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NUMERICAL SOLUTION OF

FRACTIONAL-ORDER SIR EPIDEMIC MODEL

VIA JACOBI WAVELETS

Haman Deilami Azodi

Abstract. The mathematical model of the spread of a non-fatal disease in
a population named SIR epidemic model is considered as a system of non-
linear fractional differential equations. In this manuscript, Jacobi wavelets

are first constructed and then uniform convergence of them together with
error analysis is investigated. By using an operational matrix of fractional
integration and with the aid of collocation points, a scheme is proposed
which transforms the main problem to a system of algebraic equations.

Finally, numerical results of applying the presented method are compared
with other methods.

1. Introduction

Computational models help biologists to discover the behaviour of diseases and
viruses in the human body. They describe the connections of a biological system
components with together in the mathematical view. It is worth mentioning
that most biological systems have memory and in the models using ordinary
differential equations with integer-order, such effects are neglected. Because
of the relation of fractional calculus to the systems with memory, the models
formulated as fractional-order differential equations reveal more properties of
biological systems. However, many of these fractional models are non-linear
and so analytical solutions can not be determined easily. Thus, the numerical
solution of biological processes is a responsibility for mathematicians.

One of the most important biological systems is SIR epidemic model that
measures the changes of susceptible, infected and recovered individuals numbers
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in a population. Here, we consider the following SIR epidemic model involving
Caputo fractional derivatives [1,15]

(1.1)


Dν1

∗ S(t) = −a1S(t)I(t),
Dν2

∗ I(t) = a1S(t)I(t)− a2I(t),

Dν3
∗ R(t) = a2I(t),

with the initial conditions

S(0) = S0, I(0) = I0, R(0) = R0,(1.2)

in which Dνi
∗ denotes to Caputo derivative with order 0 < νi 6 1, i = 1, 2, 3.

The concepts of variables and parameters of the model (1.1) are as follows.

• S(t) is the number of individuals in the susceptible compartment S at
the time t.

• I(t) is the number of individuals in the infected compartment I at the
time t.

• R(t) is the number of individuals in the recoverd compartment R at
the time t.

• a1 is the rate of change of susceptibles to infective population.
• a2 is the rate of change of infectives to immune population.

In the non-linear model (1.1), it has been assumed that total population remains
constant, N , that is S(t) + I(t) + R(t) = N. It is also clear that for ν1 = ν2 =
ν3 = 1, the model (1.1) reduces to conventional model formulated by A. G.
McKendrick and W. O. Kermack [6].

Wavelets are a class of functions used to localize a given function in the
dilation and translation [10]. They have been widely derived in mathemati-
cal researches and various fields of applied sciences. In the literature, there
is a special consideration on families of the wavelets produced by orthogonal
polynomials. These families include Legendre wavelets, first to fourth kinds of
Chebyshev wavelets, Gegenbauer wavelets. For instance, some applications of
the aforesaid wavelets related to fractional problems can be found in [2,4,5,7,
9,11,13,14,18,20].

More recently, Jacobi wavelets have been constructed by utilising Jacobi
polynomials and general definition of wavelet [3,16,19]. The main advantage of
this family of wavelets is that other wavelets generated by orthogonal polynomi-
als are special cases of it. However, there are fewer articles about these wavelets
and their usages rather than other types of wavelets. Hence, we try to find some
new properties of Jacobi wavelets and develop the applications of this family of
wavelets.

In the next section, some preliminaries used further in this work are given.
Section 3 is assigned to the structure of Jacobi wavelets. In this section, we
also prove uniform convergence of the expansion written by the elements of this
wavelet and find an upper bound for the error estimation. In section 4, a numer-
ical method is suggested for solving the problem (1.1) under the initial values
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(1.2). This method considers the approximate solutions as the Jacobi wavelets
components with unknown coefficients. Then, with the aid of operational matrix
of fractional integration and collocation points, the proposed method converts
the problem (1.1) to a system of algebraic equations. By solving this algebraic
system, the unknown coefficients are determined and thus the approximate so-
lutions can be obtained. In section 5, numerical computations of the method
will be offered. At the end, a conclusion is announced in the section 6.

2. Preliminaries

First, some basic definitions of fractional calculus are reviewed [12].

