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A NOTE ON THE EXTENSION OF

THE SOFT SUBSTRUCTURES OF

A SOFT SEMIGROUP

Nistala V.E.S. Murthy and Chundru Maheswari

Abstract. In this paper, we introduce the notions of extended soft substruc-
tures for the soft substructures of a soft semigroup and study their lattice

theoretic properties. Further, we show that the complete lattice of all (regu-
lar) soft substructures of a soft semigroup is complete (isomorphic) epimorphic
to the complete lattice of all extended soft substructures for the soft substruc-

tures of a soft semigroup.

1. Introduction

In 1999, Molodtsov [9] introduced the notion of a soft set over a universal set
as a mathematical tool for modelling uncertainties. Since its introduction, several
mathematicians imposed various algebraic (sub) structures on them and studied
some of their elementary properties. In 2010, Ali-Shabir-Shum [3] introduced the
notions of soft semigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) over a
semigroup and studied some of their properties.

In this paper we introduce the notions of extended soft substructures for the soft
substructures of a soft semigroup. Further, we study the lattice theoretic properties
of these extended soft substructures for the soft substructures of a soft semigroup
and the relation between the (regular) soft substructures of a soft semigroup and
the extended soft substructures for the soft substructures of a soft semigroup.

Notice that results of this paper play an important role in proving the results of
Murthy-Maheswari [13], Representation of Soft Substructures of a Soft Semigroup
by Products, namely, for any soft semigroup over a semigroup 1. there is a crisp
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semigroup such that the complete lattice of all soft substructures of the given soft
semigroup is complete epimorphic to a complete lattice of certain substructures of
the crisp semigroup and 2. there is a crisp semigroup such that the complete lattice
of all regular soft substructures of the given soft semigroup is complete isomorphic
to a complete lattice of certain substructures of the crisp semigroup.

2. Preliminaries

In this section we recall some basic definitions and elementary results in the
theory of Lattices, Semigroups, Soft Sets and Soft Semigroups which are used in
the main results later.

Definition 2.1. For any poset (Q,6Q) and for any subset P of Q, the binary
relation 6P on P defined by 6P = {(a, b)|a, b ∈ P and (a, b) ∈6Q} = (P ×P )∩ 6Q

makes (P,6P ) a subposet of (Q,6Q) and this is called the induced partial ordering
from the super poset Q.

Lemma 2.1. For any poset (Q,6Q), for any subposet P of Q with the induced
partial ordering from the super poset Q and for any non-empty subset A of P ,
∨QA 6Q ∨PA (∧PA 6Q ∧QA) whenever both of them exist. However, equality
holds whenever ∨QA ∈ P (∧QA ∈ P ).

Definition 2.2. For any non-empty subset S of a meet (join) complete poset
L with the largest (least) element 1L (0L), one can define ∨S = ∧{β ∈ L|α ∧ β =
α for all α ∈ S} (∧S = ∨{β ∈ L|α ∧ β = β for all α ∈ S}) called the meet (join)
induced join (meet) in L. Then L is a complete lattice with the ∨ (∧) called the
associated complete lattice for the meet (join) complete poset L.

Definition 2.3. A set S together with a binary operation which is associative
is called a semigroup.

Notice that the empty set is trivially a semigroup with the empty binary oper-
ation called the empty semigroup.

Definition 2.4. For any pair of subsets A, B of a semigroup S, the set AB is
defined by AB = {ab ∈ S|a ∈ A and b ∈ B} and it is a subset of S.

Definition 2.5. For any subset A of a semigroup S,
(1) A is a subsemigroup of S iff A2 ⊆ A. Notice that as in Grillet[6], the empty

semigroup is trivially a subsemigroup of any semigroup;
(2) A is a left (right) ideal of S iff SA ⊆ A (AS ⊆ A);
(3) A is an ideal of S iff SA∪AS ⊆ A iff it is both a left and a right ideal of S;
(4) A is a quasi-ideal of S iff SA ∩AS ⊆ A;
(5) A is a bi-ideal of S iff AA ⊆ A and ASA ⊆ A.

Lemma 2.2. In any semigroup S, the following are true:
(1) The empty semigroup is trivially a (left, right, quasi-, bi-) ideal of S;
(2) Arbitrary union of (left, right) ideals of S is a (left, right) ideal of S but

arbitrary union of subsemigroups (quasi-ideals, bi-ideals) of S need not be a sub-
semigroup (quasi-ideal, bi-ideal) of S
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(3) Arbitrary intersection of subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of S is a subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) of S;

(4) The intersection of all subsemigroups (left ideals, right ideals, ideals, quasi-
ideals, bi-ideals) of S containing a given subset is a subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of S which is unique and smallest with respect to
the containment of the given subset;

(5) For any subset A of a semigroup S, whenever ∗ = s (l, r, i, q, b), the unique
smallest subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) containing
the given subset A defined as in (4) above is called the subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) generated by A and is denoted by (A)s, S ((A)∗, S).
Notice that (ϕ)∗, S = ϕ and A ̸= ϕ iff (A)∗, S ̸= ϕ.

Lemma 2.3. Whenever ∗ = s (l, r, i, q, b), for any subsemigroup (left ideal,
right ideal, ideal, quasi-ideal, bi-ideal) B of S and for any subset A of B, (A)s, S
((A)∗, S) is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of B.

Definition 2.6. A semigroup S has a zero element 0S iff 0S ∈ S such that
0S0S = 0Ss = s0S = 0S for all s ∈ S.

Notice that a semigroup cannot have more than one zero element.

Remark 2.1. Whenever S is a semigroup, an element 0 can be adjoined to S
such that S is a subsemigroup of S ∪ {0} and 00 = 0s = s0 = 0 for all s ∈ S.

Definition 2.7. For any semigroup S, the semigroup S ∪{0} such that S is a
subsemigroup of S ∪ {0} is called the 0-adjoined semigroup and is denoted by S0.

Definition 2.8. For any semigroup S and for any subset B of the 0-adjoined
semigroup S0, B − {0} is called the 0-contraction of B in S.

Notice that the 0-contraction of S0 is S and the 0-contraction of ϕ is ϕ itself.

Lemma 2.4. In any semigroup S, the following are true:
(1) If A is a subsemigroup of S then A is also a subsemigroup of S0;
(2) If A is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of

S then A0 is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
S0;

(3) If ϕ ̸= B is a (left, right, quasi-, bi-) ideal of S0 then 0 ∈ B;
(4) If B is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of

S0 then B−{0} is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)
of S;

(5) For any subset A of S, (A)∗, S ∪ {0} = (A ∪ {0})∗, S0 for ∗ = s, q, b.

Definition 2.9. ([9]) Let U be a universal set, P (U) be the power set of U and
E be a set of parameters. A pair (F,E) is called a soft set over U iff F : E → P (U)

is a mapping defined by for each e ∈ E, F (e) is a subset of U .

Notice that a collective presentation of all the notions algebras, soft sets, fuzzy
soft sets, f-soft algebras, f-fuzzy soft algebras in the single paper, Murthy-Maheswari
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[10] raised some serious notational conflicts and to fix the same we deviated from
the above notation for a soft set and adapted the following notation for convenience
as follows:

Let U be a universal set. A typical soft set over U is an ordered pair E =
(σE , E), where E is a set of parameters, called the underlying parameter set for E,
P (U) is the power set of U and σE : E → P (U) is a map, called the underlying set
valued map for E.

