
JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4866, ISSN (o) 2303-4947
www.imvibl.org /JOURNALS / JOURNAL
J. Int. Math. Virtual Inst., Vol. 10(1)(2020), 59-74

DOI: 10.7251/JIMVI2001059D

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

CONTACT PSEUDO-SLANT SUBMANIFOLDS OF

AN (ϵ)− PARA SASAKIAN SPACE FORMS

S. Dirik, M. Atçeken, and Ü. Yıldırım

Abstract. In this paper, we study the geometry of the contact pseudo-slant
submanifolds of an (ϵ)−para Sasakian space form. We give some results for

totally umbilical pseudo-slant submanifolds of an (ϵ)− para Sasakian manifolds
and an (ϵ)−para Sasakian space forms. It is proved that such manifolds are
η-Einstein. Finally, we have verified the theorems by providing an example of
5- dimensional proper contact pseudo-slant submanifold of R9 with it’s usual

almost paracontact metric structure.

1. Introduction

In [22] S. Tanno classified connected almost contact metric manifolds , as those
automorphism groups posses maximum dimension. For such manifold, the sectional
curvature of a plane sections containing ξ is a constant say k. This is classification
is as;

(a) Homogeneous normal contact Riemannian manifolds with say k > 0.
(b) Global Riemannian product of a line (or a circle) and a Kaehlerian manifold

with constant holomorphic sectional curvature if k = 0.
(c) A warped product space R×f Cn, if k < 0.

It is known that manifold of class (a) is characterized by some tensorial equa-
tions . It admits a Sasakian structure. The manifold of class (b) is characterized by
a tensorial relation admitting a cosymplectic structure. The manifold of class (c)
is characterized by some tensorial equations, attaining a Kenmotsu structure. An
almost paracontact structure (φ, ξ, η) satisfying φ2 = I − η ⊗ ξ and η(ξ) = 1 on a
differentiable manifold was introduced by Sato [21] in 1976. Takahashi [23] in 1969,
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gave the notion of almost contact manifold equipped with an associated pseudo-
Riemannian metric. After, Tripathi et. al. [24] has drawn a relation between a
semi-Riemannian metric ( not necessarily Lorentzian ) and an almost paracontact
structure, and he named this indefinite almost paracontact metric structure an (ϵ)-
almost paracontact structure, where the structure vector field ξ will be spacelike
or timelike according as ϵ = 1 or ϵ = −1. Authors have discussed (ϵ)− almost
paracontact manifolds and in particular (ϵ)− Sasakian manifolds in [24]. On the
other hand, the differential geometry of slant submanifolds has shown an increas-
ing development since Chen defined slant submanifolds in complex manifolds as
a natural generalization of both invariant and anti-invariant submanifolds [6, 7].
Many research articles have been appeared on the existence of these submanifolds
in different knows spaces. The slant submanifolds of an almost contact metric
manifolds were defined and studied by Lotta [12]. After, such submanifolds were
studied by Cabrerizo et al. of Sasakian manifolds [4]. Recently, in [2, 8], Atçeken
et al. studied slant and pseudo-slant submanifold in various manifolds. The no-
tion of semi-slant submanifolds of an almost Hermitian manifold was introduced
by Papagiuc [14]. Cabrerizo [5] defined and studied bi-slant immersions in almost
contact metric manifolds and simultaneously gave the notion of pseudo-slant sub-
manifolds. Pseudo-slant submanifolds also have been studied by Khan et al. in
[11]. The present paper is organized as follows.

This paper contains the analysis about contact pseudo-slant submanifolds of an
(ϵ)−para Sasakian space form. Necessary and sufficient conditions are given for a
submanifold to be contact pseudo-slant submanifolds. Finally, we give some results
for totally umbilical pseudo-slant submanifolds of an (ϵ)− para Sasakian manifolds
and (ϵ)−para Sasakian space forms.

2. Preliminaries

In this section, we give some notations used throughout this paper. We recall
some necessary fact and formulas from the theory of (ϵ)− para Sasakian manifolds
and their submanifols.

Let M̃ be an n-dimensional almost paracontact manifold [21] equipped with
an almost paracontact structure (φ, ξ, η) consisting of a tensor field φ of type (1,
1), a vector field ξ and a 1-form η satisfying

(2.1) φ2X = X − η(X)ξ,

(2.2) η(ξ) = 1, φξ = 0, η(X) = g(X, ξ)

and

(2.3) η(φ) = 0

for vector field X on M̃. A semi-Riemannian metric g on a manifold M̃ , is a non
degenerate symmetric tensor field g of type (0, 2). If this metric is of index 1 then
it is called Lorentzian metric [3]. Let g be semi-Riemannian metric with index 1 in



CONTACT PSEUDO-SLANT SUBMANIFOLDS 61

an n-dimensional almost paracontact manifold M̃ such that,

(2.4) g(φX,φY ) = g(X,Y )− ϵη(X)η(Y ),

for all vector fields X and Y on M̃ . Where ϵ = +1 or ϵ = −1.

