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THE SOFT SUBSTRUCTURES OF
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ABSTRACT. In this paper, we introduce the notions of extended soft substruc-
tures for the soft substructures of a soft semigroup and study their lattice
theoretic properties. Further, we show that the complete lattice of all (regu-
lar) soft substructures of a soft semigroup is complete (isomorphic) epimorphic
to the complete lattice of all extended soft substructures for the soft substruc-
tures of a soft semigroup.

1. Introduction

In 1999, Molodtsov [9] introduced the notion of a soft set over a universal set
as a mathematical tool for modelling uncertainties. Since its introduction, several
mathematicians imposed various algebraic (sub) structures on them and studied
some of their elementary properties. In 2010, Ali-Shabir-Shum [3] introduced the
notions of soft semigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) over a
semigroup and studied some of their properties.

In this paper we introduce the notions of extended soft substructures for the soft
substructures of a soft semigroup. Further, we study the lattice theoretic properties
of these extended soft substructures for the soft substructures of a soft semigroup
and the relation between the (regular) soft substructures of a soft semigroup and
the extended soft substructures for the soft substructures of a soft semigroup.

Notice that results of this paper play an important role in proving the results of
Murthy-Maheswari [13], Representation of Soft Substructures of a Soft Semigroup
by Products, namely, for any soft semigroup over a semigroup 1. there is a crisp
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semigroup such that the complete lattice of all soft substructures of the given soft
semigroup is complete epimorphic to a complete lattice of certain substructures of
the crisp semigroup and 2. there is a crisp semigroup such that the complete lattice
of all regular soft substructures of the given soft semigroup is complete isomorphic
to a complete lattice of certain substructures of the crisp semigroup.

2. Preliminaries

In this section we recall some basic definitions and elementary results in the
theory of Lattices, Semigroups, Soft Sets and Soft Semigroups which are used in
the main results later.

DEFINITION 2.1. For any poset (Q, <g) and for any subset P of (), the binary
relation <p on P defined by <p = {(a,b)|a,b € Pand (a,b) € <q} = (PxP)N<g
makes (P, <p) a subposet of (Q, <) and this is called the induced partial ordering
from the super poset Q).

LEMMA 2.1. For any poset (Q, <), for any subposet P of Q with the induced
partial ordering from the super poset Q@ and for any non-empty subset A of P,
VoA <qg VpA (NpA <g NQA) whenever both of them exist. However, equality
holds whenever VoA € P (NgA € P).

DEFINITION 2.2. For any non-empty subset S of a meet (join) complete poset
L with the largest (least) element 17, (0p), one can define VS = A{f € Lla A B =
aforallae S} (AS =V{B € Llanp = forall « € S}) called the meet (join)
induced join (meet) in L. Then L is a complete lattice with the V (A) called the
associated complete lattice for the meet (join) complete poset L.

DEFINITION 2.3. A set S together with a binary operation which is associative
is called a semigroup.

Notice that the empty set is trivially a semigroup with the empty binary oper-
ation called the empty semigroup.

DEFINITION 2.4. For any pair of subsets A, B of a semigroup S, the set AB is
defined by AB = {ab € S|a € A and b € B} and it is a subset of S.

DEFINITION 2.5. For any subset A of a semigroup S,

(1) Ais a subsemigroup of S iff A2 C A. Notice that as in Grillet[6], the empty
semigroup is trivially a subsemigroup of any semigroup;

(2) Ais a left (right) ideal of S iff SA C A (AS C A);

(3) Ais an ideal of S iff SAUAS C A iff it is both a left and a right ideal of S;

(4) A is a quasi-ideal of S iff SAN AS C A;

(5) Ais a bi-ideal of S iff AAC A and ASA C A.

LEMMA 2.2. In any semigroup S, the following are true:

(1) The empty semigroup is trivially a (left, right, quasi-, bi-) ideal of S;

(2) Arbitrary union of (left, right) ideals of S is a (left, right) ideal of S but
arbitrary union of subsemigroups (quasi-ideals, bi-ideals) of S need not be a sub-
semigroup (quasi-ideal, bi-ideal) of S
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(3) Arbitrary intersection of subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of S is a subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) of S;

(4) The intersection of all subsemigroups (left ideals, right ideals, ideals, quasi-
ideals, bi-ideals) of S containing a given subset is a subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of S which is unique and smallest with respect to
the containment of the given subset;

(5) For any subset A of a semigroup S, whenever x = s (I, r, i, q, b), the unique
smallest subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) containing
the given subset A defined as in (4) above is called the subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) generated by A and is denoted by (A)s, s ((A)«, s).
Notice that (¢)s, s = ¢ and A # ¢ iff (A)s, s # .

LEMMA 2.3. Whenever x = s(l, 7, i, q, b), for any subsemigroup (left ideal,
right ideal, ideal, quasi-ideal, bi-ideal) B of S and for any subset A of B, (A)s, s
((A). s) is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of B.

DEFINITION 2.6. A semigroup S has a zero element Og iff 0g € S such that
0505 = 0gs = s0g = Og for all s € S.

Notice that a semigroup cannot have more than one zero element.

REMARK 2.1. Whenever S is a semigroup, an element 0 can be adjoined to S
such that S is a subsemigroup of S U {0} and 00 = 0s = s0 = 0 for all s € S.

DEFINITION 2.7. For any semigroup S, the semigroup S U {0} such that S is a
subsemigroup of S U {0} is called the 0-adjoined semigroup and is denoted by Sp.

DEFINITION 2.8. For any semigroup S and for any subset B of the 0-adjoined
semigroup Sy, B — {0} is called the 0-contraction of B in S.

Notice that the 0-contraction of Sy is S and the 0-contraction of ¢ is ¢ itself.

LEMMA 2.4. In any semigroup S, the following are true:

(1) If A is a subsemigroup of S then A is also a subsemigroup of Sy;

(2) If A is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
S then Ag is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
SO;'

(3) If ¢ # B is a (left, right, quasi-, bi-) ideal of Sy then 0 € B;

(4) If B is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of
So then B—{0} is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)
of S;

(5) For any subset A of S, (A)s, s U{0} = (AU{0})s 5, for x =s, ¢, b.