Definition 2.10. ([4]) The empty soft set over U is a soft set with the empty
parameter set, denoted by Φ = (σϕ, ϕ). Clearly, it is unique.

Definition 2.11. ([4]) A soft set E over U is said to be a null soft set iff σEe
= ϕ for all e ∈ E.

Definition 2.12. ([14]) For any pair of soft sets A, B over U , A is a soft subset
of B, denoted by A ⊆ B, iff (i) A ⊆ B (ii) σAa ⊆ σBa for all a ∈ A.

Definition 2.13. For any family of soft subsets (Ai)i∈I of E,
(1) ([5]) the soft union of (Ai)i∈I , denoted by ∪i∈IAi, is defined by the soft set

A, where
(i) A = ∪i∈IAi

(ii) σAa = ∪i∈IaσAia for all a ∈ A, where Ia = {i ∈ I/a ∈ Ai};
(2) the soft intersection of (Ai)i∈I , denoted by ∩i∈IAi, is defined by the soft

set A, where
(i) A = ∩i∈IAi

(ii) σAa = ∩i∈IσAia for all a ∈ A.

Definition 2.14. ([3]) A soft set (F,A) over a semigroup S which is neither
empty nor null is said to be a soft semigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) over S iff F (a) is a subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of S for all a ∈ A whenever F (a) ̸= ϕ.

3. Soft Substructures of a Soft Semigroup

In what follows from Murthy-Maheswari [12], we recall the notions of soft (sub)
semigroup, soft (left, right, quasi-, bi-) ideal of a soft semigroup and some properties
of them which are used in the due course. Notice that throughout this section U
is a semigroup unless otherwise explicitly stated.

Definition 3.1. A soft set E over a semigroup U is said to be a soft semigroup
over U iff σEe is a subsemigroup of U for all e ∈ E. Consequently, for us the empty
soft set Φ and the null soft set ΦE over U are trivially soft semigroups over U .

Definition 3.2. For any soft subset A of a soft semigroup E over U , A is a
soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of E iff σAa
is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of σEa for all
a ∈ A.

Notice that the empty soft subset Φ and a null soft subset ΦA of E are trivially
soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) of E.
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Whenever ∗ = s (l, r, i, q, b), the set of all soft subsemigroups (left ideals, right
ideals, ideals, quasi-ideals, bi-ideals) of E is denoted by Ss(E) (S∗(E)).

Definition 3.3. For any soft semigroup E over U and for any soft subsemigroup
(left ideal, right ideal, ideal, quasi-ideal, bi-ideal) A of E, A is a d-total (regular)
soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of E iff A = E
(σAa ̸= ϕ for all a ∈ A).

Notice that the empty soft set Φ is trivially regular soft subsemigroup (left
ideal, right ideal, ideal, quasi-ideal, bi-ideal) of E. Whenever ∗ = s (l, r, i, q, b),
the set of all d-total (regular) soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of E is denoted by Sd∗(E) (S

r
∗(E)) and the set of all d-total and

regular soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) of

E is denoted by S
d, r
∗ (E).

Definition 3.4. For any soft subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) A of a soft semigroup E over U , the support of A, denoted by Supp(A),
is defined by Supp(A) = {a ∈ A/σAa ̸= ϕ}. Notice that Supp(A) ⊆ A.

Lemma 3.1. For any soft semigroup E over U , the following are true:
(1) For any pair of soft subsemigroups (left ideals, right ideals, ideals, quasi-

ideals, bi-ideals) A, B of E, A is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of B iff A is a soft subset of B;

(2) Arbitrary union of soft (left, right) ideals of E is always a soft (left, right)
ideal of E but arbitrary union of soft subsemigroups (quasi-ideals, bi-ideals) of E
need not be a soft subsemigroup (quasi-ideal, bi-ideal) of E;

(3) Arbitrary intersection of soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of E is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E;

(4) The intersection of all soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) containing a given soft subset is a soft subsemigroup (left
ideal, right ideal, ideal, quasi-ideal, bi-ideal) which is unique and smallest with
respect to the containment of the given soft subset.

Definition 3.5. For any soft subset A of a soft semigroup E over U , whenever ∗
= s (l, r, i, q, b), the unique smallest soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E containing A defined as in the Lemma 3.1(4) is called the
soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) generated by A
and is denoted by (A)s, E ((A)∗, E).

Lemma 3.2. For any soft subset A of a soft semigroup E over U , whenever
∗ = s (l, r, i, q, b), the soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal,
bi-ideal) generated by A, (A)s, E ((A)∗, E), is given by C, where C = A and σCe =
(σAe)s, σEe ((σAe)∗, σEe) for all e ∈ C.

Proof. Clearly, C is a soft subsemigroup of E. Let B be a soft subsemigroup
of E such that A ⊆ B. Then A ⊆ B and σAe ⊆ σBe for all e ∈ A implies C =
A ⊆ B and by the Lemma 2.3, σCe = (σAe)s, σEe ⊆ σBe for all e ∈ C = A or C ⊆ B
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or C is the smallest soft subsemigroup of E containing A or C = (A)s, E. For ∗ =
l, r, i, q, b, the proofs follow in a similar way as above. �

Notation: Whenever ∗ = s (l, r, i, q, b), for any soft semigroup E over U and
for any pair of soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-
ideals) A, B of E, A 6s B (A 6∗ B) iff A is a soft subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of B.

Theorem 3.1. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i,
the set S∗(E) is a complete lattice with

(1) the partial ordering defined by: for any A, B ∈ S∗(E), A 6 B iff A 6∗ B;
(2) the largest and the least elements in S∗(E) are E and Φ respectively;
(3) for any family (Ai)i∈I in S∗(E), ∧i∈IAi = ∩i∈IAi;
(4) for any family (Ai)i∈I in S∗(E), however,
(i) for ∗ = s, q, b, ∨i∈IAi = ∨i∈IAi, where ∨ is the meet induced join in S∗(E)

and ∨i∈IAi = A, where A = ∪i∈IAi and σAe = (∪i∈IeσAie)∗, σEe for all e ∈ A,
where Ie = {i ∈ I/e ∈ Ai}, and

(ii) for ∗ = l, r, i, ∨i∈IAi = ∪i∈IAi.

Proof. (1): Clearly, Ss(E) is a poset with the partial ordering defined by: for
any A, B ∈ Ss(E), A 6 B iff A is a soft subsemigroup of B iff A ⊆ B by the Lemma
3.1(1).

(2): Φ ⊆ A ⊆ E for all A ∈ Ss(E) implies Φ 6 A 6 E for all A ∈ Ss(E) implying
the largest and the least elements in Ss(E) are E and Φ respectively.

(3): Let (Ai)i∈I be a subset of Ss(E). By the Lemma 3.1(3), we have ∩i∈IAi =
A ∈ Ss(E).

(i) ∩i∈IAi = A ⊆ Ai for all i ∈ I as A = ∩i∈IAi ⊆ Ai for all i ∈ I and σAe =
∩i∈IσAie ⊆ σAie for all e ∈ A and for all i ∈ I implies ∩i∈IAi = A 6 Ai.