Then M̃ is called an (ϵ)−almost paracontact metric manifold equipped with an
(ϵ)−almost paracontact metric structure (φ, ξ, η, g, ϵ)[24]. In particular, if index(g)
= 1, then an (ϵ)−almost paracontact metric manifold will be called a Lorentzian
almost paracontact manifold. In particular, if the metric g is positive definite,
then an (ϵ)− almost paracontact metric manifold is the usual almost paracontact
metricmanifold [21].

From (2.1), (2.2) and (2.4), we have

(2.5) g(φX, Y ) = g(X,φY )

and

(2.6) g(X, ξ) = ϵη(X).

From (2.6), it can be easily observed that

g(ξ, ξ) = ϵ,

all vector fields X and Y on M̃ .

An almost paracontact metric structure (φ, ξ, η, g) on a M̃ is an (ϵ)−para-
Sasakian manifold if and only if

(2.7) (∇̃Xφ)Y = −g(φX,φY )ξ − ϵη(Y )φ2X,

for all vector fields X and Y on M̃ . ∇̃ is Levi-Civita connection of M̃ .

From equqtion (2.7), put Y = ξ , we have

(2.8) ∇Xξ = ϵφX.

An (ϵ)− para -Sasakian manifold M̃ is said to be η-Einstein if its Ricci tensor
S of type (0, 2) is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for any vector fields X,Y on M̃. Where a and b are smooth functions on M̃ . In

particular, if b = 0 in the equation above, M̃ is an Einstein manifold.

Let M̃(k) be an (ϵ)− para-Sasakian space form with constant φ-paraholomor-

phic sectional curvature k. Then the curvature tensor R̃ of M̃(k) is given by

g(R̃(X,Y )Z,W ) = (
k − 3

4
) {g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

+(
k + 1

4
){η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )(2.9)

+g(X,Z)η(Y )η(W )− g(Y,Z)η(X)η(W )

+g(Y, φZ)g(φX,W )− g(X,φZ)g(φY,W )

+2g(φX, Y )g(φZ,W )},
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for any vector fields X,Y, Z,W on M̃(k).

Now, let M be a submanifold of an (ϵ)− para Sasakian manifold M̃ . Also, let
∇ and ∇⊥ be the induced connections on the tangent bundle TM and the normal
bundle T⊥M of M , respectively. Then the Gauss and Weingarten formulas are,
respectively, given by

(2.10) ∇̃XY = ∇XY + σ(X,Y ),

(2.11) ∇̃XV = −AV X +∇
⊥

XV,

for any vector fields X,Y on M , where σ and AV are the second fundamental form
and the shape operator (corresponding to the normal vector field V ), respectively,

for the immersion ofM into M̃ . The second fundamental form σ and shape operator
AV are related by

(2.12) g(AV X,Y ) = g(σ(X,Y ), V ),

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

The mean curvature vector H of M is given by H = 1
m

m∑
i=1

σ(ei, ei), where m

is the dimension of M and {e1, e2, ..., em} is a local orthonormal frame of M . A

submanifold M of an (ϵ)−para Sasakian manifold M̃ is said to be totally umbilical
if

(2.13) σ(X,Y ) = g(X,Y )H,

for any X,Y ∈ Γ(TM). A submanifold M is said to be totally geodesic if σ = 0
and M is said to be minimal if H = 0.
For any submanifold M of a Riemannian manifold M̃ , the equation of Gauss is
given by
(2.14)

R̃(X,Y )Z = R(X,Y )Z +Aσ(X,Z)Y −Aσ(Y,Z)X + (∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z),

for any X,Y, Z ∈ Γ(TM), where R̃ and R denote the Riemannian curvature tensor

of M̃ and M , respectively. The covariant derivative ∇̃h of h is defined by

(2.15) (∇̃Xσ)(Y, Z) = ∇
⊥

Xσ(Y, Z)− σ(∇XY, Z)− σ(∇XZ, Y ).