DEFINITION 2.9. ([9]) Let U be a universal set, P(U) be the power set of U and
E be a set of parameters. A pair (F, E) is called a soft set over U iff F: E — P(U)
is a mapping defined by for each e € E, F(e) is a subset of U.

Notice that a collective presentation of all the notions algebras, soft sets, fuzzy
soft sets, f-soft algebras, f-fuzzy soft algebras in the single paper, Murthy-Maheswari
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[10] raised some serious notational conflicts and to fix the same we deviated from
the above notation for a soft set and adapted the following notation for convenience
as follows:

Let U be a universal set. A typical soft set over U is an ordered pair E =
(0E, E), where E is a set of parameters, called the underlying parameter set for E,
P(U) is the power set of U and o : E — P(U) is a map, called the underlying set
valued map for E.

DEFINITION 2.10. ([4]) The empty soft set over U is a soft set with the empty
parameter set, denoted by ® = (0,4, ¢). Clearly, it is unique.

DEFINITION 2.11. ([4]) A soft set E over U is said to be a null soft set iff oge
=¢foralleecF.

DEFINITION 2.12. ([14]) For any pair of soft sets A, B over U, A is a soft subset
of B, denoted by A C B, iff (i) A C B (ii) 04a C opa for all a € A.

DEFINITION 2.13. For any family of soft subsets (A;);cr of E,

(1) ([5]) the soft union of (A;);cr, denoted by U;erA,, is defined by the soft set
A, where

(i) A= Ujerd;

(ii) oaa = Ujer, 04,0 for all a € A, where I, = {i € I/a € A;};

(2) the soft intersection of (A;);cr, denoted by N;crA;, is defined by the soft
set A, where

(i) A= Nierd;

(ii) caa = Nieroa,a for all a € A.

DEFINITION 2.14. ([3]) A soft set (F, A) over a semigroup S which is neither
empty nor null is said to be a soft semigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) over S iff F(a) is a subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of S for all a € A whenever F(a) # ¢.

3. Soft Substructures of a Soft Semigroup

In what follows from Murthy-Maheswari [12], we recall the notions of soft (sub)
semigroup, soft (left, right, quasi-, bi-) ideal of a soft semigroup and some properties
of them which are used in the due course. Notice that throughout this section U
is a semigroup unless otherwise explicitly stated.

DEFINITION 3.1. A soft set E over a semigroup U is said to be a soft semigroup
over U iff oge is a subsemigroup of U for all e € E. Consequently, for us the empty
soft set ® and the null soft set @5 over U are trivially soft semigroups over U.

DEFINITION 3.2. For any soft subset A of a soft semigroup E over U, A is a
soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of E iff o 4a
is a subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of oga for all
a€ A.

Notice that the empty soft subset ® and a null soft subset ® 4 of E are trivially
soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) of E.
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Whenever x = s(I, r, i, q, b), the set of all soft subsemigroups (left ideals, right
ideals, ideals, quasi-ideals, bi-ideals) of E is denoted by 85(E) (8.(E)).

DEFINITION 3.3. For any soft semigroup E over U and for any soft subsemigroup
(left ideal, right ideal, ideal, quasi-ideal, bi-ideal) A of E, A is a d-total (regular)
soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of E iff A =FE
(caa # ¢ for all a € A).

Notice that the empty soft set ® is trivially regular soft subsemigroup (left
ideal, right ideal, ideal, quasi-ideal, bi-ideal) of E. Whenever x = s (I, r, 4, ¢, ),
the set of all d-total (regular) soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of E is denoted by $¢(E) (87(E)) and the set of all d-total and
regular soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) of
E is denoted by 8% " (E).

DEFINITION 3.4. For any soft subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) A of a soft semigroup E over U, the support of A, denoted by Supp(A),
is defined by Supp(A) = {a € A/osa # ¢}. Notice that Supp(A) C A.

LEMMA 3.1. For any soft semigroup E over U, the following are true:

(1) For any pair of soft subsemigroups (left ideals, right ideals, ideals, quasi-
ideals, bi-ideals) A, B of E, A is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of B iff A is a soft subset of B;

(2) Arbitrary union of soft (left, right) ideals of E is always a soft (left, right)
ideal of E but arbitrary union of soft subsemigroups (quasi-ideals, bi-ideals) of E
need not be a soft subsemigroup (quasi-ideal, bi-ideal) of E;

(3) Arbitrary intersection of soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) of E is a soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E;

(4) The intersection of all soft subsemigroups (left ideals, right ideals, ideals,
quasi-ideals, bi-ideals) containing a given soft subset is a soft subsemigroup (left
ideal, right ideal, ideal, quasi-ideal, bi-ideal) which is unique and smallest with
respect to the containment of the given soft subset.

DEFINITION 3.5. For any soft subset A of a soft semigroup E over U, whenever
=s(l, r, 1, g, b), the unique smallest soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E containing A defined as in the Lemma 3.1(4) is called the
soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal) generated by A
and is denoted by (A)s e ((A)x.E).

LEMMA 3.2. For any soft subset A of a soft semigroup E over U, whenever
x = s(l, r, i, q, b), the soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal,
bi-ideal) generated by A, (A)s,e ((A)«, E), is given by C, where C = A and oce =
(04€)s,05e ((04€)x ope) for alle e C.

PRrOOF. Clearly, C is a soft subsemigroup of E. Let B be a soft subsemigroup

of E such that A C B. Then A C B and oae C opge for all e € A implies C' =
A C B and by the Lemma 2.3, oge = (04€)s,0pe Copeforallec C=Aor CCB
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or C is the smallest soft subsemigroup of E containing A or C = (A), g. For x =
l, r, i, q, b, the proofs follow in a similar way as above. O

Notation: Whenever « = s (I, 7, i, q, b), for any soft semigroup E over U and
for any pair of soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-
ideals) A, B of E, A <; B (A <, B) iff A is a soft subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of B.

