

γa
1/γ
0

.

Then, F (J) is bounded for γ > 0. Consequently, |Pφ (t)| < +∞ and thus Pφ ∈
Sψ. �

Seizing upon Lemma 3.3 and Lemma 3.4 we built an existence and uniqueness
result. Under the conditions of the next theorem, we prove that for a given con-
tinuous function ψ : [m(t0), t0] −→ R there exists a unique continuous function x
which is solution of (1.3) on [m(t0),∞) and coincides with ψ on [m(t0), t0]. We
also prove that the zero solution of (1.3) have the property of Definition 2.1.

Theorem 3.1. Suppose all hypotheses of Lemma 3.4 hold with α ∈ (0, 1) in
(3.14). Then, for each initial continuous function ψ : [m(t0), t0] −→ R, there is a
unique continuous function x : [m(t0),∞) → R with x(t) = ψ(t) on [m(t0), t0] that
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satisfies (1.3) on [t0,∞). Moreover, x (·) is bounded on [m(t0),∞) . Furthermore,
the zero solution of (1.3) is stable at t = t0.

Proof. Consider Sψ the space defined by the initial continuous function ψ :
[m(t0), t0] → R given by (3.10). By Lemma 3.4 we know that P : Sψ → Sψ. In
fact, P is a contraction with constant α < 1 too. To see this, let φ, ϕ ∈ Sψ. Making
use of condition (3.14) we obtain

∥Pφ− Pϕ∥

6
N∑
j=1

∫ t

t0

e−
∫ t
s
p(v)dv

∫ s

t0

e−
∫ s
u
q(v)dv

∫ u

u−τj(u)
|aj(u, v)|Rj (v) |φ (u)− φ (v)| dvduds

6 α ∥φ− ϕ∥ .

for t > t0. Trivially, this inequality also holds on [m(t0), t0]. Therefore, P is a
contraction mapping on the complete metric space (Sψ, ρ) since we have supposed
α < 1. By the contraction mapping principle, P possesses a unique fixed point x
in Sψ which is bounded continuous function. Due to Lemma 3.4, this is a solution
of (1.3) and hence a solution of (1.3) on [m(t0),∞). It follows that x is the only
bounded function satisfying (1.3) on [m(t0),∞) and the initial function ψ.

It remains to show that the zero solution of (1.3) is stable. Toward this, put

(3.22) L := sup
t>t0

∫ t

t0

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du.

Let ε > 0 be given. Choose |ẋ(t0)| and ψ : [m (t0) , t0] −→ R such that ∥ψ∥ < δ
(δ 6 ε), and

(3.23) Mδ + (|ẋ (t0)|+ p0δ)L 6 (1− α) ε.

If x (t) is a solution of (1.3) with ẋ (t0) = ẋt0 then, x (·) = (Px) (·) as defined in
(3.16). Notice that with such a δ, |x (s)| = |ψ (s)| < ε on [m (t0) , t0]. We claim
that |x (t)| < ε for all t > t0. If x is a solution with initial function ψ then, as
consequence of (3.16), we have

|x (t)| 6Mδ + (|ẋ (t0)|+ p0δ)L+ εα

6 (1− α) ε+ εα 6 ε.(3.24)

Therefore, the zero solution is stable at t = t0. �

Theorem 3.2. Under the hypotheses of Theorem 3.1 the zero solution of (1.3)
is asymptotically stable if and only if

(3.25)

∫ t

0

p(s)ds −→ ∞, as t −→ ∞.

Proof. First, suppose that (3.25) holds. We wish the solutions of (1.3) to
tend to zero whenever condition (3.25) holds. For this, we will modify Sψ in order
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to receipt functions that tends to zero as t −→ ∞. So, we let

S0
ψ := {φ ∈ [m(t0),∞) → R | φ ∈ C,

φ(t) = ψ(t) for t ∈ [m(t0), t0] and φ(t) → 0 as t→ ∞} .

Since S0
ψ is closed in Sψ and (Sψ, ρ) is complete, then the metric space

(
S0
ψ, ρ

)
is

also complete. We begin by proving that Pφ (t) → 0 as t → ∞ whenever φ ∈ S0
ψ.

To this end, denote the three terms on the right hand side of (3.16) by I1, I2,

I3 respectively and let φ ∈ S0
ψ be fixed. Since

∫ t
0
p(s)ds −→ ∞, as t −→ ∞, by

condition (3.25), we see obviously that the first term I1 of (3.16) tends to zero as
t −→ ∞. We check that I2 −→ 0 as t −→ ∞. To do this, we have to prove that
the two right hand side terms of the decomposition expression (3.18) go to zero at
infinity. But the first term of that decomposition is as∫ J

t0

e−
∫ t
u
p(v)dve

−
∫ u
t0
q(v)dv

du = e−
∫ t
J
p(v)dv

∫ J

t0

e−
∫ J
u
p(v)dve

−
∫ u
t0
q(v)dv

du,

which tends to 0 as t −→ ∞ by condition (3.25). Nevertheless, the second term
on the right had side of (3.18) needs some more details to prove that it converges
to zero. To overcome the difficulties, remember that, upon replacing u by Jθ in
(3.20), we get

F (J) = J

∫ ∞

1

e−(a0J
γ)θγdθ.

The function G (λ) :=
∫∞
1
e−λθ

γ

dθ satisfies the conditions of Theorem 2.1 where

λ = a0J
γ , α = 1, φ (θ) = θγ , f ≡ 1, φ′ (α) = γαγ−1 = γ, f (α) = 1.

It follows that

G (λ) ∼ f (α)

φ′ (α)

1

λ
e−λφ(α) =

1

γ

1

λ
e−λ, (λ −→ +∞) .