Definition 2.1. The Riemann-Liouville’s fractional-order integration for
the function f on L1[a, b] is defined as follows

Iνf(t) =

{
1

Γ(ν)

∫ t

0
(t− τ)ν−1f(τ)dτ, ν > 0,

f(t), ν = 0.

Definition 2.2. The Caputo’s type derivative of order ν > 0 is defined as

Dν
∗f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−ν−1f (n)(τ)dτ, n− 1 < ν 6 n,

where t > 0 and n is an integer.

Remark 2.1. Caputo’s integral operator for f ∈ L1[a, b] has the following
useful property

IνDν
∗f(t) = f(t)−

n−1∑
i=0

f (i)
(
0+

) ti
i!
, n− 1 < ν 6 n.

3. Wavelets and Jacobi wavelets

In this section, using Jacobi polynomials, we construct Jacobi wavelets and
declare some properties of this family of wavelets.

3.1. Jacobi polynomials. The Jacobi polynomials, Pα,β
m , of the order

m ∈ N∪{0} are defined for α > −1 and β > −1 on [−1, 1] and can be determined
by the following recurrence formula [17]

Pα,β
m (t) =


1, m = 0,(

α+β+2
2

)
t+ α−β

2 , m = 1,(
aα,βm−1t− bα,βm−1

)
Pα,β
m−1(t)− cα,βm−1P

α,β
m−2(t), m > 1,

(3.1)
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where

aα,βm−1 =
(2m+ α+ β − 1)(2m+ α+ β)

2m(m+ α+ β)
,

bα,βm−1 =
(β2 − α2)(2m+ α+ β − 1)

2m(m+ α+ β)(2m+ α+ β − 2)
,

cα,βm−1 =
(m+ α− 1)(m+ β − 1)(2m+ α+ β)

m(m+ α+ β)(2m+ α+ β − 2)
.

The Jacobi polynomials form an orthogonal basis of L2[−1, 1] with respect
to the weight function ωα,β(t) = (1− t)α(1 + t)β such that∫ 1

−1

ω(t)Pα,β
m (t)Pα,β

n (t)dt =

{
0, m ̸= n,

hα,βm , m = n,
(3.2)

in which

hα,βm =
2α+β+1Γ(m+ α+ 1)Γ(m+ β + 1)

(2m+ α+ β + 1)m!Γ(m+ α+ β + 1)
,(3.3)

and Γ refers to the Gamma function.

3.2. Jacobi wavelets. The dilation parameter a and translation parame-
ter b of a mother wavelet ψ define the continuous wavelets

ψa,b(t) = a−
1
2ψ

(
t− b

a

)
, a ∈ R+, b ∈ R.(3.4)

Now, suppose a0 > 1 and b0 > 0 are fixed and take a = a−k
0 and b = na−k

0 b0
such that k, n ∈ N. Instead of using the family of wavelets (3.4), we use the
family of wavelets indexed by N, named the discrete wavelets

ψk,n(t) = a
k
2
0 ψ

(
ak0t− nb0

)
, k, n ∈ N.(3.5)

The family of (3.5) constitutes an orthogonal basis for L2(R) and by choosing
a0 = 2 and b0 = 1, (3.5) forms an orthonormal basis of L2(R).

For α > −1 and β > −1, we can define Jacobi wavelets, ψα,β
n,m, for n =

1, . . . , 2k−1, (k ∈ N) and m = 0, 1, . . . on [0,1] in the following

ψα,β
n,m(t) =

{
1√
hα,β
m

2
k
2 Pα,β

m

(
2kt− 2n+ 1

)
, n−1

2k−1 6 t < n
2k−1 ,

0, otherwise
(3.6)

where hα,βm is defined in (3.3) and the coefficient 1√
hα,β
m

is for normality. In (3.6),

the dilation parameter is a = 2−k, the translation parameter is b = (2n− 1)2−k

and k ∈ N is named the level of resolution. The Jacobi wavelets expressed
in (3.6) constitute an orthonormal basis of L2[0, 1] with respect to the weight
function ωn(t) = ω

(
2kt− 2n+ 1

)
.
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3.3. Function approximation. Let f : [0, 1] −→ R is a measurable func-
tion. For α > −1, β > −1 and the weight function ω(t) the space L2

ω[0, 1] is
defined in the following

L2
ω[0, 1] =

{
f :

∫ 1

0

ω(t) |f(x)|2dt <∞
}
.