The normal component of (2.14) is said to be the Codazzi equation and it is given
by

(2.16) (R̃(X,Y )Z)
⊥
= (∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z),

where (R̃(X,Y )Z)
⊥

denotes the normal part of R̃(X,Y )Z. If (R̃(X,Y )Z)
⊥
= 0,

then M is said to be curvature-invariant submanifold of M̃ . The Ricci equation is
given by

(2.17) g(R̃(X,Y )V,U) = g(R̃
⊥

(X,Y )V,U) + g([AU , AV ]X,Y ),
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for any X,Y ∈ Γ(TM) and V,U ∈ Γ(T⊥M), where R̃
⊥

denotes the Riemannian

curvature tensor of the normal T⊥M . If R̃
⊥

= 0, then the normal connection of
the submanifold M is called flat.

Let M be a submanifold of an (ϵ)−para Sasakian manifold M̃ . Then for any
X ∈ Γ(TM), we can write

(2.18) φX = TX + FX,

where TX is the tangential component and FX is the normal component of φX.
Similarly for V ∈ Γ(T⊥M), we can write

(2.19) φV = tV + fV,

where tV is the tangential component and fV is also the normal component of φV .

A submanifold M is said to be invariant if F is identically zero, that is, φX ∈
Γ(TM) for all X ∈ Γ(TM). On the other hand, M is said to be anti- invariant if

T is identically zero, that is, φX ∈ Γ(T
⊥
M) for all X ∈ Γ(TM).

Taking into account (2.9) and (2.17), we have

g(R̃
⊥

(X,Y )V,U) = g([AV , AU ]X,Y ) + (
k + 1

4
){g(φX,U)g(Y, φV )

−g(X,φV )g(φY,U) + 2g(φX, Y )g(φV,U)},(2.20)

for any X,Y ∈ Γ(TM) and V,U ∈ Γ(T⊥M). By using (2.9) and (2.14), the
Riemannian curvature tensor R of an immersed submanifold M of an (ϵ)− para-

Sasakian space form M̃(k) is given by

R(X,Y )Z = (
k − 3

4
){g(Y, Z)X − g(X,Z)Y }+ (

k + 1

4
){η(X)η(Z)Y

−η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ

−g(X,φZ)φY + g(Y, φZ)φX + 2g(φX, Y )φZ}
+Aσ(Y,Z)X −Aσ(X,Z)Y + (∇̃Y σ)(X,Z)− (∇̃Xσ)(Y, Z).(2.21)

The normal part of (2.21), we have

(∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z) = (
k + 1

4
){−g(X,TZ)FY(2.22)

+g(Y, TZ)FX + 2g(TX, Y )FZ}.

Thus by using (2.1), (2.18) and (2.19), we obtain

(2.23) T 2 = I − η ⊗ ξ − tF, FT + fF = 0

and

(2.24) f2 = I − Ft, T t+ tf = 0.

Furthermore, for any X,Y ∈ Γ(TM), we have g(FX, Y ) = g(X,FY ) and V,U ∈
Γ(T⊥M), we get g(U, fV ) = g(fU, V ). These relations show that F and f are
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symmetric tensor fields. Moreover, for any X ∈ Γ(TM) and V ∈ Γ(T⊥M), we
have

(2.25) g(FX, V ) = g(X, tV )

which gives the relation between F and t.

On the other hand, the covariant derivatives of the tensor fields T , F , t and f ,
respectively, defined by

(2.26) (∇XT )Y = ∇XTY − T∇XY,

(2.27) (∇XF )Y = ∇⊥
XFY − F∇XY,

(2.28) (∇Xt)V = ∇XtV − t∇⊥
XV

and

(2.29) (∇Xf)V = ∇⊥
XfV − f∇⊥

XV,

for all V ∈ Γ(T⊥M) and X,Y ∈ Γ(TM).

Since M is tangent to ξ, making use of ∇̃Xξ = ϵφX, (2.10) and (2.12) we
obtain

(2.30) ∇Xξ = ϵTX, σ(X, ξ) = ϵFX, AV ξ = ϵtV,

for all V ∈ Γ(T⊥M) and X ∈ Γ(TM).

By direct calculations, we obtain the following
(2.31)
(∇XT )Y = AFY X +Bσ(X,Y ) + g(TX, TY )ξ + g(FX,FY )ξ + ϵη(Y )(X − η(X)ξ)

and

(2.32) (∇XF )Y = fσ(X,Y )− σ(X,TY ).

Similarly, for any V ∈ Γ(T⊥M) and X ∈ Γ(TM), we obtain

(2.33) (∇Xt)V = AfV X − TAV X + g(TX, tV )ξ − g(NX, fV )ξ

and

(2.34) (∇Xf)V = −σ(tV,X)− FAV X − ϵη(Y )V.