(ii) B ∈ Ss(E) such that B 6 Ai for all i ∈ I implies B ⊆ Ai for all i ∈ I implies
B ⊆ Ai for all i ∈ I and σBe ⊆ σAie for all e ∈ B and for all i ∈ I which implies
B ⊆ ∩i∈IAi = A and σBe ⊆ ∩i∈IσAie = σAe for all e ∈ B which imply B ⊆ A =
∩i∈IAi implying B 6 A = ∩i∈IAi.

Now (i) and (ii) imply ∧i∈IAi = ∩i∈IAi.
(4): Let (Ai)i∈I be a subset of Ss(E). Now we claim that ∨i∈IAi = A, where A

= ∪i∈IAi and σAe = (∪i∈IeσAie)s, σEe for all e ∈ A, where Ie = {i ∈ I/e ∈ Ai}.
Let us recall that (A)s, E = ∩A⊆B,B6sEB = ∩A⊆B,B∈Ss(E)B = ∧A⊆B,B∈Ss(E)B.

For any B ∈ Ss(E), ∪i∈IAi ⊆ B iff Ai ⊆ B for all i ∈ I iff Ai is a soft subsemigroup
of B for all i ∈ I by the Lemma 3.1(1) iff Ai 6 B for all i ∈ I.

Now (∪i∈IAi)s, E = ∧∪i∈IAi⊆B,B∈Ss(E)B = ∧Ai6B for all i∈I,B∈Ss(E)B = ∨i∈IAi.
On the other hand, if C = ∪i∈IAi then C = ∪i∈IAi and σCe = ∪i∈IeσAie for all

e ∈ C, where Ie = {i ∈ I/e ∈ Ai}. Now by the Lemma 3.2, ∨i∈IAi = (∪i∈IAi)s, E
= (C)s, E = D, where D = C and σDe = (σCe)s, σEe for all e ∈ D.

We show that D = A or (i) D = A (ii) σDe = σAe for all e ∈ D.
(i): D = C = ∪i∈IAi = A.
(ii): Let e ∈ D = A be fixed. Now σDe = (σCe)s, σEe = (∪i∈IeσAie)s, σEe =

σAe.
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Now (i) and (ii) imply D = A or ∨i∈IAi = A as required.
From (1)-(4) and by the Definition 2.2, we get that Ss(E) is a complete lattice.
For ∗ = q, b, the proofs follow in a similar way as above and for ∗ = l, r, i,

the proofs of (1)-(3) follow in a similar way as (1)-(3) above and the proof of (4)
follows in a similar way as (3) above. �

Lemma 3.3. For any soft semigroup E over U and for any family of soft sub-
semigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) (Ai)i∈I of E, the
following are true:

(1) Supp(∩i∈IAi) ⊆ ∩i∈ISupp(Ai);
(2) Supp(∨i∈IAi) = Supp(∪i∈IAi) = ∪i∈ISupp(Ai).

Theorem 3.2. For any soft semigroup E over U , whenever ∗ = s, q, b, the set
Sr∗(E) is a join complete subposet of the complete lattice S∗(E) and also itself is a
complete lattice with

(1) the induced partial ordering from the super poset S∗(E);
(2) the largest and the least elements in Sr∗(E) are L, where L = Supp(E) and

σLe = σEe for all e ∈ L, and Φ respectively
for any family (Ai)i∈I in Sr∗(E);

(3) ∧i∈IAi = ⊓i∈IAi, where ⊓i∈IAi = A such that A = Supp(∩i∈IAi) and σAe
= ∩i∈IσAie for all e ∈ A;

(4) ∨i∈IAi = ⊔i∈IAi = ∨i∈IAi, where ⊔ and ∨ are ⊓ and ∧ induced joins in
Sr∗(E) and S∗(E) respectively.

Proof. (1): It follows from the Definition 2.1.
(2): It follows in a similar way as in the Theorem 3.1(2).
(3): Let (Ai)i∈I be a subset of Srs(E). Define ⊓i∈IAi by A, where A =

Supp(∩i∈IAi) and σAe = ∩i∈IσAie for all e ∈ A. Clearly, A ∈ Srs(E).
Now we claim that, in Srs(E), ∧i∈IAi = A.
(i) If A = ϕ then A = Φ ∈ Srs(E) and A = Φ 6 Ai for all i ∈ I in Srs(E). If A ̸=

ϕ then A 6 ∩i∈IAi 6 Ai for all i ∈ I in Ss(E) implies A 6 Ai for all i ∈ I in Srs(E).
(ii) B 6 Ai in Srs(E) implies B 6 Ai in Ss(E) implies B 6 ∩i∈IAi in Ss(E) implies

B ⊆ ∩i∈IAi in Ss(E) implies B ⊆ ∩i∈IAi and ϕ ̸= σBe ⊆ ∩i∈IσAie for all e ∈ B
implies B ⊆ Supp(∩i∈IAi) = A and ϕ ̸= σBe ⊆ ∩i∈IσAie = σAe for all e ∈ B
implying B ⊆ A. If A = ϕ then B = ϕ and so B = Φ 6 A in Srs(E).

If A ̸= ϕ then B ⊆ A in Srs(E) and so B 6 A in Srs(E).
Now (i) and (ii) imply ∧i∈IAi = A = ⊓i∈IAi.
(4): Let (Ai)i∈I be a subset of Srs(E). Now we claim that ∨i∈IAi in Ss(E) =

⊔i∈IAi in Srs(E) = ⊓Ai6B for all i∈I inSr
s(E)

B. A = ∨i∈IAi in Ss(E) implies A = ∪i∈IAi

and σAe = (∪i∈IeσAie)s, σEe for all e ∈ A, where Ie = {i ∈ I/e ∈ Ai}. Clearly,
A ∈ Srs(E).

(i) A ∈ Srs(E) and Ai 6 A for all i ∈ I in Srs(E) implies ⊔i∈IAi ⊆ A = ∨i∈IAi.
(ii) B ∈ Srs(E) such that Ai 6 B for all i ∈ I in Srs(E) implies Ai ⊆ B for all

i ∈ I in Srs(E) implies Ai ⊆ B for all i ∈ I and σAie ⊆ σBe for all e ∈ Ai and for
all i ∈ I in Srs(E) implies A = ∪i∈IAi ⊆ B and ∪i∈IeσAie ⊆ σBe for all e ∈ A in
Srs(E) implies A ⊆ B and by the Lemma 2.3, σAe = (∪i∈IeσAie)s, σEe ⊆ σBe for all
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e ∈ A in Srs(E) implies A ⊆ B implies ∨i∈IAi in Ss(E) = A ⊆ ⊓Ai6B for all i∈I inSr
s(E)

B
= ⊔i∈IAi in Srs(E).

Now (i) and (ii) imply ⊔i∈IAi in Srs(E) = ∨i∈IAi in Ss(E) or Srs(E) is a join
complete subposet of Ss(E).