We also define the inner product ⟨., .⟩ω as

⟨f, g⟩ω =

∫ 1

0

ω(t)f(t)g(t)dt.

The function f(t) can be expanded at the level k ∈ N as

(3.7) f(t) =
2k−1∑
n=1

∞∑
m=0

fn,mψ
α,β
n,m(t),

where

fn,m =
⟨
f(t), ψα,β

n,m(t)
⟩
ω
=

∫ 1

0

f(t)ψα,β
n,m(t)ωn(t)dt.

Usually, the infinite series in (3.7) is truncated and written in the following

f(t) ≈
2k−1∑
n=1

M∑
m=0

fn,mψ
α,β
n,m(t) = FTΨα,β(t),(3.8)

which approximates f(t) as a finite linear combination of Jacobi wavelets. In
(3.8), F and Ψα,β(t) are column vectors with 2k−1(M + 1) entries given by

F =
[
f1,0, . . . , f1,M , f2,0, . . . , f2,M , . . . , f2k−1,0, . . . , f2k−1,M

]T
,

Ψα,β(t) =
[
ψα,β
1,0 (t), . . . , ψ

α,β
1,M (t), . . . , ψα,β

2k−1,0
(t), . . . , ψα,β

2k−1,M
(t)

]T
.

4. Uniform convergence and error estimation

In what follows, uniform convergence and error estimation of Jacobi wavelets
are assessed.

Theorem 4.1. If f(t) is continuous on [0, 1] and there exists L ∈ R+ such
that |f ′′(t)| 6 L, then the truncated series (3.8) when M → ∞ converges to f(t)
uniformly, that is

f(t) =
2k−1∑
n=1

∞∑
m=0

fn,mψ
α,β
n,m(t).

Moreover, for m > 1,

|fn,m| <
L
(

2α+4
α+β+4

)α+2
2

(
2β+4

α+β+4

) β+2
2

n
5
2 (m− 1)(m+ α+ β + 1)

.
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Proof. For every α > −1 and β > −1, we can write

fn,m =

∫ 1

0

ωn(t)ψ
α,β
n,m(t)f(t)dt

=
1√
hα,βm

2
k
2

∫ n

2k−1

n−1

2k−1

(
1−

(
2kt− 2n+ 1

))α (
1 +

(
2kt− 2n+ 1

))β ×
Pα,β
m

(
2kt− 2n+ 1

)
f(t)dt.

If we put x = 2kt− 2n+ 1, it follows

fn,m =
1√
hα,βm

2−
k
2

∫ 1

−1

ωα,β(x)Pα,β
m (x)f

(
2n− 1 + x

2k

)
dx.(4.1)

The Rodrigues formula of Jacobi polynomials results in

ωα,β(x)Pα,β
m (x) = − 1

2m

d

dx

(
ωα+1,β+1(x)Pα+1,β+1

m−1 (x)
)
.(4.2)

Applying the integration by parts technique for (4.1) and using (4.2), we have

fn,m = − 2−
3k
2

2m
√
hα,βm

∫ 1

−1

ωα+1,β+1(x)Pα+1,β+1
m−1 (x)f ′

(
2n− 1 + x

2k

)
dx.(4.3)

Integrating by parts again, enables one to achieve

fn,m =
2−

5k
2

4m(m− 1)
√
hα,βm

∫ 1

−1

ωα+2,β+2(x)Pα+2,β+2
m−2 (x)f ′′

(
2n− 1 + x

2k

)
dx.

Deriving Holder’s inequality for this identity, we obtain

|fn,m| 6 L

2m(m− 1)
√
hα,βm

2−
5k
2

(∫ 1

−1

(
ωα+2,β+2(x)Pα+2,β+2

m−2 (x)
)2

dx

) 1
2

.

(4.4)

Now, put

r(x) = ωα+2,β+2(x), s(x) = ωα+2,β+2(x)
(
Pα+2,β+2
m−2 (x)

)2

.