THEOREM 3.1. For any soft semigroup E over U, whenever x = s, q, b, [, r, i,
the set 8,(E) is a complete lattice with

(1) the partial ordering defined by: for any A, B € 8.(E), A< B iff A<, B;

(2) the largest and the least elements in S.(E) are E and ® respectively;

(3) for any family (Ai)icr in S4«(E), NierAi = Nic1Ai;

(4) for any family (A;)icr in 8«(E), however,

(i) for x = s, q, b, Vic1Ai = VicrA;, where V is the meet induced join in 8. (E)
and VierA; = A, where A = UjerA; and oge = (Ujc1,04,€)x,05e for all e € A,
where I, = {i € I/e € A;}, and

(ii) for x =1, 7,4, VierAi = UierA;.

PROOF. (1): Clearly, 85(E) is a poset with the partial ordering defined by: for
any A, B € 84(E), A < B iff A is a soft subsemigroup of B iff A C B by the Lemma
3.1(1).

(2): ® CACEfor all A € 8(E) implies ® < A < E for all A € 84(E) implying
the largest and the least elements in 8;(E) are E and & respectively.

(3): Let (A;)icr be a subset of 8;(E). By the Lemma 3.1(3), we have N;c/A; =
A € 84(E).

(i) NiesA; = ACA; foralli € T as A = NjerA; C A; foralli € I and o4e =
Nicroa,e C oy,e for all e € A and for all ¢ € I implies N;e7A; = A < A,

(ii) B € 85(E) such that B < A; for all i € I implies B C A; for all i € I implies
B CA; foralli el and oge C 0y4,e for all e € B and for all ¢ € I which implies
B CNjerA; = Aand oge C Njecjoa,e = oye for all e € B which imply B C A =
NicrA; implying B < A = N;e/A;.

Now (i) and (ii) imply AjerA; = NicrAs.

(4): Let (A;)ier be a subset of 85(E). Now we claim that V;crA; = A, where A
= Ujerd; and oge = (Uijer,04,€)s,0pe for all e € A, where I, = {i € I/e € A;}.

Let us recall that (A)&E = mAgB7B<SEB = mAQB,BESS(E)B = /\AQB,BESS(E)B~
For any B € 84(E), U;esA; C B iff A; C B for all i € I iff A; is a soft subsemigroup
of B for all i € T by the Lemma 3.1(1) iff A; < B for all i € I.

Now (UierAi)s,E = AU, A, CB, BeS, (E)B = Aa,<Bfor allicr, Bes, (E)B = VierA.

On the other hand, if C = U,;¢A; then C = U;c1A; and oce = U;er, 04, e for all
e € C, where I, = {i € I/Je € A;}. Now by the Lemma 3.2, Vic/A; = (UicrAi)s, E
= (Q)s,e = D, where D = C and ope = (0¢€)s, ope for all e € D.

We show that D = A or (i) D = A (ii) ope = g4e for all e € D.

(1) D=C= UiEIAi = A.

(ii): Let e € D = A be fixed. Now ope = (0¢€)s, ope = (UicI.0A,€)s, ope =
gAp€.
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Now (i) and (ii) imply D = A or V,;c1A; = A as required.

From (1)-(4) and by the Definition 2.2, we get that 85(E) is a complete lattice.

For x = ¢, b, the proofs follow in a similar way as above and for * = [, r, i,
the proofs of (1)-(3) follow in a similar way as (1)-(3) above and the proof of (4)
follows in a similar way as (3) above. O

LEMMA 3.3. For any soft semigroup E over U and for any family of soft sub-
semigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) (A;)icr of E, the
following are true:

(1) Supp(Mic1Ai) C NicrSupp(Ai);

(2) Supp(VierAi) = Supp(UicrAi) = UierSupp(A;).

THEOREM 3.2. For any soft semigroup E over U, whenever x = s, q, b, the set
8T (E) is a join complete subposet of the complete lattice 8..(E) and also itself is a
complete lattice with

(1) the induced partial ordering from the super poset 8, (E);

(2) the largest and the least elements in 8% (E) are L, where L = Supp(E) and
ore = oge for alle € L, and ® respectively
for any family (A)ier in S(E);

(3) NierAi = MicrA;, where MicrA; = A such that A = Supp(NicrA;i) and oae
= Nieroa,e foralle € A;

(4) VierAi = UierA; = VierA;, where U and V are M and A induced joins in
SL(E) and 8.(E) respectively.

PROOF. (1): Tt follows from the Definition 2.1.

(2): Tt follows in a similar way as in the Theorem 3.1(2).

(3): Let (A;)ier be a subset of ST(E). Define M;csA; by A, where A =
Supp(NierA;) and oae = Nieroa,e for all e € A. Clearly, A € 87(E).

Now we claim that, in 87(E), AjerA; = A.

(()fA=¢then A=® € 8§5(E) and A =0 < A; foralli e Iin 85(E). If A #
¢ then A < NierA; < A; for all i € I in 84(E) implies A < A, for all ¢ € I in 8%(E).

(ii) B < A; in 87(E) implies B < A; in 84(E) implies B < N;erA; in 85(E) implies
B C NiesA; in 84(E) implies B C N1 A; and ¢ # ope C Nieroa,e for all e € B
implies B C Supp(NierA;) = A and ¢ # ope C Nieroa,e = oge for all e € B
implying B C A. If A = ¢ then B = ¢ and so B = ® < A in §(E).

If A+ ¢ then B C A in 87(E) and so B < A in 8%(E).

Now (i) and (ii) imply AjerA; = A = MierA;.

(4): Let (A;)icr be a subset of 87(E). Now we claim that V,crA; in 84(E) =
UierA; in 85(E) = Ma,<Bfor allicrins7(E)B- A = VierA; in 8,(E) implies A = U;er A;
and oge = (Ujer,04,€)s, ope for all e € A, where I, = {i € I/e € A;}. Clearly,
A e 8;(E).

(i) A€ 8T(E) and A; < A for all ¢ € T in 8”(E) implies U;e;A; C A = VierA,.