By direct calculations, (2.31), (2.32), (2.33) and (2.34) if takking X = ξ, we
obtain the following formulas;

(2.35) (∇ξT )Y = 2ϵtFY

and

(2.36) (∇ξF )Y = −2ϵF tY.

Similarly, for any V ∈ Γ(T⊥M) and X ∈ Γ(TM), we obtain

(2.37) (∇ξt)V = 2ϵtfV

and

(2.38) (∇ξf)V = −2ϵF tV − ϵη(Y )V.
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In contact geometry, A. Lotta introduced slant submanifolds as follows:

Let M be a submanifold of an (ϵ)-para-Sasakian manifold (M̄, φ, ξ, η, g). Then
M is said to be a contact slant submanifold if the angle θ(X) between φX and
TM (p) is constant at any point p ∈ M for any X linearly independent of ξ. Thus
the invariant and anti-invariant submanifolds are special class of slant submanifolds
with slant angles θ = 0 and θ = π

2 , respectively. If the slant angle θ is neither zero
nor π

2 , then slant submanifold is said to be proper contact slant submanifold. The
slant submanifolds of an almost contact metric manifold, the following theorem is
well known [12].

Theorem 2.1. Let M be a submanifold of an (ϵ)-para-Sasakian manifold M̃
such that ξ is tangent to M. Than M is a slant submanifold if and only if there
exists a constant λ ∈ [0, 1] shuch that

(2.39) T 2 = λ(I − η ⊗ ξ).

Moreover, İf θ is the slant angle of M , then it satisfies λ = cos2 θ.

Corollary 2.1. Let M be a slant submanifold of an (ϵ)−para-Sasakian man-

ifold M̃ with slant angle θ. Then for any X,Y ∈ Γ(TM), we have

(2.40) g(TX, TY ) = cos2 θ {g(X,Y )− ϵη(X)η(Y )}

and

(2.41) g(FX,FY ) = sin2 θ {g(X,Y )− ϵη(X)η(Y )} .

Proof. Taking account of T being symmetric and Theorem 2.1, direct cal-
culation gives(2.40). To prove (2.41), it is enought to take into account (2.6) and
(2.18). �

3. Contact Pseudo-Slant Submanifold of

an (ϵ) -Para-Sasakian Manifold

In this section, we study the geometry of the contact pseudo-slant submani-
folds of an (ϵ)- para-Sasakian manifold and obtain integrability conditions for the
distributions on these submanifolds.

Definition 3.1. Let M be a submanifold of an (ϵ)-para-Sasakian manifold M̃ .

M is said to be contact pseudo-slant submanifold of M̃ if there exist two orthogonal
distributions D⊥ and Dθ on M such that:

(i) The distribution Dθ is a slant, that is, the slant angle between of Dθ and
φ(Dθ) is a constant.

(ii) The distribution D⊥ is an anti-invariant i.e., φ(D⊥) ⊂ T⊥M .

(iii) ([11]) TM has the orthogonal direct decomposition TM = D⊥ ⊕ Dθ,
ξ ∈ Γ(Dθ).

If θ = 0 then, the submanifold becomes a semi-invariant submanifold.
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Let d1 =dim(D⊥) and d2=dim(Dθ). We distinguish the following six cases.

(i) If d2 = 0, then M is an anti-invariant submanifold.

(ii) If d1 = 0 and θ = 0, then M is invariant submanifold.

(iii) If d1 = 0 and θ ∈ (0, π
2 ), then M is a proper slant submanifold. (iv) If

θ = π
2 then, M is an anti-invariant submanifold.

(v) If d2d1 ̸= 0 and θ = 0, then M is a semi-invariant submanifold.

(vi) If d2d1 ̸= 0 and θ ∈ (0, π
2 ), then M is a contact pseudo-slant submanifold.

If µ is the invariant subspaces of the normal bundle T⊥M , then in the case of
contact pseudo-slant submanifold, the normal bundle T⊥M can be decomposed as
follows:

T⊥M = µ⊕ F (D⊥)⊕ F (Dθ).

The bases of the contact pseudo-slant submanifolds are given below. Also, let e1,
e2, ..., ep, ep+1 = sec θTe1, ep+2 = sec θTe2, ..., e2p = sec θTep, e2p+1 = ξ, e2p+2,
e2p+3, ..., e2p+q+1 be an orthonormal basis of Γ(TM) such that e1, e2, ..., ep, ep+1 =
sec θTe1, ep+2 = sec θTe2, ..., e2p = sec θTep, e2p+1 = ξ are tangent to Γ(Dθ) and
e2p+2, e2p+3, ..., e2p+q+1 are tangent to Γ(D⊥). Here,dim(M) = 2p+ q + 1 [9].