From (1)-(4) and by the Definition 2.2, we get that Srs(E) is a complete lattice.
For ∗ = q, b, the proofs follow in a similar way as above. �

Theorem 3.3. For any soft semigroup E over U , whenever ∗ = l, r, i, the set
Sr∗(E) is a join complete subposet of the complete lattice S∗(E) with

(1) the induced partial ordering from the super poset S∗(E);
(2) the largest and the least elements in Sr∗(E) are L (cf.Theorem 3.2(2)) and

Φ respectively;
(3) for any family (Ai)i∈I in Sr∗(E), ∨i∈IAi = ∪i∈IAi.
(4) Further, Sr∗(E) is a complete lattice with the join induced meet ∧ given by

for any family (Ai)i∈I in Sr∗(E), ∧i∈IAi = A, where A = Supp(∩i∈IAi) and σAe =
∩i∈IσAie for all e ∈ A.

Proof. (1) and (2) follows in a similar way as in the Theorem 3.2 (1) and (2).
(3): A = ∨i∈IAi in Sl(E) implies A = ∪i∈IAi in Sl(E) implies A = ∪i∈IAi, σAe

= ∪i∈IeσAi
e for all e ∈ A, where Ie = {i ∈ I|e ∈ Ai}, and σAe ̸= ϕ as σAi

e ̸= ϕ for
all e ∈ Ai and for all i ∈ I implying A ∈ Srl (E) or S

r
l (E) is a join complete subposet

of Sl(E).
(4): Let (Ai)i∈I be a subset of Srl (E). Now we claim that ∧i∈IAi = A, where

A = Supp(∩i∈IAi) and σAe = ∩i∈IσAie for all e ∈ A. Clearly, A ∈ Srl (E).
Let us recall that ∧i∈IAi = ∨B6Ai for all i∈I,B∈Sr

l (E)
B = C.

We show that C = A.
(i) Since A ∈ Srl (E) and A 6 Ai for all i ∈ I, A ⊆ ∨B6Ai for all i∈I,B∈Sr

l (E)
B = C.

(ii) B ∈ Srl (E) such that B 6 Ai for all i ∈ I implies B ⊆ Ai for all i ∈ I
implies B ⊆ Ai for all i ∈ I and ϕ ̸= σBe ⊆ σAie for all e ∈ B and for all i ∈ I
implies B ⊆ ∩i∈IAi and ϕ ̸= σBe ⊆ ∩i∈IσAie for all e ∈ B which implies B ⊆
Supp(∩i∈IAi) = A and σBe ⊆ ∩i∈IσAie = σAe for all e ∈ B implying B ⊆ A or C
= ∨B6Ai for all i∈I,B∈Sr

l (E)
B ⊆ A.

Now (i) and (ii) imply A = C.
From (1)-(4) and by the Definition 2.2, we get that Srl (E) is a complete lattice.
For ∗ = r, i, the proofs follow in a similar way as above. �

4. Extended Soft Substructures

In this section we introduce the notions of extended soft substructures for the
soft substructures of a soft semigroup and study their lattice theoretic properties.

Let us recall that, a 0-adjoined semigroup of a semigroup is the semigroup with
0 in which the multiplication of any two elements of the semigroup is the same as
the old one and the multiplication of any semigroup element or the 0 by the 0 is
the 0 itself.

Notice that throughout this section U0 is denoted by U .
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Definition 4.1. For any soft subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) A of a soft semigroup E over U , the extended soft subsemigroup (left
ideal, right ideal, ideal, quasi-ideal, bi-ideal) or simply es-subsemigroup (left ideal,
right ideal, ideal, quasi-ideal, bi-ideal) for A, denoted by A′, is defined by A′ = E
and for each e ∈ E,

σA′e =

{
σAe ∪ {0} if σAe ̸= ϕ

{0} if σAe = ϕ or e ∈ E −A

In particular, the es-semigroup for E is given by E′, where E′ = E and for each
e ∈ E,

σE′e =

{
σEe ∪ {0} if σEe ̸= ϕ

{0} if σEe = ϕ

Notice that (1) for any soft semigroup E over U , the es-semigroup E′ for E is
always a soft semigroup over U

(2) E is a soft subsemigroup of E′.
Whenever ∗ = s (l, r, i, q, b), the set of all es-subsemigroups (left ideals, right

ideals, ideals, quasi-ideals, bi-ideals) for all soft subsemigroups (left ideals, right
ideals, ideals, quasi-ideals, bi-ideals) of E is denoted by Ss(E)

′ (S∗(E)
′). In other

words, Ss(E)
′ = {A′|A ∈ Ss(E)}, (S∗(E)′ = {A′|A ∈ S∗(E)}).

Remark 4.1. Observe that for any soft subsemigroup (left ideal, right ideal,
ideal, quasi-ideal, bi-ideal) A of a soft semigroup E over U , A′ is a soft subsemigroup
(left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of the soft semigroup E′ over U .
In fact, A′ is a d-total and regular soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E′.

Notice that since the empty soft set Φ is a soft subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of E, Φ′, where ϕ′ = E and σϕ′e = {0} for all
e ∈ E, is the soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)
of E′.

Lemma 4.1. For any soft semigroup E over U , whenever ∗ = s (l, r, i, q, b),
the set Ss(E)

′ (S∗(E)
′) of all es-subsemigroups (left ideals, right ideals, ideals, quasi-

ideals, bi-ideals) for all soft subsemigroups (left ideals, right ideals, ideals, quasi-
ideals, bi-ideals) of E over U is a proper subset of the complete lattice Ss(E

′) (S∗(E
′))

of all soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) of
E′ over U .

Proof. It follows from the Remark 4.1. �
Definition 4.2. For any regular soft subsemigroup (left ideal, right ideal,

ideal, quasi-ideal, bi-ideal) A of a soft semigroup E over U , the es-subsemigroup
(left ideal, right ideal, ideal, quasi-ideal, bi-ideal) for A is given by A′, where A′ =
E and for each e ∈ E,

σA′e =

{
σAe ∪ {0} if e ∈ A

{0} if e ∈ E −A
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Lemma 4.2. For any soft semigroup E over U , the following are true:
(1) For any B ∈ Sds(E

′) such that 0 ∈ σBb for all b ∈ B there exists unique A
in Srs(E) such that A′ = B;

(2) Further, Ss(E)
′ = {B ∈ Sds(E

′)/0 ∈ σBb for all b ∈ B};
(3) For any B ∈ Ss(E)

′ there exists unique A in Srs(E) such that A′ = B;
(4) Consequently, Ss(E)

′ = Srs(E)
′.

Proof. (1): Define A by A = {e ∈ B/σBe− {0} ̸= ϕ} and σAe = σBe− {0}
for all e ∈ A. Clearly, A ∈ Srs(E) ⊆ Ss(E).

Now A′ is given by A′ = E and for each e ∈ E,

σA′e =

{
σAe ∪ {0} if e ∈ A

{0} if e ∈ E −A

We show that A′ = B or σA′e = σBe for all e ∈ E. Let e ∈ E be fixed. If e ∈ A
then σA′e = σAe ∪ {0} = (σBe − {0}) ∪ {0} = σBe. If e /∈ A then σA′e = {0} =
σBe or A′ = B.
Let A1, A2 ∈ Srs(E) such that A′

1 = B = A′
2. Then A′

1 = B = E = A′
2 and σA′

1
e =

σBe = σA′
2
e for all e ∈ E.

We show that A1 = A2 or (i) A1 = A2 (ii) σA1e = σA2e for all e ∈ A1.
(i): e ∈ A1 − A2 implies σA2e = ϕ implies {0} = σA′

2
e = σA′

1
e = σA1e ∪ {0}

implies σA1e = ϕ, which is a contradiction to A1 ∈ Srs(E). Therefore A1 ⊆ A2.
Similarly, A2 ⊆ A1 and we get that A1 = A2.