(ii) B € 87(E) such that A; < B for all ¢ € T in 87(E) implies A; C B for all
1 € Iin 8%(E) implies A; C B for all ¢ € I and 04,e C ope for all e € A; and for
all i € I in 8%(E) implies A = U;erA; € B and U;er, 04,6 C ope for all e € A in
87(E) implies A C B and by the Lemma 2.3, 04¢ = (Ujes,04,€)s, ope C ope for all
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e € Ain 8%(E) implies A C B implies VicsA; in 85(E) = A C Ma, <Bfor allicI ins7(E)B
= DielAi in S:(E)

Now (i) and (ii) imply U;crA; in 8%(E) = VierA; in 85(E) or 87(E) is a join
complete subposet of 8;(E).

From (1)-(4) and by the Definition 2.2, we get that 8’ (E) is a complete lattice.
For x = ¢, b, the proofs follow in a similar way as above. O

THEOREM 3.3. For any soft semigroup E over U, whenever x =1, r, v, the set
8T (E) is a join complete subposet of the complete lattice S.(E) with

(1) the induced partial ordering from the super poset 8, (E);

(2) the largest and the least elements in 8% (E) are L (cf.Theorem 3.2(2)) and
D respectively;

(3) for any family (A;)icr in 8L(E), VierAi = UicrA;.

(4) Further, 8T(E) is a complete lattice with the join induced meet N given by
for any family (A;)icr in SL(E), NicrAi = A, where A = Supp(NierA;i) and oae =
Nicroa,e for alle € A.

PrOOF. (1) and (2) follows in a similar way as in the Theorem 3.2 (1) and (2).

(3): A = V;crA; in SI(E) implies A = U;crA; in SI(E) implies A = U;crA;, o€
= Ujer.oa,eforalle € A, where I, = {i € Ile € A;}, and o 4e # ¢ as 04,e # ¢ for
all e € A; and for all ¢ € I implying A € 87(E) or 8] (E) is a join complete subposet
of §;(E).

(4): Let (A;)icr be a subset of 8](E). Now we claim that A;c;A; = A, where
A = Supp(NierA;) and oae = N;ieroa,e for all e € A. Clearly, A € 8§ (E).

Let us recall that AjerA; = VigA, for alliel,Besy(E)B = C.

We show that C = A.

(1) Since A € S;(E) and A <A, foralli € I,AC \/BgAi for alliEI,BESlT(E)B =C.

(ii) B € 8(E) such that B < A; for all ¢ € I implies B C A; for all ¢ € I
implies B C A; for all i € I and ¢ # ope C 04,e for all e € B and for all ¢ €
implies B C NerA; and ¢ # ope C N;eroa,e for all e € B which implies B C
Supp(NierA;) = A and ope C Njcroa,e = oae for all e € B implying B C A or C
= VB<A, for allicl, Besy(E)B © A.

Now (i) and (ii) imply A = C.

From (1)-(4) and by the Definition 2.2, we get that 8] (E) is a complete lattice.

For « = r, i, the proofs follow in a similar way as above. O

4. Extended Soft Substructures

In this section we introduce the notions of extended soft substructures for the
soft substructures of a soft semigroup and study their lattice theoretic properties.

Let us recall that, a 0-adjoined semigroup of a semigroup is the semigroup with
0 in which the multiplication of any two elements of the semigroup is the same as
the old one and the multiplication of any semigroup element or the 0 by the 0 is
the 0 itself.

Notice that throughout this section Uy is denoted by U.
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DEFINITION 4.1. For any soft subsemigroup (left ideal, right ideal, ideal, quasi-
ideal, bi-ideal) A of a soft semigroup E over U, the extended soft subsemigroup (left
ideal, right ideal, ideal, quasi-ideal, bi-ideal) or simply es-subsemigroup (left ideal,
right ideal, ideal, quasi-ideal, bi-ideal) for A, denoted by A’, is defined by A’ = F
and for each e € F,

e — JA€U{0} if e # ¢
AT {0} ifope=¢orec E—A

In particular, the es-semigroup for E is given by E’, where E' = E and for each
eec L,
{O'EGU{O} if ope # ¢
Ope =
{0} if ope = ¢

Notice that (1) for any soft semigroup E over U, the es-semigroup E’ for E is
always a soft semigroup over U

(2) E is a soft subsemigroup of E’.

Whenever * = s (I, r, i, ¢, b), the set of all es-subsemigroups (left ideals, right
ideals, ideals, quasi-ideals, bi-ideals) for all soft subsemigroups (left ideals, right
ideals, ideals, quasi-ideals, bi-ideals) of E is denoted by 84(E)’ (84(E)’). In other
words, 84(E) = {A'|A € 8,(E)}, (8+(E) = {A’|A € 8.(E)}).

REMARK 4.1. Observe that for any soft subsemigroup (left ideal, right ideal,
ideal, quasi-ideal, bi-ideal) A of a soft semigroup E over U, A’ is a soft subsemigroup
(left ideal, right ideal, ideal, quasi-ideal, bi-ideal) of the soft semigroup E’ over U.
In fact, A’ is a d-total and regular soft subsemigroup (left ideal, right ideal, ideal,
quasi-ideal, bi-ideal) of E'.

Notice that since the empty soft set ® is a soft subsemigroup (left ideal, right
ideal, ideal, quasi-ideal, bi-ideal) of E, ®’, where ¢/ = E and oge = {0} for all
e € E, is the soft subsemigroup (left ideal, right ideal, ideal, quasi-ideal, bi-ideal)
of E'.

LEMMA 4.1. For any soft semigroup E over U, whenever x = s(l, r, i, q, b),
the set S5(E) (8«(E)') of all es-subsemigroups (left ideals, right ideals, ideals, quasi-
ideals, bi-ideals) for all soft subsemigroups (left ideals, right ideals, ideals, quasi-
ideals, bi-ideals) of E over U is a proper subset of the complete lattice 8s(E') (8.(E))
of all soft subsemigroups (left ideals, right ideals, ideals, quasi-ideals, bi-ideals) of
E over U.

PRrROOF. It follows from the Remark 4.1. O

DEFINITION 4.2. For any regular soft subsemigroup (left ideal, right ideal,
ideal, quasi-ideal, bi-ideal) A of a soft semigroup E over U, the es-subsemigroup
(left ideal, right ideal, ideal, quasi-ideal, bi-ideal) for A is given by A’ where A’ =
FE and for each e € E,

oseU{0} ifeecd
oae= .
{0} ifeec E—A
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LEMMA 4.2. For any soft semigroup E over U, the following are true:

(1) For any B € 84(E') such that 0 € opb for all b € B there exists unique A
in 8”(E) such that A" = B;

(2) Further, 8s(E) = {B € 84(E')/0 € opb for allb € B};

(3) For any B € 85(E)’ there exists unique A in S”(E) such that A" = B;

(4) Consequently, S;(E) = SL(E)'.