Theorem 3.1. Let M be a contact pseudo-slant submanifold of an (ϵ)-para-

Sasakian manifold M̃ . Then we obtain

AFZW = AFWZ,

for all Z,W ∈ Γ(D⊥).

Proof. For any Z,W ∈ Γ(D⊥) and U ∈ Γ(TM), also by using ( 2.1), (2.7),
(2.10) and (2.12), we have

g(AFZW −AFWZ,U) = g(σ(W,U), FZ)− g(σ(Z,U), FW )

= g(∇̃UW,φZ)− g(∇̃UZ,φW )

= g(φ∇̃UZ,W )− g(∇̃UφZ,W )

= −g((∇̃Uφ)Z,W )

= g(g(φU,φZ)ξ + ϵη(Z)φ2U,W )

= g(g(FU,FZ)ξ,W ) = 0.

It follows that

(3.1) AFZW = AFWZ,

for any Z,W ∈ Γ(D⊥). �

Theorem 3.2. Let M be a contact pseudo-slant submanifold of an (ϵ)-para

sasakian manifold M̃ . Then anti-invariant distribution D⊥ is always integrable.
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Proof. For any Z,W ∈ Γ(D⊥), we have

−g(FZ,FW )ξ = ∇̃ZφW − φ∇̃ZW

= −AFWZ +∇⊥
ZFW − T∇ZW − tσ(Z,W )

−F∇ZW − fσ(Z,W )

which implies that

AFWZ = −T∇ZW − tσ(Z,W ) + g(FZ,FW )ξ.

Thus we have

(3.2) T [W,Z] = AFZW −AFWZ

From (3.1) and (3.2), we conclude that T [W,Z] = 0, i.e., [W,Z] ∈ Γ(D⊥) . The
proof is completes. �

Theorem 3.3. Let M be a contact pseudo-slant submanifold of an (ϵ)-para-

Sasakian manifold M̃ . Then we obtain

AFZU + T∇UZ + tσ(U,Z) = 0

or

AFZU + T∇UZ + tσ(U,Z) ∈ D⊥.

Proof. For any Z ∈ Γ(D⊥) and X,U ∈ Γ(Dθ), from ( 2.5), (2.7), (2.10),
(2.11), (2.18 )and (2.25), we obtain

g(AφZU,X) = −g(∇̃UφZ,X)

= −g((∇̃Uφ)Z,X)− g(φ∇̃UZ,X)

= −g(g(φU,φZ)ξ − ϵη(Z)φ2U,X) + g(∇̃UZ,φX)

= g(φU,φZ)η(X) + g(∇̃UZ,φX)

= g(FU,FZ)η(X) + g(∇UZ, TX) + g(σ(U,Z), FX)

= g(g(FU,FZ)ξ,X)− g(T∇UZ,X)− g(tσ(U,Z), X)

= g(sin2 θg(U,Z)ξ,X)− g(T∇UZ,X)− g(tσ(U,Z), X)

= −g(T∇UZ,X)− g(tσ(U,Z), X)

which proves the assertion. �

Theorem 3.4. Let M be contact pseudo-slant submanifold of an (ϵ)-para Sasa-
kian manifold M̄ . Then the slant distribution Dθ is integrable if and only if

g(AFTY X −AFTXY, Z) = 2g(AFZTY,X),

for all X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥).
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Proof. By using (2.4), (2.7), (2.18), (2.11), (2.27) and (2.41), we obtain

g([X,Y ], Z) = g(∇XY,Z)− g(∇Y X,Z) = g(∇̃Y Z,X)− g(∇̃XZ, Y )

= g(φ∇̃Y Z,φX)− ϵη(∇̃Y Z)η(X)− g(φ∇̃XZ,φY ) + ϵη(∇̃XZ)η(Y )

g(∇̃Y φZ,φX)− g((∇̃Y φ)Z,φX)− g(∇̃XφZ,φY ) + g((∇̃Xφ)Z,φY )

= g(∇̃Y φZ,φX)− g(g(φY, φZ)ξ + ϵη(Z)φ2Y, φX)

−g(∇̃XφZ,φY ) + g(g(φX,φZ)ξ + ϵη(Z)φ2X,φY )