From (4.4) and the fact r(x), s(x) > 0 on [−1, 1], one may gain

|fn,m| 6 L

m(m− 1)
√
hα,βm

2−
5k
2

(
max

−16x61
r(x)

) 1
2
(∫ 1

−1

s(x)dx

) 1
2

.(4.5)

A simple computation shows that x∗ = β−α
α+β+4 maximizes r(x) on [−1, 1]. This

maximum value is

r (x∗) = max
−16x61

r(x) =

(
2α+ 4

α+ β + 4

)α+2 (
2β + 4

α+ β + 4

)β+2

.(4.6)
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On the other hand, according to (3.2), it is clear that∫ 1

−1

s(x)dx = hα+2,β+2
m−2 .(4.7)

From (4.5),(4.6), (4.7) and knowing n 6 2k−1, for m > 1, it follows

|fn,m| 6
L
(

2α+4
α+β+4

)α+2
2

(
2β+4

α+β+4

) β+2
2

(2n)
5
2m(m− 1)

√
hα+2,β+2
m−2

hα,βm

=
L
(

2α+4
α+β+4

)α+2
2

(
2β+4

α+β+4

) β+2
2

(2n)
5
2m(m− 1)

√
16m(m− 1)

(m+ α+ β + 2)(m+ α+ β + 1)

=
L
(

2α+4
α+β+4

)α+2
2

(
2β+4

α+β+4

) β+2
2

n
5
2

√
2m(m− 1)(m+ α+ β + 2)(m+ α+ β + 1)

<
L
(

2α+4
α+β+4

)α+2
2

(
2β+4

α+β+4

) β+2
2

n
5
2 (m− 1)(m+ α+ β + 1)

.

In a similar way, considering (4.3), for m = 1, we get

|fn,1| <
G
(

2α+2
α+β+2

)α+2
2

(
2β+2

α+β+2

) β+2
2

(α+ β + 3)n
3
2

,

where G = sup |f ′(t)| on [0, 1]. We mention that G is exist because by the
Mean Value Theorem for every t ∈ [0, 1], there exists an 0 < ηt < t such
that f ′(t) − f ′(0) = f ′′(ηt)t and the assumption |f ′′(t)| < L on [0, 1] entails
|f ′(t)| 6 |f ′(0)|+ L.

Consequently, the series
∑2k−1

n=1

∑∞
m=0 fn,m is absolutely convergent. There-

fore,
∑2k−1

n=1

∑∞
m=0 fn,mψ

α,β
n,m(t) converges to f(t) uniformly. This completes the

proof. �

Theorem 4.2. Under the assumptions of Theorem (4.1), assume that

fk,M (t) =

2k−1∑
n=1

M∑
m=0

fn,mψ
α,β
n,m(t),

is the Jacobi wavelets approximation of f(t) at the level k. Then, the error
estimation on [0, 1] is bounded as

∥εk,M∥ < C ′

2k−1∑
n=1

∞∑
m=M+1

1

n5(m− 1)2(m+ α+ β + 1)2

 1
2

,
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so that

C ′ = L

(
2α+ 4

α+ β + 4

)α+2
2

(
2β + 4

α+ β + 4

) β+2
2

.

Proof.

∥εk,M∥2 =

∫ 1

0

∣∣∣f(t)− fk,M (t)
∣∣∣2ωn(t)dt

=

∫ 1

0

∣∣∣ 2k−1∑
n=1

∞∑
m=0

fn,mψ
α,β
n,m(t)−

2k−1∑
n=1

M∑
m=0

fn,mψ
α,β
n,m(t)

∣∣∣2ωn(t)dt

=

∫ 1

0

∣∣∣ 2k−1∑
n=1

∞∑
m=M+1

fn,mψ
α,β
n,m(t)

∣∣∣2ωn(t)dt

=
2k−1∑
n=1

∞∑
m=M+1

|fn,m|2
∫ 1

0

∣∣∣ψα,β
n,m(t)

∣∣∣2ωn(t)dt

=
2k−1∑
n=1

∞∑
m=M+1

|fn,m|2

< C ′2
2k−1∑
n=1

∞∑
m=M+1

1

n5(m− 1)2(m+ α+ β + 1)2
,

where

C ′ = L

(
2α+ 4

α+ β + 4

)α+2
2

(
2β + 4

α+ β + 4

) β+2
2

.