PRrROOF. (1): Define A by A = {e € B/oge — {0} # ¢} and o4e = ope — {0}
for all e € A. Clearly, A € 87(E) C 8,(E).
Now A’ is given by A’ = E and for each e € E,

{0} ifee E—A

We show that A’ =B or ocae =opeforalle € E. Let e € E be fixed. Ife € A
then o4 = 04e U {0} = (ope — {0}) U {0} = ope. If e ¢ A then cq4e = {0} =
oge or A’ = B.

Let Ay, Ay € 87(E) such that A} = B = Aj. Then A} = B =FE = A} and o47e =
ope = oaye for all e € E.

We show that Ay = Ay or (i) 41 = As (ii) o4, = oa,e for all e € A;.

(i): e € Ay — Ay implies 04,e = ¢ implies {0} = o4e = 0476 = 04,6 U{0}
implies 04, = ¢, which is a contradiction to A; € 87(E). Therefore A; C A,.
Similarly, Ao C A; and we get that A; = As.

(ii): Let e € Ay = Aj be fixed. Since 04,6 U{0} = 04,e = 0476 = 04,eU{0},
0AE = 04,€.

Now (i) and (ii) imply A; = As.

(2): Tt follows from the Definition 4.1, the Remark 4.1 and (1) above.

(3): Tt follows from (1) and (2) above.

(4): By (3) above, 8;(E)" C 8%(E)'.

On the other hand, D" € 8”(E)’ implies D € 87(E) C 8,(E) implying D’ € 8§,(E)’
or 8T(E) C 8,(E). O

e — {JAe u{0} ifecA

LEMMA 4.3. For any soft semigroup E over U, whenever x =1, 1,1, q, b, the
following are true:

(1) For any B € 8%7(E) there exists unique A in S87(E) such that A' = B;

(2) Further, $,(E) = 847 (E);

(3) For any B € 8.(E) there exists unique A in 8" (E) such that A" = B;

(4) Consequently, 8.(E) = SL(E)'.

PROOF. It follows in a similar way as the Lemma 4.2. O

THEOREM 4.1. For any soft semigroup E over U, whenever x = s, q, b, 1, r, 1,
the set 8,(E)" is a complete sublattice of the complete lattice 8, (E') with
(1) the induced partial ordering from the super poset 8. (E);

)

(2) the largest and the least elements in 8.(E) are E and ®' respectively;
(3) for any family (A})icr in 8+(E), NierA; = NicrAj;
(4) for any family (A))icr in 8.(E)', however;
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(i) for x = s, q, b, Vie1 A, = Ve A, where V is the meet induced join in 8,(E)
and Vi1 A, = A', where A’ = E and care = (UiejaA;e)*,gE,e foralle e E

(11) fO’f‘ * =1, 7 1, \/iGIA,/L- = Uie]A;.

(5) Further, 8.(E)" is a complete filter of 8.(E').

Proor. (1): It follows from the Definition 2.1.

(2): Tt follows in a similar way as in the Theorem 3.1(2).

(3): Let (A);cr be a subset of 85(E)’. B = AjesA; in 84(E') implies B = N;erA]
in 8,(E") implies B = N;c; A, = F and oge = Nieroae for all e € E. Since B =
Eand 0 € opeforalle € Eas 0 € oge for all e € A and for all i € I, by the
Lemma 4.2(2), B € 8;(E)'.

(4): Let (A));er be a subset of 84(E)’. B = V;csA! in 84(E') implies B = V< rA]
in 84(E') implies B = U;e; A} = FE and oge = (Uie](jAge)S’a-E,e for all e € E. Since
B=Fand0€opeforaleec Eas0€ ogeforalleec A and for all i € I, by the
Lemma 4.2(2), B € 84(E)’. Now (3) and (4) imply S;(E)’ is a complete sublattice
of 84(E").

(5): A" € 84(E)’ and B € 84(E') such that A" < B in 84(E’) implies A’ C B in
85(E') implies E = A’ C B and 04/e C ope for all e € A’ = E implies B = E and
0 €opeforalle € F as0 € oyefor all e € E implying by the Lemma 4.2(2), B €
8<(E)’ or 84(E)’ is a complete filter of 8,(E).

For x = ¢, b, I, 7, i, the proofs follow in a similar way as above. O

THEOREM 4.2. For any soft semigroup E over U, whenever x = s(q, b, I, r,
i), the map e, : 8.(E) — 8.(E)" defined by for any A € 8.(E), e.A = A’ being the
es-subsemigroup (quasi-ideal, bi-ideal, left ideal, right ideal, ideal) for A, satisfies
the following properties:

(1) The map e, is onto;

(2) For any A, B € 8.(E), A< B implies e, A < e.B.

For any family (A;)ier in 8.(E),

(3) ex(NicrAi) = NicreA;
(4) (1) fOT’ * =5,4, b; 5*(Vi€1Ai) = Vi€I€*Ai;
(ii) forx =1 r 1, E*(UiGIAZ') = U;er€+Ai;
(5) The map e, is a complete epimorphism.

Proor. (1): It is straightforward.