(ii): Let e ∈ A1 = A2 be fixed. Since σA1e∪{0} = σA′
1
e = σA′

2
e = σA2e∪{0},

σA1e = σA2e.
Now (i) and (ii) imply A1 = A2.
(2): It follows from the Definition 4.1, the Remark 4.1 and (1) above.
(3): It follows from (1) and (2) above.
(4): By (3) above, Ss(E)

′ ⊆ Srs(E)
′.

On the other hand, D′ ∈ Srs(E)
′ implies D ∈ Srs(E) ⊆ Ss(E) implying D′ ∈ Ss(E)

′

or Srs(E)
′ ⊆ Ss(E)

′. �

Lemma 4.3. For any soft semigroup E over U , whenever ∗ = l, r, i, q, b, the
following are true:

(1) For any B ∈ S
d, r
∗ (E′) there exists unique A in Sr∗(E) such that A′ = B;

(2) Further, S∗(E)
′ = S

d, r
∗ (E′);

(3) For any B ∈ S∗(E)
′ there exists unique A in Sr∗(E) such that A′ = B;

(4) Consequently, S∗(E)
′ = Sr∗(E)

′.

Proof. It follows in a similar way as the Lemma 4.2. �

Theorem 4.1. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i,
the set S∗(E)

′ is a complete sublattice of the complete lattice S∗(E
′) with

(1) the induced partial ordering from the super poset S∗(E
′);

(2) the largest and the least elements in S∗(E)
′ are E′ and Φ′ respectively;

(3) for any family (A′
i)i∈I in S∗(E)

′, ∧i∈IA
′
i = ∩i∈IA

′
i;

(4) for any family (A′
i)i∈I in S∗(E)

′, however;
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(i) for ∗ = s, q, b, ∨i∈IA
′
i = ∨i∈IA

′
i, where ∨ is the meet induced join in S∗(E

′)
and ∨i∈IA

′
i = A′, where A′ = E and σA′e = (∪i∈IσA′

i
e)∗, σE′e for all e ∈ E

(ii) for ∗ = l, r, i, ∨i∈IA
′
i = ∪i∈IA

′
i.

(5) Further, S∗(E)
′ is a complete filter of S∗(E

′).

Proof. (1): It follows from the Definition 2.1.
(2): It follows in a similar way as in the Theorem 3.1(2).
(3): Let (A′

i)i∈I be a subset of Ss(E)
′. B = ∧i∈IA

′
i in Ss(E

′) implies B = ∩i∈IA
′
i

in Ss(E
′) implies B = ∩i∈IA

′
i = E and σBe = ∩i∈IσA′

i
e for all e ∈ E. Since B =

E and 0 ∈ σBe for all e ∈ E as 0 ∈ σA′
i
e for all e ∈ A′

i and for all i ∈ I, by the

Lemma 4.2(2), B ∈ Ss(E)
′.

(4): Let (A′
i)i∈I be a subset of Ss(E)

′. B = ∨i∈IA
′
i in Ss(E

′) implies B = ∨i∈IA
′
i

in Ss(E
′) implies B = ∪i∈IA

′
i = E and σBe = (∪i∈IσA′

i
e)s, σE′e for all e ∈ E. Since

B = E and 0 ∈ σBe for all e ∈ E as 0 ∈ σA′
i
e for all e ∈ A′

i and for all i ∈ I, by the

Lemma 4.2(2), B ∈ Ss(E)
′. Now (3) and (4) imply Ss(E)

′ is a complete sublattice
of Ss(E

′).
(5): A′ ∈ Ss(E)

′ and B ∈ Ss(E
′) such that A′ 6 B in Ss(E

′) implies A′ ⊆ B in
Ss(E

′) implies E = A′ ⊆ B and σA′e ⊆ σBe for all e ∈ A′ = E implies B = E and
0 ∈ σBe for all e ∈ E as 0 ∈ σA′e for all e ∈ E implying by the Lemma 4.2(2), B ∈
Ss(E)

′ or Ss(E)
′ is a complete filter of Ss(E

′).
For ∗ = q, b, l, r, i, the proofs follow in a similar way as above. �

Theorem 4.2. For any soft semigroup E over U , whenever ∗ = s (q, b, l, r,
i), the map ε∗ : S∗(E) → S∗(E)

′ defined by for any A ∈ S∗(E), ε∗A = A′ being the
es-subsemigroup (quasi-ideal, bi-ideal, left ideal, right ideal, ideal) for A, satisfies
the following properties:

(1) The map ε∗ is onto;
(2) For any A,B ∈ S∗(E), A 6 B implies ε∗A 6 ε∗B.
For any family (Ai)i∈I in S∗(E),
(3) ε∗(∩i∈IAi) = ∩i∈Iε∗Ai

(4) (i) for ∗ = s, q, b, ε∗(∨i∈IAi) = ∨i∈Iε∗Ai;
(ii) for ∗ = l, r, i, ε∗(∪i∈IAi) = ∪i∈Iε∗Ai;
(5) The map ε∗ is a complete epimorphism.

Proof. (1): It is straightforward.
(2): A, B ∈ Ss(E) such that A 6 B implies by the Theorem 3.1(1), A ⊆ B

implying A ⊆ B and σAe ⊆ σBe for all e ∈ A. Let εsA = A′. Then A′ = E and for
each e ∈ E,

σA′e =

{
σAe ∪ {0} if σAe ̸= ϕ

{0} if σAe = ϕ or e ∈ E −A

Let εsB = B′. Then B′ = E and for each e ∈ E,

σB′e =

{
σBe ∪ {0} if σBe ̸= ϕ

{0} if σBe = ϕ or e ∈ E −B
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We show that A′ ⊆ B′ or σA′e ⊆ σB′e for all e ∈ E. Let e ∈ E be fixed. If e ∈ A
and σAe ̸= ϕ then σA′e = σAe ∪ {0} ⊆ σBe ∪ {0} = σB′e. If e ∈ A and σAe =
ϕ then σA′e = {0} ⊆ σB′e. If e ∈ B − A then σA′e = {0} ⊆ σB′e. If e ∈ E − B
then σA′e = {0} = σB′e. Therefore A′ ⊆ B′ or by the Theorem 3.1(1), A′ is a soft
subsemigroup of B′ or εsA = A′ 6 B′ = εsB.

(3): Let ∩i∈IAi = A. Then A = ∩i∈IAi and σAe = ∩i∈IσAie for all e ∈ A.
Let εsA = A′. Then A′ = E and for each e ∈ E,

σA′e =

{
σAe ∪ {0} if σAe ̸= ϕ

{0} if σAe = ϕ or e ∈ E −A

Let εsAi = B′
i. Then B′

i = E and for each e ∈ E,

σB′
i
e =

{
σAie ∪ {0} if σAie ̸= ϕ

{0} if σAie = ϕ or e ∈ E −Ai

Let ∩i∈IB
′
i = B′. Then B′ = ∩i∈IB

′
i = E and σB′e = ∩i∈IσB′

i
e for all e ∈ E.