�

5. Operational matrix and implementation of numerical method

In this section, operational matrix of fractional integration for Jacobi wavelets
is first designed and then a numerical method is implemented for solving (1.1)
with the initial conditions (1.2).

5.1. Operational matrix of fractional integration. Let k is fixed and
M is given. Put m̂ = 2k−1(M + 1). Taking the collocation points

T =

{
tj | tj =

2j − 1

2m̂
, j = 1, . . . , m̂

}
,

we define the m̂× m̂ Jacobi wavelets matrix Φα,β
m̂×m̂ as

Φα,β
m̂×m̂ =

[
Ψα,β(t1),Ψ

α,β(t2), . . . ,Ψ
α,β(tm̂)

]
.(5.1)
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Definition 5.1. The m̂-set of BPFs on [0, 1] is defined in the following

bi(t) =

{
1, i−1

m̂ 6 t < i
m̂ ,

0, otherwise,

where i = 1, . . . , m̂.

Remark 5.1. BPFs are disjoint and orthogonal, that is

• bi(t)bj(t) =

{
0, i ̸= j,

bi(t), i = j.

•
∫ 1

0
bi(τ)bj(τ)dτ =

{
0, i ̸= j,
1
m̂ , i = j.

According to the orthogonality of BPFs, the function f(t) ∈ L2[0, 1] can be
written as

f(t) ≈
m̂∑
i=1

fibi(t) = fTm̂Bm̂(t),

where

fm̂ = [f1, f2, . . . , fm̂]
T
, Bm̂(t) = [b1(t), b2(t), . . . , bm̂(t)]

T
,

in which for i = 1, . . . m̂,

fi = m̂

∫ 1

0

f(t)bi(t)dt.

Definition 5.2. For two vectors fm̂ = [fi] and gm̂ = [gi],

fm̂ ⊗ gm̂ = (fi × gi)m̂ .

Similarly, for two matrices A = [ai,j ] and B = [bi,j ] of m̂× m̂

A⊗B = (ai,j × bi,j)m̂×m̂ .

Lemma 5.1. Let the functions f(t), g(t) ∈ L2 [0, 1] are expanded into BPFs,
that is f(t) = fTm̂Bm̂(t) and g(t) = gT

m̂Bm̂(t). Then

f(t)g(t) =
(
fTm̂ ⊗ gT

m̂

)
Bm̂(t).

Proof.

f(t)g(t) = fTm̂Bm̂(t)BT
m̂(t)gm̂ = f1g1b1(t) + f2g2b2(t) + . . .+ fm̂gm̂bm̂(t)

=
(
fTm̂ ⊗ gT

m̂

)
Bm̂(t).

�
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5.1.1. Operational matrix. From [8], the fractional integration of order ν of
the BPFs vector Bm̂(t) is given as

(5.2) IνBm̂(t) ≈ FνBm̂(t),

where

Fν =
1

m̂ν

1

Γ(ν + 2)


1 ξ1 ξ2 . . . ξm̂−1

0 1 ξ1 . . . ξm̂−2

0 0 1 . . . ξm̂−3

...
...

...
. . .

...
0 0 0 . . . 1

 ,
in which ξi = (i+ 1)ν+1 − 2iν+1 + (i− 1)ν+1, i = 1, . . . , m̂− 1.

Let Pα,β,ν
m̂×m̂ denotes to the fractional integration operational matrix, that is

IνΨα,β
m̂ (t) ≈ Pα,β,ν

m̂×m̂Ψα,β
m̂ (t).(5.3)

Now, for t ∈ T, using (5.1), we have

Ψα,β
m̂ (t) = Φα,β

m̂×m̂Bm̂(t).(5.4)

By (5.2) and (5.4), one gets

IνΨα,β
m̂ (t) = IνΦα,β

m̂×m̂Bm̂(t) = Φα,β
m̂×m̂I

νBm̂(t) ≈ Φα,β
m̂×m̂FνBm̂(t).(5.5)

Also, with the aid of (5.4), we conclude

Bm̂(t) =
(
Φα,β

m̂×m̂

)−1

Ψα,β
m̂ (t).(5.6)

Consequently, from (5.5) and (5.6), it follows

IνΨα,β
m̂ (t) ≈ Φα,β

m̂×m̂Fν
(
Φα,β

m̂×m̂

)−1

Ψα,β
m̂ (t).(5.7)

Considering (5.3) and (5.7) results in

Pα,β,ν
m̂×m̂ = Φα,β

m̂×m̂Fν
(
Φα,β

m̂×m̂

)−1

.