= g(∇̃Y φZ, TX) + g(∇̃Y φZ,FX)− g(∇̃XφZ, TY )− g(∇̃XφZ,FY )

= −g(AφZTX, Y ) + g(AφZTY,X) + g(∇⊥
Y FZ,F X)− g(∇⊥

XFZ,FY )

= −g(AφZTX, Y ) + g(AφZTY,X) + g((∇Y F )Z + F∇Y FZ,FX)

−g((∇XF )Z + F∇XZ,FY )

= g(AφZTY,X)− g(AφZTX, Y )− g(F∇XZ,FY ) + g(F∇Y Z,FX)

+g(σ(X,Z), fFY )− g(σ(Y,Z), fFX)

= g(AφZTY + TAφZY,X)− sin2 θg(∇XZ, Y ) + sin2 θg(∇Y Z,X)

+g(σ(X,Z), fFY )− g(σ(Y,Z), fFX)

= g(TAφZY +AφZTY,X) + sin2 θg([X,Y ], Z)

+g(AfFY X −AfFXY, Z),

for all X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Consequently, we reach at

cos2 θg([X,Y ], Z) = g(TAφZY +AφZTY,X) + g(AFTXY −AFTY X,Z)

which proves our assertion. �

4. Contact Pseudo-Slant Submanifolds of

an (ϵ)− Para-Sasakian Space Form

In this section, we study pseudo-slant submanifolds in an (ϵ)-para-Sasakian

space form M̃(k) with constant φ-sectional curvature k. We obtain some results
for such submanifolds in terms of curvature tensor.

Theorem 4.1. Let M be a contact pseudo-slant submanifold of an (ϵ)-para

Sasakian space form M̃(k) of constant curvature k with k ̸= −1. Then,

(4.1) R̃(Dθ, Dθ, D⊥, D⊥) = 0,

where D⊥ denotes the orthogonal complemantary distribution to Dθ on M and R̃

denotes the curvature tensor of the (ϵ)-para-Sasakian space form M̃(k).

Proof. Let M be a contact pseudo-slant submanifold. Then on making use
of the formula (2.9), one may easily obtain the equation (4.1). �

Theorem 4.2. Let M be a contact pseudo-slant submanifold of an (ϵ)-para-

Sasakian space form M̃(k) such that k ̸= −1. If M is a contact pseudo-slant
curvature-invariant submanifold. Then,

i) either M is invariant



CONTACT PSEUDO-SLANT SUBMANIFOLDS 69

ii) or M anti-invariant,
iii) or dim(M) = 1.

Proof. Assume that M is a pseudo-slant curvature-invariant submanifold of

an (ϵ)− para- Sasakian space form M̃(k) such that k ̸= −1. Then from (2.16) and
(2.22), we have

−g(TX,Z)FY + g(Y, TZ)FX + 2g(TX, Y )FZ = 0,

for any X,Y, Z ∈ Γ(TM). If we put, X = Z and Y = TZ then we have,
g(TZ, TZ)FZ = 0. Here, by equation (2.40), we obtain

cos2 θ
{
g(Z,Z)− ϵη2(Z)

}2
FZ = 0

or

sin 2θ(g(Z,Z)− ϵη2(Z)) = 0

which implies that, eitherM is invariant or anti-invariant submanifold or dim(M) =
1. �

Theorem 4.3. Let M be a contact pseudo-slant submanifold of an (ϵ)-para

Sasakian space form M̃(k) with flat normal connection such that k ̸= −1. If TAV =
AV T for any vector V normal to M , then M is either anti- invariant or a generic

submanifold of M̃(k).

Proof. If the normal connection of M is flat, then from (2.20), we have

g([AU , AV ]X,Y ) = (
k + 1

4
){g(φX,U)g(Y, φV )− g(X,φV )g(φY,U)

+2g(φX, Y )g(φV,U)},

for any X,Y ∈ Γ(TM) and U, V ∈ Γ(T⊥M). Here, choosing U = fV and Y = TX,
by direct calculations, we can state

g([AV , ACV ]X,PX) = −(
k + 1

2
){g(φX, TX)g(φV, fV )},

= −(
k + 1

2
){g(TX, TX)g(fV, fV )},

that is,

g(ACV AV TX −AV ACV TX,X) = −(
k + 1

2
) {g(TX, TX)g(fV, fV )} ,

from which

tr(ACV AV T )− tr(AV ACV T ) = −(
k + 1

2
)tr(T 2)g(fV, fV ).