We show that A′ = B′ or σA′e = σB′e for all e ∈ E.
Let e ∈ E be fixed.
(i) If A = ϕ then e ∈ E−A implies σA′e = {0}. A = ∩i∈IAi = ϕ implies there

exists i0 ∈ I such that e ̸∈ Ai0 implies σB′
i0
e = {0} implying σB′e = {0} = σA′e.

(ii) If A ̸= ϕ and e ̸∈ A then e ∈ E − A implies σA′e = {0} = σB′e as in (i)
above.

(iii) If A ̸= ϕ, e ∈ A and σAe = ϕ then σA′e = {0}. If σAi0
e = ϕ for some

i0 ∈ I then σB′
i0
e = {0} implies σB′e = {0} = σA′e. If σAie ̸= ϕ for all i ∈ I

implies σB′
i
e ̸= {0} for all i ∈ I or σB′

i
e = σAie ∪ {0} for all i ∈ I implying σB′e

= ∩i∈IσB′
i
e = ∩i∈I(σAie ∪ {0}) = (∩i∈IσAie) ∪ {0} = σAe ∪ {0} = {0} = σA′e.

(iv) If A ̸= ϕ, e ∈ A and σAe ̸= ϕ then σA′e = σAe ∪ {0}. e ∈ A = ∩i∈IAi

and σAe ̸= ϕ implies e ∈ Ai for all i ∈ I and σAie ̸= ϕ for all i ∈ I imply σB′
i
e =

σAie ∪ {0} for all i ∈ I implying σB′e = ∩i∈I(σAie ∪ {0}) = (∩i∈IσAie) ∪ {0} =
σAe ∪ {0} = σA′e.

(4): Let ∨i∈IAi = A. Then A = ∪i∈IAi and σAe = (∪i∈IeσAie)s, σEe for all
e ∈ A, where Ie = {i ∈ I/e ∈ Ai}. Let εsA = A′. Then A′ = E and for each e ∈ E,

σA′e =

{
σAe ∪ {0} if σAe ̸= ϕ

{0} if σAe = ϕ or e ∈ E −A

Let εsAi = B′
i. Then B′

i = E and for each e ∈ E,

σB′
i
e =

{
σAie ∪ {0} if σAie ̸= ϕ

{0} if σAie = ϕ or e ∈ E −Ai

Let ∨i∈IB
′
i = B′. Then B′ = ∪i∈IB

′
i = E and σB′e = (∪i∈IσB′

i
e)s, σE′e for all

e ∈ E. We show that A′ = B′ or σA′e = σB′e for all e ∈ E.
Let e ∈ E be fixed.

(i) If e ̸∈ A then σA′e = {0}. e ̸∈ A = ∪i∈IAi implies e ̸∈ Ai for all i ∈ I
implies σB′

i
e = {0} for all i ∈ I implying σB′e = {0} = σA′e.
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(ii) If e ∈ A = ∪i∈IAi then Ie ̸= ϕ. Define Ie as Ie = Je ⊎ (Ie − Je), where Je
= {i ∈ Ie/σAie ̸= ϕ}, and I as I = I − Ie ⊎ Ie = I − Ie ⊎ Je ⊎ Ie − Je, where ⊎
denotes the disjoint union. Therefore

σB′
i
e =


{0} if i ∈ I − Ie

σAie ∪ {0} if i ∈ Je

{0} if i ∈ Ie − Je

Now σB′e = ((∪i∈I−IeσB′
i
e)∪(∪i∈JeσB′

i
e)∪(∪i∈Ie−JeσB′

i
e))s, σE′e = ((∪i∈JeσAie)∪

{0})s, σE′e, σAe = ((∪i∈JeσAie)∪(∪i∈Ie−JeσAie))s, σEe = (∪i∈JeσAie)s, σEe and σA′e
= σAe∪{0} = ((∪i∈JeσAie))s, σEe ∪ {0} = ((∪i∈JeσAie)∪{0})s, σE′e. Clearly, σA′e
= σB′e.

(5): It follows from (1), (3) and (4)(i) above.
For ∗ = q, b, l, r, i, the proofs follow in a similar way as above. �

The following Example shows that in the above Theorem, whenever ∗ = s, q, b,
l, r, i, the map ε∗ is not one-one.

Example 4.1. Let U be a semigroup and E = ({(e1, U), (e2, U)}, {e1, e2}) be
a soft semigroup over U . Then U = U ∪ {0} is also a semigroup. Let A1 =
({(e1, ϕ), (e2, U)}, {e1, e2}) and A2 = ({(e2, U)}, {e2}) be in S∗(E). Then ε∗A1 =
A′
1 = ({(e1, {0}), (e2, U)}, {e1, e2}) and ε∗A2 = A′

2 = ({(e1, {0}), (e2, U)}, {e1, e2}).
Clearly, ε∗A1 = ε∗A2 but A1 ̸= A2 or ε∗ is not one-one.

Definition 4.3. Whenever ∗ = s, q, b, l, r, i, the complete epimorphism ε∗ as
in the Theorem 4.2 is called the extension operator.

Theorem 4.3. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i,
the restricted map ε∗|Sr∗(E) : Sr∗(E) → S∗(E)

′ defined by for any A ∈ Sr∗(E),
(ε∗|Sr∗(E))(A) = ε∗A as in the Theorem 4.2, satisfies the following properties:

(1) The map ε∗|Sr∗(E) is both one-one and onto;
(2) For any A,B ∈ Sr∗(E), A 6 B implies ε∗A 6 ε∗B.
For any family (Ai)i∈I in Sr∗(E);
(3) (i) for ∗ = s, q, b, ε∗(∨i∈IAi) = ∨i∈Iε∗Ai

(ii) for ∗ = l, r, i, ε∗(∪i∈IAi) = ∪i∈Iε∗Ai;
(4) (i) for ∗ = s, q, b, ε∗(⊓i∈IAi) = ∩i∈Iε∗Ai;
(ii) for ∗ = l, r, i, ε∗(∧i∈IAi) = ∩i∈Iε∗Ai;
(5) The map ε∗|Sr∗(E) is a complete isomorphism.

Proof. (1): Let A,B ∈ Srs(E) such that εsA = εsB. Let εsA = A′ and εsB =
B′. Then A′ = E = B′ and for each e ∈ E,

σA′e =

{
σAe ∪ {0} if e ∈ A

{0} if e ∈ E −A
and σB′e =

{
σBe ∪ {0} if e ∈ B

{0} if e ∈ E −B

A′ = B′ implies A′ = E = B′ and σA′e = σB′e for all e ∈ E. We show that A = B
or (i) A = B (ii) σAe = σBe for all e ∈ A.
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(i): e ∈ A implies σA′e = σAe ∪ {0} ̸= {0} as σAe ̸= ϕ. If e /∈ B then σB′e
= {0} ̸= σA′e, which is a contradiction to A′ = B′. Therefore e ∈ B or A ⊆ B.
Similarly, B ⊆ A and we get that A = B.

(ii): Let e ∈ A = B be fixed. Since σAe ∪ {0} = σA′e = σB′e = σBe ∪ {0}, we
have σAe = σBe.

Now (i) and (ii) imply A = B or the map is one-one. Clearly, by the Lemma
4.2(3), the map is onto.