5.2. Implementation of the numerical method. Recall the system
(1.1) with the initial conditions (1.2). Let

(5.8)


Dν1

∗ S(t) ≈ CT
m̂Ψα,β

m̂ (t),

Dν2
∗ I(t) ≈ DT

m̂Ψα,β
m̂ (t),

Dν3
∗ R(t) ≈ KT

m̂Ψα,β
m̂ (t),

in which Cm̂ = [c1, . . . , cm̂]
T
,Dm̂ = [d1, . . . , dm̂]

T
, Km̂ = [k1, . . . , km̂]

T
. Inte-

grating of fractional-order and considering the initial conditions (1.2) yield
S(t) = Iν1Dν1

∗ S(t) + S0 ≈ CT
m̂I

ν1Ψα,β
m̂ (t) + S0 ≈ CT

m̂Pα,β,ν1

m̂×m̂ Ψα,β
m̂ (t) + S0,

I(t) = Iν2Dν2
∗ I(t) + I0 ≈ DT

m̂I
ν2Ψα,β

m̂ (t) + I0 ≈ DT
m̂Pα,β,ν2

m̂×m̂ Ψα,β
m̂ (t) + I0,

R(t) = Iν3Dν3
∗ R(t) +R0 ≈ KT

m̂I
ν3Ψα,β

m̂ (t) +R0 ≈ KT
m̂Pα,β,ν3

m̂×m̂ Ψα,β
m̂ (t) +R0.
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Collocating above equations at the points T and using (5.4) imply

(5.9)


S(t) ≈ CT

m̂Pα,β,ν1

m̂×m̂ Φα,β
m̂×m̂Bm̂(t) + S0Bm̂(t),

I(t) ≈ DT
m̂Pα,β,ν2

m̂×m̂ Φα,β
m̂×m̂Bm̂(t) + I0Bm̂(t),

R(t) ≈ KT
m̂Pα,β,ν3

m̂×m̂ Φα,β
m̂×m̂Bm̂(t) +R0Bm̂(t),

where S0 = [S0, . . . , S0]1×m̂ , I0 = [I0, . . . , I0]1×m̂ and R0 = [R0, . . . , R0]1×m̂ .
Substituting (5.9) and (5.8) into (1.1) and dispersing t at collocation points T,
we achieve the following non-linear system of 3m̂ algebraic equations for 3m̂
unknowns

CT
m̂Φα,β

m̂×m̂ = −a1
(
CT

m̂Pα,β,ν1

m̂×m̂ Φα,β
m̂×m̂ + S0

)
⊗

(
DT

m̂Pα,β,ν2

m̂×m̂ Φα,β
m̂×m̂ + I0

)
,

DT
m̂Φα,β

m̂×m̂ = a1

(
CT

m̂Pα,β,ν1

m̂×m̂ Φα,β
m̂×m̂ + S0

)
⊗
(
DT

m̂Pα,β,ν2

m̂×m̂ Φα,β
m̂×m̂ + I0

)
−a2

(
DT

m̂Pα,β,ν2

m̂×m̂ Φα,β
m̂×m̂ + I0

)
,

KT
m̂Φα,β

m̂×m̂ = a2

(
DT

m̂Pα,β,ν2

m̂×m̂ Φα,β
m̂×m̂ + I0

)
,

which can be solved by the Newton-Raphson procedure with an initial guess or
MATLAB’s fsolve command and T (t), I(t), V (t) are obtained on [0, 1].

6. Numerical experiments

Throughout this section, we assume ν1 = ν2 = ν3 = ν, for the sake of
simplicity. The parameters and initial values of (1.1) are given as

a1 = 0.01, a2 = 0.02, S0 = 20, I0 = 15, R0 = 10.

We also consider the Jacobi wavelets basis for α = 1, β = 2 which is chosen
arbitrary. For given k and M , we determine the coefficients ci, di, ki for i =
1, . . . , m̂ and then T (t), I(t) and V (t) are obtained.