(2): A, B € 84(E) such that A < B implies by the Theorem 3.1(1), A C B
implying A C B and 04e C ope for alle € A. Let e,A = A, Then A’ = E and for
each e € F,

e oae U{0} ifose# ¢
AT {0} ifogqe=¢orec E—A
Let e,B = B’. Then B’ = F and for each e € E,

e — UBGU{O} ifO'BG#qf)
B {0} ifope=¢porec E—B
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We show that A" C B  or 047e C opre for all e € E. Let e € E be fixed. If e € A
and oge # ¢ then cqae = o4e U {0} C opeU {0} = ope. If e € A and o4e =
¢ then c4e = {0} C opre. If e € B— A then oge = {0} Copge. lfec E—B
then o4.e = {0} = opre. Therefore A’ C B' or by the Theorem 3.1(1), A" is a soft
subsemigroup of B or e,A = A" < B = ¢,B.
(3): Let N;erA; = A. Then A = N1 A; and oae = Njcrog,e for all e € A.
Let esA = A’ Then A’ = E and for each e € F,

e — oae U{0} ifoae# ¢
AT {0} ifope=¢orec E—A

Let esA; = Bj. Then B} = E and for each e € E,

e oa,e U{0} ifoge#¢
B {0} ifog,e=¢orec E—A;

Let NiesB; = B". Then B’ = Nie;B] = E and opre = Nicropre for all e € E.
We show that A’ = B’ or 0 4¢ = oge foralle € E.

Let e € E be fixed.

(i) If A= ¢ then e € E— A implies 04 = {0}. A = N;erA; = ¢ implies there
exists ig € I such that e & A;, implies op €= {0} implying ope = {0} = oare.

(ii) If A # ¢ and e ¢ A then e € E — A implies o4.¢ = {0} = ope as in (i)
above.

(iii) If A # ¢, e € A and o4e = ¢ then cae = {0}. If 04, e = ¢ for some
ig € I then op € = = {0} implies opre = {0} = ocare. If oa,e ;é ¢ foralli el
implies opre # {0} for all i € I or op/e = o4,e U {0} for all i € I implying ope
= Nieropre = Nier(oa,e U {0}) = (ﬂzelaAle) U {0} = g4e U {0} = {0} = gare.

(iv)If A# ¢, e € Aand ope # ¢ then o4 = o4e U {0}. e € A = Nicr4;
and oae # ¢ implies e € A; for all : € I and o4,e # ¢ for all i € [ imply ope =
oa,e U {0} for all i € I implying opre = Nicr(oa,e U {0}) = (Nicroa,e) U {0} =
oae U {0} = ogre.

(4): Let VierA; = A. Then A = UjcrA; and oae = (Ujcr,04,€)s, o for all
e € A, where I, = {i € [/e € A;}. Let e,A =A". Then A’ = E and for each e € E,

oo — O'AGU{O} ifUAe#qS
AT {0} ifope=¢oreec E—A

Let esA; = B;. Then B] = E and for each e € E,

e — oa,e U{0} ifoge#¢
B {0} if og,e=¢orec E—A;

Let Vie/B, = B'. Then B’ = Uje;B! = E and ope = (Uieropr€)s, o e for all
e € E. We show that A’ = B or o4¢ = ogre foralle € E.
Let e € E be fixed.

(i) If e ¢ A then oqpe = {0}. e € A = UjcrA; implies e &€ A, for all i € T
implies op/e = {0} for all i € I implying opre = {0} = oae.
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(ii) If e € A = U;cr A; then I, # ¢. Define I, as I, = J. W (I. — J..), where J,
={iel.joseto},andTasI=T1T—-I. Wl =T—-1.8 J I, —J., where §
denotes the disjoint union. Therefore

{0} ifiel—1.,
opie=4{04,eU{0} ifie .
{0} ifiel —J,

Now opre = (Uier-1.0p;€) U(Uies.0p1€) U(Vicr, — 1. 0B1€))s, 0 e = ((Uics, 04,€)U
{0})s,0prer 0ae = ((Uics.04,6)U(Uicr, —1.04,€))s,0pe = (Uics.04,€)s,0pe and o are
=04eU{0} = ((Vics.04,€))s,0pe U {0} = ((Uics.04,6) U{0})s,0,,e. Clearly, oare
= op’e.

(5): Tt follows from (1), (3) and (4)(i) above.

For x = g, b, [, 7, i, the proofs follow in a similar way as above. O

The following Example shows that in the above Theorem, whenever x = s, ¢, b,
l, r, i, the map e, is not one-one.

EXAMPLE 4.1. Let U be a semigroup and E = ({(e1,U), (e2,U)},{e1,e2}) be
a soft semigroup over U. Then U = U U {0} is also a semigroup. Let A; =
({(e1, 9), (e2,U)}, {e1,e2}) and Az = ({(e2,U)},{ea}) be in 8.(E). Then e.A; =
All = ({(61, {0})7 (eQ’U)}’ {61, 62}) and €,Ag = AIQ = ({(61, {0})7 (627U)}’ {617 62})'
Clearly, €,A; = €,As but Ay # Ay or e, is not one-one.

DEFINITION 4.3. Whenever x = s, ¢, b, [, 7, i, the complete epimorphism ¢, as
in the Theorem 4.2 is called the extension operator.

THEOREM 4.3. For any soft semigroup E over U, whenever x = s, q, b, [, r, 1,
the restricted map €.|S8L(E) : 8L(E) — 8.(E) defined by for any A € 8%(E),
(e4|8%(E))(A) = e4A as in the Theorem 4.2, satisfies the following properties:

(1) The map £.|8%L(E) is both one-one and onto;

(2) For any A, B € 85(E), A< B implies e, A < e.B.

For any family (A;)icr in S1(E);

(3) (i) forx = s, q, b, €.(VicrAi) = Viere A

(11) forx =1, r 1, E*(UiGIAZ‘) = Ujer€+Ai;
(4) (i) for x = s, q, b, .(MicrAi) = Nicre+Ai;
(ii) for = =1, r i, e(NicrAi) = NicresAi;
(5) The map £.|8L(E) is a complete isomorphism.

PrOOF. (1): Let A,B € 87(E) such that e,A = ¢,B. Let e,A = A" and ¢,B =
B’. Then A’ = E = B’ and for each e € E,

oaeU{0} ifec A opeUJ{0} ifeeB
ope= ) and ope= )
{0} ifeecE—A {0} iteec E—B

A’ = B implies A’ = E = B’ and o4¢ = opre for all e € E. We show that A = B
or (i) A = B (ii) c4e = ope for all e € A.
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(i): e € A implies o4e = o4 U{0} # {0} as o4e # ¢. If e ¢ B then ope
= {0} # oase, which is a contradiction to A’ = B’. Therefore ¢ € B or A C B.
Similarly, B C A and we get that A = B.