(2) and (3): Follow from the Theorem 4.2(2) and 4.2(4)(i).
(4): Let ⊓i∈IAi = A. Then A = Supp(∩i∈IAi) and σAe = ∩i∈IσAie for all

e ∈ A. Let εsA = A′. Then A′ = E and for each e ∈ E,

σA′e =

{
σAe ∪ {0} if e ∈ A

{0} if e ∈ E −A

Let εsAi = B′
i. Then B′

i = E and for each e ∈ E,

σB′
i
e =

{
σAie ∪ {0} if e ∈ Ai

{0} if e ∈ E −Ai

Let ∩i∈IB
′
i = B′. Then B′ = ∩i∈IB

′
i = E and σB′e = ∩i∈IσB′

i
e for all e ∈ E. We

show that A′ = B′ or σA′e = σB′e for all e ∈ E. Let e ∈ E be fixed.
(i) A = ϕ implies e ∈ E−A implying σA′e = {0}. e /∈ A implies ∩i∈IσAie = ϕ.

If σAi0
e = ϕ for some i0 ∈ I then e /∈ Ai0 implies σB′

i0
e = {0} implying σB′e = {0}

= σA′e. If σAie ̸= ϕ for all i ∈ I then e ∈ Ai for all i ∈ I implies σB′
i
e = σAie∪{0}

for all i ∈ I implies σB′e = ∩i∈IσB′
i
e = ∩i∈I(σAie∪{0}) = (∩i∈IσAie)∪{0} = {0}

= σA′e.
(ii) A ̸= ϕ and e ∈ A implies σA′e = σAe ∪ {0}. e ∈ A = Supp(∩i∈IAi) ⊆

∩i∈IAi implies e ∈ Ai for all i ∈ I implies σB′
i
e = σAie ∪ {0} for all i ∈ I implying

σB′e = ∩i∈IσB′
i
e = ∩i∈I(σAie ∪ {0}) = (∩i∈IσAie) ∪ {0} = σAe ∪ {0} = σA′e.

(iii) A ̸= ϕ and e ∈ E − A implies σA′e = {0}. e ∈ E − A implies ∩i∈IσAe =
ϕ and as (i) above, σB′e = σA′e.

(5): It follows from (1), (3)(i) and (4)(i) above.
For ∗ = q, b, l, r, i, the proofs follow in a similar way as above. �

Theorem 4.4. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i,
the map ρ∗ : S∗(E) → Sr∗(E) defined by for any A ∈ S∗(E), ρ∗A = B, where B =
Supp(A) and σBe = σAe for all e ∈ B, satisfies the following properties:

(1) For any A ∈ S∗(E), ρ∗A 6 A. Equality holds whenever A is regular;
(2) The map ρ∗ is onto;
(3) For any A,B ∈ S∗(E), A 6 B implies ρ∗A 6 ρ∗B;
For any family (Ai)i∈I in S∗(E),
(4) (i) for ∗ = s, q, b, ρ∗(∨i∈IAi) = ∨i∈Iρ∗Ai;
(ii) for ∗ = l, r, i, ρ∗(∪i∈IAi) = ∪i∈Iρ∗Ai;
(5) (i) for ∗ = s, q, b, ρ∗(∩i∈IAi) = ⊓i∈Iρ∗Ai;
(ii) for ∗ = l, r, i, ρ∗(∩i∈IAi) = ∧i∈Iρ∗Ai;
(6) The map ρ∗ is a complete epimorphism.
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Proof. (1): ρsA = B implies B = Supp(A) ⊆ A and σBe = σAe for all e ∈ B
implies B is a soft subsemigroup of A or B 6 A. Let A be a regular soft subsemigroup
of E and ρsA = B. Then B = Supp(A) = A and σBe = σAe for all e ∈ B implying
B = A.

(2): It is straightforward.
(3): A,B ∈ Ss(E) such that A 6 B implies by the Theorem 3.1(1), A ⊆ B

implying A ⊆ B and σAe ⊆ σBe for all e ∈ A. ρsA = C implies C = Supp(A) and
σCe = σAe for all e ∈ C. ρsB = D implies D = Supp(B) and σDe = σBe for all
e ∈ D. We show that C ⊆ D or (i) C ⊆ D (ii) σCe ⊆ σDe for all e ∈ C.

(i): e ∈ C = Supp(A) ⊆ A ⊆ B implies ϕ ̸= σAe ⊆ σBe implies σBe ̸= ϕ
implying e ∈ Supp(B) = D or C ⊆ D.

(ii): Let e ∈ C be fixed. Then σCe = σAe ⊆ σBe = σDe.
Now (i) and (ii) imply C ⊆ D implying by the Theorem 3.1(1), C 6 D.

(4): ∨i∈IAi = A implies A = ∪i∈IAi and σAe = (∪i∈IeσAie)s, σEe for all e ∈ A,
where Ie = {i ∈ I/e ∈ Ai}. ρsA = B implies B = Supp(A) and σBe = σAe for all
e ∈ B. ρsAi = Ci implies Ci = Supp(Ai) and σCi

e = σAi
e for all e ∈ Ci. ∨i∈ICi

= C implies C = ∪i∈ICi and σCe = (∪i∈IeσCie)s, σEe for all e ∈ C, where Ie =
{i ∈ I/e ∈ Ci}.
We show that B = C or (i) B = C (ii) σBe = σCe for all e ∈ B.

(i): B = Supp(A) = Supp(∪i∈IAi) = ∪i∈ISupp(Ai) = ∪i∈ICi = C.
(ii): Let e ∈ B = C be fixed. Then σCe = (∪i∈IeσCie)s, σEe = (∪i∈IeσAie)s, σEe

= σAe = σBe.
Now (i) and (ii) imply B = C.

(5): ∩i∈IAi = A implies A = ∩i∈IAi and σAe = ∩i∈IσAie for all e ∈ A. ρsA
= B implies B = Supp(A) and σBe = σAe for all e ∈ B. ρsAi = Ci implies Ci =
Supp(Ai) and σCie = σAie for all e ∈ Ci. ⊓i∈ICi = C implies C = Supp(∩i∈ICi)
and σCe = ∩i∈IσCie for all e ∈ C.
We show that B = C or (i) B = C (ii) σBe = σCe for all e ∈ B.

(i): e ∈ B = Supp(A) = Supp(∩i∈IAi) ⊆ ∩i∈ISupp(Ai) = ∩i∈ICi implies
ϕ ̸= σAe = ∩i∈IσAie = ∩i∈IσCie implies e ∈ Supp(∩i∈ICi) = C or B ⊆ C.
Similarly, C ⊆ B and we get that B = C.

(ii): Let e ∈ B = C be fixed. Then σBe = σAe = ∩i∈IσAie = ∩i∈IσCie = σCe.
Now (i) and (ii) imply B = C.

(6): It follows from (2), (4)(i) and (5)(i) above.
For ∗ = q, b, l, r, i, the proofs follow in a similar way as above. �

The following Example shows that in the above Theorem, whenever ∗ = s, q, b, l,
r, i, the map ρ∗ is not one-one.

Example 4.2. Let U be a semigroup, E = ({(e1, U), (e2, U)}, {e1, e2}) be a soft
semigroup over U , A1 = ({(e1, U), (e2, ϕ)}, {e1, e2}) and A2 = ({(e1, U)}, {e1}) be
in S∗(E). Then ρ∗A1 = ({(e1, U)}, {e1}) = ρ∗A2 but A1 ̸= A2 or ρ∗ is not one-one.