If TAV = AV T , then we conclude that tr(AfV AV T ) = tr(AV AfV T ) and thus

tr(T 2)g(fV, fV ) = 0,

from here dim(M) = 2p+ q + 1, then we can easily to see that

(2p+ q + 1)cos2θg(fV, fV ) = 0.
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Thus θ is either π
2 or f = 0. This implies that M is either anti-invariant or it is a

generic submanifold. �

Theorem 4.4. Let M be a contact pseudo-slant submanifold of an (ϵ)-para

Sasakian space form M̃(k). Then the Ricci tensor S of M is given by

S(X,W ) =

{
(
k − 3

4
)(2p+ q)− (

k + 1

4
)(2ϵ+ ϵ2 cos2 θ)

}
g(X,W )

−(
k + 1

4
)(−4 + 2p+ q + 2ϵ2 + ϵ+ ϵ cos2 θ)η(X)η(W )(4.2)

+(2p+ q + 1)g(σ(X,W ),H)−
2p+q+1∑
m=1

g(σ(em,W ), σ(X, em)),

for any X,W ∈ Γ(TM).

Proof. For any X,Y, Z,W ∈ Γ(TM), by using (2.21), we have

g(R(X,Y )Z,W ) = (
k − 3

4
){g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

+(
k + 1

4
){η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )

+η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)

−g(X,φZ)g(φY,W ) + g(Y, φZ)g(φX,W )

+2g(φX, Y )g(φZ,W )}+ g(σ(X,W ), σ(Y, Z))

−g(σ(Y,W ), σ(X,Z)).

Now, let e1, e2, ..., ep, ep+1 = sec θTe1, ep+2 = sec θTe2, ..., e2p = sec θTep, e2p+1 =
ξ, e2p+2, e2p+3, ..., e2p+q+1 be an orthonormal basis of Γ(TM) such that e1, e2, ...,
ep, ep+1 = sec θTe1, ep+2 = sec θTe2, ..., e2p = sec θTep, e2p+1 = ξ are tangent to
Γ(Dθ) and e2p+2, e2p+3, ..., e2p+q+1 are tangent to Γ(D⊥).

Therefore, taking Y = Z = ei, ej , ek and 1 6 i 6 p, 1 6 j 6 p, ξ, 2p+ 2 6 l 6
2p+ q + 1 then, we have

S(X,W ) =

p∑
i=1

g(R(X, ei)ei,W ) +

2p∑
j=p+1

g(R(X, sec θTej) sec θTej ,W )

+g(R(X, ξ)ξ,W ) +

2p+q+1∑
l=2p+2

g(R(X, el)el,W ).



CONTACT PSEUDO-SLANT SUBMANIFOLDS 71

Followed by

S(X,W ) =

{
(
k − 3

4
)(2p+ q) + (

k + 1

4
)(−2ϵ− ϵ2 cos2 θ)

}
g(X,W )

+(
k + 1

4
)(4− 2p− q + 2ϵ2 − ϵ− ϵ cos2 θ)η(X)η(W )

+(2p+ q + 1)g(h(X,W ), H)−
p∑

i=1

g(σ(ei,W ), σ(X, ei))

−
2p∑

j=p+1

g(σ(sec θTej ,W ), σ(X, sec θTej))

−g(σ(ξ,W ), σ(X, ξ))−
2p+q+1∑
l=2p+2

g(σ(el,W ), σ(X, el)).

From here

2p+q+1∑
m=1

g(σ(em,W ), σ(X, em)) =

p∑
i=1

g(σ(ei,W ), σ(X, ei))

+

2p∑
j=p+1

g(σ(sec θTej ,W ), σ(X, sec θTej))

+g(σ(ξ,W ), σ(X, ξ))

+

2p+q+1∑
l=2p+2

g(σ(el,W ), σ(X, el)).

Hence, the proof follows from the above relation. �

Theorem 4.5. Let M be a contact pseudo-slant submanifold of an (ϵ)-para-

Sasakian space form M̃(k). Then the scalar curvature τ of M is given by

τ =

{
(
k − 3

4
)(2p+ q) + (

k + 1

4
)(−2ϵ− ϵ2 cos2 θ)

}
(2p+ q + 1)

+(
k + 1

4
)(4− 2p− q + 2ϵ2 − ϵ− ϵ cos2 θ) + (2p+ q + 1)2 ∥H)∥2 − ∥σ∥2 .(4.3)

Proof. From equation (4.2) by using X = W = em, we have

τ =
2p+q+1∑
m=1

S(em, em) which gives (4.3 ). Thus, the proof is complete. �

Theorem 4.6. Let M be a totally umbilical contact pseudo-slant submanifold

of an (ϵ)-para- Sasakian space form M̃(k). Then the Ricci tensor S of M is given
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by

S(X,W ) =

{
(
k − 3

4
)(2p+ q)− (

k + 1

4
)(2ϵ+ ϵ2 cos2 θ)

}
g(X,W )

−(
k + 1

4
)(−4 + 2p+ q + 2ϵ2 + ϵ+ ϵ cos2 θ)η(X)η(W ),(4.4)

for any X,W ∈ Γ(TM).