(ii): Let e € A = B be fixed. Since c4eU{0} = o4e = opre = opeU {0}, we
have o 4e = opge.

Now (i) and (ii) imply A = B or the map is one-one. Clearly, by the Lemma
4.2(3), the map is onto.

(2) and (3): Follow from the Theorem 4.2(2) and 4.2(4)(i).

(4): Let MiesA; = A. Then A = Supp(NicrA;) and oae = Nieroa,e for all
ec A. Let e,A=A'. Then A’ = F and for each e € E,

oaeU{0} ifec A
gpe = A
{0} ifeec E—A

Let esA; = B,. Then B] = E and for each e € E,

oa,eU{0} ifee A
op/e€ = .
‘ {0} itee E— A;

Let N;erB; = B'. Then B’ = N;e;B, = F and ope = Nieropre for all e € E. We
show that A’ = B’ or 04/ = opre for all e € E. Let e € E be fixed.

(i) A = ¢ implies e € E— A implying oc4e = {0}. e ¢ A implies N;cjoa,e = ¢.
If 04, e = ¢ for some ig € I then e ¢ A;, implies op €= {0} implying op-e = {0}
=oae. lfope# ¢ foralli€ I then e € A; for all i € I implies opre = 04,6 U{0}
for all i € I implies opre = Nicropre = Nier(oa,eU{0}) = (Nieroa,e) U{0} = {0}
= 0 A€.

(ii) A # ¢ and e € A implies ocge = o4e U {0}. e € A = Supp(NiesAi) C
NierA; implies e € A; for all i € I implies opre = 04,e U{0} for all i € I implying
ope = miGIUB;e = mieI(JA,;e @] {0}) = (miGIUAie) U {0} = ogeU {0} = oye.

(iii) A # ¢ and e € E — A implies 04¢ = {0}. e € E — A implies Njcjoae =
¢ and as (i) above, op e = gare.

(5): Tt follows from (1), (3)(i) and (4)(i) above.

For x = ¢, b, [, 7, i, the proofs follow in a similar way as above. O

THEOREM 4.4. For any soft semigroup E over U, whenever x = s, q, b, [, r, i,
the map ps : S«(E) — SL(E) defined by for any A € 8.(E), p.A = B, where B =
Supp(A) and ope = oae for all e € B, satisfies the following properties:

(1) For any A € 8.(E), p+A < A. Equality holds whenever A is regular;

(2) The map p. is onto;

(3) For any A, B € 8.(E), A< B implies p.A < p.B;

For any family (A;)ier in 8.(E),

(4) (1) fOT’ * =54, b; p*(VlEIAZ) - ViEIP*Ai;

(ii) for = =1, r, 4, p«(UierAi) = Uierp+Ai;

(5) (1) fOT *=35,49, b, p*(miEIA’i) = miEIp*Ai;'

(11) fOT * = la T, 1, p*(miEIAi) = KiEIp*Ai;
(6) The map ps is a complete epimorphism.
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PRrROOF. (1): psA = B implies B = Supp(A) C A and oge = o4e for alle € B
implies B is a soft subsemigroup of A or B < A. Let A be a regular soft subsemigroup
of E and psA = B. Then B = Supp(A) = A and ope = o4e¢ for all e € B implying
B=A.

(2): It is straightforward.

(3): A,B € 84(E) such that A < B implies by the Theorem 3.1(1), A C B
implying A C B and o4e C opge for all e € A. p,A = C implies C = Supp(A) and
oce = gge for all e € C. psB = D implies D = Supp(B) and ope = ope for all
e € D. We show that CC D or (i) C C D (ii) oce Cope for all e € C.

(i) e € C = Supp(A) C A C B implies ¢ # ose C ope implies oge # ¢
implying e € Supp(B) = D or C C D.

(ii): Let e € C be fixed. Then oce = gae C oge = ope.

Now (i) and (ii) imply C C D implying by the Theorem 3.1(1), C < D.

(4): VierA; = Aimplies A = U;erA; and o4e = (Uje1,04,€)s,05e for all e € A,
where I, = {i € I/e € A;}. psA = B implies B = Supp(A) and ope = o4e for all
e € B. pA; = C; implies C; = Supp(A;) and o¢,e = g4,e for all e € C;. V;erC;
= C implies C' = U;e1C; and oce = (Ujer,0¢,€)s, ope for all e € C, where I, =
{i S I/@ S CZ}

We show that B = C or (i) B = C (ii) ope = o¢e for all e € B.

(i): B = Supp(A) = Supp(UiesAi) = UierSupp(A;i) = UierC; = C.

(ii): Let e € B = C be fixed. Then oce = (Uic1,0¢;€)s, ope = (UicI,0A,€)s, ope
— 0p€ = Opge.

Now (i) and (ii) imply B = C.

(5): NierA; = A implies A = N;erA; and o4e = Njecroga,e for all e € A, psA
= B implies B = Supp(A) and oge = o4e for all e € B. p,A; = C; implies C; =
Supp(A;) and o¢,e = o4,e for all e € C;. M;e;C; = C implies C' = Supp(N;erC;)
and oce = Nieroc,e for all e € C.

We show that B = C or (i) B = C (ii) ope = o¢e for all e € B.

(i): e € B = Supp(A) = Supp(MicsAi) € NMierSupp(A;) = NierC; implies
¢ # oae = Nicroa,e = Nieroc,e implies e € Supp(NerC;)) = C or B C C.
Similarly, C C B and we get that B = C.

(ii): Let e € B = C be fixed. Then oge = 04e = Njcjoa,6 = Nicioc,e = oce.
Now (i) and (ii) imply B = C.

(6): Tt follows from (2), (4)(i) and (5)(i) above.

For x = g, b, I, 7, i, the proofs follow in a similar way as above. O

The following Example shows that in the above Theorem, whenever x = s, q, b, [,
r,4, the map p, is not one-one.

EXAMPLE 4.2. Let U be a semigroup, E = ({(e1,U), (e2,U)}, {e1,e2}) be a soft
semigroup over U, A1 = ({(e1,U), (e2,9)}, {e1, e2}) and Ay = ({(e1,U)},{e1}) be
in 8,(E). Then p.A1 = ({(e1,U)}, {e1}) = p«Az but A; # A or p. is not one-one.