Definition 4.4. Whenever ∗ = s, q, b, l, r, i, the complete epimorphism de-
fined as in the Theorem 4.4 is called the reparametrization or regularization map.
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Theorem 4.5. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i,
the operator ν∗ : S∗(E)

′ → Sr∗(E) defined by ν∗B = A, where A in Sr∗(E) is unique
such that A′ = B, satisfies the following properties:

(1) The map ν∗ is both one-one and onto;
(2) For any B,D ∈ S∗(E)

′, B 6 D implies ν∗B 6 ν∗D
For any family (Bi)i∈I in S∗(E)

′,
(3) (i) for ∗ = s, q, b, ν∗(∨i∈IBi) = ∨i∈Iν∗Bi

(ii) for ∗ = l, r, i, ν∗(∪i∈IBi) = ∪i∈Iν∗Bi;
(4) (i) for ∗ = s, q, b, ν∗(∩i∈IBi) = ⊓i∈Iν∗Bi;
(ii) for ∗ = l, r, i, ν∗(∩i∈IBi) = ∧i∈Iν∗Bi;
(5) The map ν∗ is a complete isomorphism.

Proof. (1): Let B, D ∈ Ss(E)
′ such that νsB = νsD. Let νsB = A, where A is

unique in Srs(E) such that A′ = B, and νsD = C, where C is unique in Srs(E) such
that C′ = D. νsB = νsD implies A = C implying B = A′ = C′ = D as εs|Srs(E) is
well defined or νs is one-one.

A ∈ Srs(E) ⊆ Ss(E) implies A′ ∈ Ss(E)
′ which implies νsA

′ = C, where C in
Srs(E) is unique such that C′ = A′ ∈ S(E)′, which implies by the uniqueness of C in
Srs(E), C = A implying νsA

′ = C = A or νs is onto.
(2): B, D ∈ Ss(E)

′ such that B 6 D implies B ⊆ D implying B ⊆ D and
σBe ⊆ σDe for all e ∈ B. Let νsB = A, where A is unique in Srs(E) such that A′

= B, and νsD = C, where C is unique in Srs(E) such that C′ = D. Define A and C
such that A = {e ∈ B/σBe − {0} ̸= ϕ}, σAe = σBe − {0} for all e ∈ A and C =
{e ∈ D/σDe− {0} ̸= ϕ} and σCe = σDe− {0} for all e ∈ C. We show that A ⊆ C
or (i) A ⊆ C (ii) σAe ⊆ σCe for all e ∈ A.

(i): e ∈ A − C implies σDe = {0} implies σBe = {0} as σBe ⊆ σDe implying
σAe = ϕ, which is a contradiction to A ∈ Srs(E). Therefore A ⊆ C.

(ii): Let e ∈ A ⊆ C be fixed. Then σAe = σBe− {0} ⊆ σDe− {0} = σCe.
Now (i) and (ii) imply A ⊆ C implying by the Theorem 3.1(1), A 6 C.
(3): Let (Bi)i∈I be a subset of Ss(E)

′. Bi ∈ Ss(E)
′ implies νsBi = Ai, where

Ai is unique in Srs(E) such that A′
i = Bi. Since Ss(E)

′ is a complete lattice, B =
∨i∈IBi = ∨i∈IBi ∈ Ss(E)

′. Now νsB = A, where A is unique in Srs(E) such that A′

= B. Since Srs(E) is a complete lattice and (Ai)i∈I is a subset of Srs(E), ∨i∈IAi =
∨i∈IAi ∈ Srs(E), where ∨ is the ⊓ induced join in Srs(E). By the Theorem 4.3(3)(i),
(∨i∈IAi)

′ = ∨i∈IA
′
i = ∨i∈IBi = B. By the uniqueness of A in Srs(E), we have A =

∨i∈IAi. Therefore νs(∨i∈IBi) = νsB = A = ∨i∈IAi = ∨i∈IνsBi.
(4): Let (Bi)i∈I be a subset of Ss(E)

′. Bi ∈ Ss(E)
′ implies νsBi = Ai, where

Ai is unique in Srs(E) such that A′
i = Bi. Since Ss(E)

′ is a complete lattice, B =
∩i∈IBi = ∧i∈IBi ∈ Ss(E)

′. Now νsB = A, where A is unique in Srs(E) such that A′

= B. Since Srs(E) is a complete lattice and (Ai)i∈I is a subset of Srs(E), ⊓i∈IAi =
∧i∈IAi ∈ Srs(E). By the Theorem 4.3(4)(i), (⊓i∈IAi)

′ = ∩i∈IA
′
i = ∩i∈IBi = B. By

the uniqueness of A in Srs(E), we have A = ⊓i∈IAi. Therefore νs(∩i∈IBi) = νsB =
A = ⊓i∈IAi = ⊓i∈IνsBi as required.

(5): It follows from (1), (3)(i) and (4)(i) above.
For ∗ = q, b, l, r, i, the proofs follow in a similar way as above. �
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Lemma 4.4. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i and
for any B,D ∈ S∗(E)

′, define B 6 D in S∗(E)
′ iff A 6 C in Sr∗(E), where A′ = B

and C′ = D. Then 6 defines a partial order on S∗(E)
′.

Proof. It follows from the Lemmas 4.2(3) and 4.3(3). �
Lemma 4.5. For any soft semigroup E over U , whenever ∗ = s, q, b, l, r, i, the

induced partial order on S∗(E)
′ from the super poset S∗(E

′) and the partial ordering
on S∗(E)

′ defined as in the Lemma 4.4 above are the same.

Proof. Let R be the partial ordering on Ss(E
′), R1 = {(B,D)/B,D ∈ Ss(E)

′

and (B,D) ∈ R} be the induced partial ordering on Ss(E)
′ from Ss(E

′) and R2

= {(B,D) ∈ Ss(E)
′ × Ss(E)

′/A,C ∈ Srs(E) and A 6 C in Srs(E) such that A′ =
B and C′ = D} be the partial ordering defined on Ss(E)

′ from Srs(E).
Now we show that R1 = R2. (F,G) ∈ R1 implies F, G ∈ Ss(E)

′ implying by
the Lemma 4.2(3), there exist unique H and I respectively in Srs(E) such that H′ =
F and I′ = G.

(i) (F,G) ∈ R1 implies F 6 G in Ss(E)
′ implies F ⊆ G in Ss(E)

′ implies by the
Theorem 4.5(2), H ⊆ I in Srs(E) implies H 6 I in Srs(E) implies (F,G) ∈ R2 or R1 ⊆
R2.

(ii) (F,G) ∈ R2 implies (F,G) ∈ Ss(E)
′ × Ss(E)

′ implies F,G ∈ Ss(E)
′. (F,G) ∈

R2 implies F 6 G in Ss(E)
′ implies F = F ∧ G in Ss(E)

′ implies F = F ∧ G in Ss(E
′)

as Ss(E)
′ is a complete sublattice of Ss(E

′) implies F 6 G in Ss(E
′) implies (F,G) ∈

R implies (F,G) ∈ R1 or R2 ⊆ R1.
Now (i) and (ii) imply R1 = R2.
For ∗ = q, b, l, r, i, the proofs follow in a similar way as above. �
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