Proof. From equation (4.2) by using (2.13), we obtain

S(X,W ) =

{
(
k − 3

4
)(2p+ q)− (

k + 1

4
)(2ϵ+ ϵ2 cos2 θ)

}
g(X,W )

−(
k + 1

4
)(−4 + 2p+ q + 2ϵ2 + ϵ+ ϵ cos2 θ)η(X)η(W )

+(2p+ q + 1)g(σ(X,W ),H)−
2p+q+1∑
m=1

g(σ(em,W ), σ(X, em)).

Thus, the proof follows from the above relations, which proves the theorem
completely. �

Thus, we have the following corollary.

Corollary 4.1. Every totally umbilical contact pseudo-slant submanifold M

of an (ϵ)-para-Sasakian space form M̃(k) is an η-Einstein submanifold.

Theorem 4.7. Let M be a totally umbilical contact pseudo-slant submanifold

of an (ϵ)-para- Sasakian space form M̃(c). Then the scalar curvature τ of M is
given by

τ =

{
(
k − 3

4
)(2p+ q) + (

k + 1

4
)(−2ϵ− ϵ2 cos2 θ)

}
(2p+ q + 1)

+(
k + 1

4
)(4− 2p− q + 2ϵ2 − ϵ− ϵ cos2 θ).(4.5)

Proof. From equation (4.4), by using X = W = em, we have

τ =
2p+q+1∑
m=1

S(em, em) which gives (4.5 ). Thus the proof is complete. �

Example 4.1. Let M be a submanifold of R9 defined by the following equation

χ(u, v, w, t, z) =
(2u sinα,−v cosα,−u sinα, v cosα,−w cos t, cos t, w sin t,− sin t, z).

We can easily to see that the tangent bundle of M is spanned by the tangent vectors

e1 = 2 sinα
∂

∂x1
− sinα

∂

∂x2
, e2 = − cosα

∂

∂y1
+ cosα

∂

∂y2
, e5 = ξ =

∂

∂z
.

e3 = − cos t
∂

∂x3
+ sin t

∂

∂x4
, e4 = w sin t

∂

∂x3
− sin t

∂

∂y3
+ w cos t

∂

∂ x4
− cos t

∂

∂y4
.
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For the almost paracontact metric structure φ of R9, whose coordinate systems
(x1, y1, x2, y2, x3, y3, x4, y4, z), choosing

φ(
∂

∂xi
) =

∂

∂yi
, φ(

∂

∂yj
) = − ∂

∂x j
, 1 6 i, j 6 4

φ(
∂

∂z
) = 0, ξ =

∂

∂z
, η = dz,

g = η ⊗ η +
4∑

i=1

dxi ⊗ dxi −
4∑

i=1

dyi ⊗ dyi ,

then we have

φe1 = 2 sinα
∂

∂y1
− sinα

∂

∂y2
, φe2 = cosα

∂

∂x1
− cosα

∂

∂x2
,

φe3 = − cos t
∂

∂y3
+ sin t

∂

∂y4
,

and

φe4 = w sin t
∂

∂y3
+ sin t

∂

∂x3
+ w cos t

∂

∂y4
+ cos t

∂

∂x4
.

By direct calculations, we can infer Dθ = span{e1, e2} is a slant distribution with
slant angle

cos θ =
g(e1, φe2)

∥e1∥ ∥φe2∥
=

3 sinα. cosα√
5 sin2 α

√
2 cos2 α

=
3
√
10

10
,

θ = arc cos(
3
√
10

10
).

Since g(φe3, ei) = 0, i = 1, 2, 4, 5 and g(φe4, ej) = 0, j = 1, 2, 3, 5 are orthogonal
to M , D⊥ = span{e3, e4, e5} is an anti-invariant distribution. Thus M is a 5-
dimensional proper contact pseudo-slant submanifold of R9 with it’s usual almost
paracontact metric structure.
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[15] S. Y. Perktaş, E. Kiliç and B. E. Acet. Lightlike hypersurfaces of a para-Sasakian space

form. Gulf J. Math., 2(2)(2014), 7–18.
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