DEFINITION 4.4. Whenever * = s, q, b, [, r, i, the complete epimorphism de-
fined as in the Theorem 4.4 is called the reparametrization or regularization map.
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THEOREM 4.5. For any soft semigroup E over U, whenever x = s, q, b, [, r, 1,
the operator v, : 8.(E) — 8T(E) defined by v.B = A, where A in 8"(E) is unique
such that A" = B, satisfies the following properties:

(1) The map v, is both one-one and onto;

(2) For any B,D € 8,(E)’, B< D implies v.B< v,D
For any family (B;)icr in 8«(E),

(3) (i) for * =s,q, b, v«(Vic1B;i) = ViervsB;

(ii) for « =1, r, i, vu(Uier B;) = UjerviBi;

(4) (i) for x = s, q, b, vi(NierB;) = MierviBi;

(ii) for « =1, r, i, vi(Nic1Bi) = NiervsBi;

(5) The map v, is a complete isomorphism.

PRrROOF. (1): Let B, D € 84(E)’ such that vsB = v,D. Let vsB = A, where A is
unique in 87(E) such that A" = B, and vsD = C, where C is unique in 8”(E) such
that C' = D. v4,B = v4D implies A = C implying B = A" = C' = D as £,|8%(E) is
well defined or vy is one-one.

A € 87(E) C 84(E) implies A" € 84(E)" which implies ;A" = C, where C in
8”(E) is unique such that C' = A" € §(E)’, which implies by the uniqueness of C in
87(E), C = A implying ;A" = C = A or v, is onto.

(2): B, D € 84(E)’ such that B < D implies B C D implying B C D and
ope C ope for all e € B. Let v,B = A, where A is unique in 8"(E) such that A’
= B, and vsD = C, where C is unique in 8%(E) such that C' = D. Define A and C
such that A = {e € B/oge — {0} # ¢}, oue = ope — {0} for all e € A and C =
{e € D/ope — {0} # ¢} and oce = ope — {0} for all e € C. We show that A C C
or (i) ACC (ii) oae Coce for all e € A.

(i): e € A — C implies ope = {0} implies ocge = {0} as ope C ope implying
oae = ¢, which is a contradiction to A € 87(E). Therefore A C C.

(ii): Let e € A C C be fixed. Then o4e = ope — {0} C ope — {0} = oce.

Now (i) and (ii) imply A C C implying by the Theorem 3.1(1), A < C.

(3): Let (B;)ier be a subset of S;(E)’. B; € 85(E) implies vsB; = A;, where
A, is unique in 87(E) such that A, = B;. Since 84(E)’ is a complete lattice, B =
VierBi = VierB; € 84(E)’. Now vsB = A, where A is unique in 8’ (E) such that A’
= B. Since 87(E) is a complete lattice and (A;);cr is a subset of 8T(E), Vic1A; =
VierA; € 87(E), where V is the M induced join in 87 (E). By the Theorem 4.3(3)(i),
(VierA:) = VierAl = V;e1B; = B. By the uniqueness of A in 8”(E), we have A =
ViEIAi- Therefore Vs(vie]Bi) = Z/SB =A= ViEIAi = Vieﬂ/sBi.

(4): Let (B;)ier be a subset of 8;(E)’. B; € 8s(E) implies vsB; = A;, where
A, is unique in 87(E) such that A, = B;. Since 84(E)’ is a complete lattice, B =
NicrBi = NicrBi € 84(E)'. Now vsB = A, where A is unique in 8’ (E) such that A’
= B. Since 8(E) is a complete lattice and (A;);cr is a subset of 87(E), M;crA; =
/\iEIAi S SZ(E) By the Theorem 43(4)(1)7 (l_liEIAi)/ = ﬁiEIA; = ﬁieIBi = B. By
the uniqueness of A in 87(E), we have A = M;crA;. Therefore vs(N;erB;) = vsB =
A = MierA; = MiervsB; as required.

(5): It follows from (1), (3)(i) and (4)(i) above.

For x = ¢, b, I, 7, i, the proofs follow in a similar way as above. O
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LEMMA 4.4. For any soft semigroup E over U, whenever x = s, q, b, [, r, i and
for any B,D € 8,(E), define B < D in 8,(E) iff A< C in 87(E), where A = B
and C' = D. Then < defines a partial order on 8. (E)’.

PrOOF. It follows from the Lemmas 4.2(3) and 4.3(3). O

LEMMA 4.5. For any soft semigroup E over U, whenever x = s, q, b, I, r, i, the
induced partial order on 8.(E)" from the super poset 8,(E') and the partial ordering
on 84 (E) defined as in the Lemma 4./ above are the same.

PROOF. Let R be the partial ordering on 8,(E’), Ry = {(B,D)/B,D € 8,(E)’
and (B,D) € R} be the induced partial ordering on 84(E)’ from 84(E') and Rs
= {(B,D) € 84(E)’ x 84(E)’/A,C € 8"(E) and A < C in 8"(E) such that A" =
B and C" = D} be the partial ordering defined on 84(E)’ from 8" (E).

Now we show that Ry = Ry. (F,G) € Ry implies F, G € 8;(E)’ implying by
the Lemma 4.2(3), there exist unique H and | respectively in 8”(E) such that H' =
Fand ' = G.

(i) (F,G) € Ry implies F < G in 8,4(E)" implies F C G in 84(E)’ implies by the
Theorem 4.5(2), H C | in 87(E) implies H < | in 8%(E) implies (F,G) € Ry or R; C
R,.

(ii) (F,G) € Ry implies (F,G) € 84(E)’ x 85(E)" implies F, G € 8;(E)". (F,G) €
Ry implies F < G in 84(E)’ implies F = F A G in 84(E)’ implies F = F A G in 8,(E)
as 8,(E)’ is a complete sublattice of 84(E") implies F < G in 84(E") implies (F,G) €
R implies (F,G) € Ry or Ry C R;.

Now (i) and (ii) imply Ry = Ra.

For x = ¢, b, I, 7, i, the proofs follow in a similar way as above. O
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