Thus we can write

F (J) ∼ 1

γa0
J1−γe−a0J

γ

, (J −→ +∞) .

It is enough to make z = a0J
γ and a straightforward computation gives

1

γa0
J1−γe−a0J

γ

=
1

γa
1/γ
0

z
1
γ −1e−z 6 1

γa
1/γ
0

zme−z −→ 0 as z −→ ∞.

where m := [1/γ] + 1. Thus, for every ε > 0 we can find a J∗ ≫ Q0 large enough
such that for every J > J∗

e−b

γa0
J1−γe−a0J

γ 6 ε.

Clearly, the expansion (3.18) is valid if J is replaced by J∗. So, the last term tends
towards zero when t −→ ∞. Hence the second term I2 in (3.16) tends to zero as
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t −→ ∞. We, now turn to I3. To simplify, we define

(3.26) V (s) :=
N∑
j=1

∫ s

t0

e−
∫ s
u
q(v)dv

∫ u

u−τj(u)
|aj(u, v)|Rj (v) dvdu.

So, for the given ε > 0, there exists a T ∗ > t0 such that s > T ∗ implies |φ(v)| < ε
for j = 1, N . It is clear that |gj (v, φ(v))| < Rj (v) ε. Thus, for t > T ∗, by making
use of conditions (3.12) and (3.13) the term I3 satisfies

I3 6 sup
ζ>m(t0)

|φ (ζ)|
∫ T∗

t0

V (s) e−
∫ t
s
p(v)dvds+ ε

∫ t

T∗
V (s) e−

∫ t
s
p(v)dvds

6 αε+ sup
ζ>m(t0)

|φ (ζ)|
∫ T∗

t0

V (s) e−
∫ t
s
p(v)dvds.

Also, the conditions (3.25) implies that, there exists T ∗∗ > T ∗ such that for t > T ∗∗

we have

e−
∫ t
T∗∗ p(v)dv sup

ζ>m(t0)

|φ (ζ)|
∫ t

T∗
V (s) e−

∫ T∗∗
s

p(v)dvds 6 ε.

So, I3 −→ 0 as t −→ ∞. Consequently, (Pφ) (t) −→ 0 as t −→ ∞. Thus, P maps
S0
ψ into itself. Also, P is still a contraction on S0

ψ with a unique fixed point x.

By Lemma 3.3, x is a solution of (1.3) on [t0,∞). We conclude that x (t) is the
only continuous solution of (1.3) agreeing with the initial function ψ. As x ∈ S0

ψ,

x (t) → 0 as t → ∞. Therefore, the zero solution is asymptotically stable, since it
is stable by Theorem 3.1 and we have just concluded that |x (t)| −→ 0 as t −→ ∞
if condition (3.25) holds.

Conversely, we shall prove that
∫∞
t0
p(v)dv = ∞. Contrary to this, there exists

a sequence {tn}n>1 with tn −→ ∞ as n −→ ∞ and such that
∫ tn
t0
p(v)dv = l for a

certain finite number l ∈ R+. By condition (3.11), we may also choose µ > 0 that

satisfies the inequality, −µ 6
∫ tn
t0
p(v)dv 6 µ, for all n > 1. Recalling (3.26) and

using condition (3.14) we have∫ tn

t0

e
−

∫ tn
t0

p(v)dv
V (s) ds 6 α,

we deduce

e
−

∫ tn
t0

p(v)dv
∫ tn

t0

e
∫ s
t0
p(v)dv

V (s) ds 6 α.

This yields

(3.27)

∫ tn

t0

e
∫ s
t0
p(v)dv

V (s) ds 6 αeµ.

The inequality (3.27) leads to the fact that the sequence

(3.28)

∫ tn

t0

e
∫ s
t0
p(v)dv

V (s) ds,
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is bounded, so it has a convergent subsequence. For brevity, we assume that

lim
n−→∞

∫ tn

0

e
∫ s
0
p(v)dvV (s) ds = σ > 0.

Then, we can choose a positive integer n0 large enough such that∫ tn

tn0

e
∫ s
t0
p(v)dv

V (s) ds <
δ0
2M

.

for n > n0, where ε > δ0 > 0 satisfies

|ψ (tn0)|M + ((|ẋ (tn0)|+ |p0x (tt0)|))L 6 (1− α) .

Now, we consider the solution x (t) = x (t, ψ, ẋ (tn0)) of equation (1.3), for the
initial values ψ and ẋ (tn0) such that

x (tn0) = ẋ (tn0) = δ0, p0 =
1

4β

|ψ (s)| 6 δ0, s 6 tn0 .

By a similar argument as in (3.24) and by replacing ε by 1, this implies that
|x (t)| 6 1. Having in mind the fact that x is a fixed point of P , we have, for
n > n0

|x (tn)| > δ0e
−

∫ tn
tn0

p(v)dv −

∣∣∣∣∣
∫ tn

tn0

e−
∫ tn
s

p(v)dvV (s)ds

∣∣∣∣∣
> e

−
∫ tn
tn0

p(v)dv

[
δ0 −

(
e−

∫ tn0
0 p(v)dv

)∫ tn

tn0

e
∫ s
0
p(v)dvV (s)ds

]

> e
−

∫ tn
tn0

p(v)dv
[
δ0 −

δ0
2

]
> δ0

2
e−2µ > 0.

On the other hand, if the zero solution is asymptotically stable, then x (t) =
x (t, ψ, ẋ (tn0)) → 0, as t → ∞. But this leads leads to a contradiction. This
completes the proof of our claim. �
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