In order to test the efficiency and accuracy of the proposed method in the
case ν = 1, we compare the numerical results of applying the method with the
well-known Runge-Kutta method of fourth-order, Table 1. For 0 < ν < 1, we
calculate the residual errors which are defined as

E(S(t)) = |Dν
∗S(t) + a1S(t)I(t)| ,

E(I(t)) = |Dν
∗I(t)− a1S(t)I(t) + a2I(t)| ,

E(R(t)) = |Dν
∗R(t)− a2I(t)| .

Table 2 compares the residual errors of seventh-order approximations of Homo-
topy analysis method [1] with the proposed method for k = 1, M = 7 in the
case ν = 0.75.

The behaviour of the model (1.1) for various ν and the graphical comparison
of our method with fourth-order Runge-Kutta method in the case ν = 1 have
been shown in Figures 1, 2 and 3 for k = 3, M = 3. It is understandable that
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when ν closes to 1, the solution of fractional-order model (0 < ν < 1) closes to
the solution of integer-order model (ν = 1).

Table 1. Comparison between fourth-order Runge-Kutta so-
lution and our method for k = 1,M = 7 in the case ν = 1

t
S(t) I(t) R(t)

RK4 Ours RK4 Ours RK4 Ours

0.0 20.000000 19.999824 15.000000 15.000070 10.000000 10.000105
0.1 19.699578 19.699426 15.270152 15.270199 10.030270 10.030376
0.2 19.398426 19.398297 15.540494 15.540517 10.061081 10.061186
0.3 19.096713 19.096608 15.810855 15.810854 10.092432 10.092538
0.4 18.794612 18.794532 16.081064 16.081039 10.124324 10.124430
0.5 18.492296 18.492240 16.350948 16.350899 10.156756 10.156862
0.6 18.189937 18.189905 16.620336 16.620262 10.189728 10.189833
0.7 17.887708 17.887700 16.889055 16.888958 10.223237 10.223342
0.8 17.585781 17.585798 17.156936 17.156815 10.257283 10.257388
0.9 17.284329 17.284369 17.423807 17.423663 10.291864 10.291968
1.0 16.983520 16.983585 17.689502 17.689335 10.326978 10.327081

Table 2. Residual errors of Homotopy analysis method (seven
iteration) and our method for k = 1,M = 7 with ν = 0.75

t
E(S(t)) E(I(t)) E(R(t))

HAM [1] Ours HAM [1] Ours HAM [1] Ours

0.1 8.58906×10−4 3.28307×10−5 3.24403×10−2 3.26663×10−5 3.49976×10−3 2.52537×10−8

0.2 2.21032×10−3 2.69744×10−6 1.01885×10−2 2.83890×10−6 1.81610×10−3 1.33356×10−8

0.3 4.10320×10−3 9.55477×10−7 5.04414×10−3 1.19021×10−6 7.42771×10−4 1.64643×10−8

0.4 2.21434×10−4 1.81059×10−6 1.66542×10−4 1.53201×10−6 1.85557×10−4 1.91991×10−8

0.5 3.19900×10−3 1.52851×10−6 2.43165×10−3 1.76676×10−6 5.13441×10−5 9.21540×10−9

0.6 3.52253×10−3 1.66418×10−6 2.85768×10−3 1.53477×10−6 1.16874×10−4 7.10228×10−9

0.7 9.25863×10−4 7.92870×10−7 3.12027×10−3 8.45278×10−7 3.91056×10−5 2.24806×10−8

0.8 8.75244×10−4 2.04555×10−6 3.14582×10−3 2.20438×10−6 1.86796×10−4 2.18876×10−8

0.9 4.14473×10−4 2.17891×10−5 2.74835×10−3 2.14215×10−5 3.70990×10−5 6.12492×10−9

1.0 1.45279×10−3 2.62004×10−4 2.37497×10−3 2.61652×10−4 2.21411×10−4 1.96767×10−7
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Figure 1. The numerical behaviour of S(t)
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Figure 2. The numerical behaviour of I(t)
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Figure 3. The numerical behaviour of R(t)
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7. Conclusion

We considered Jacobi wavelets using recurrence formula of Jacobi polynomials
and the concept of wavelet. To the best of our knowledge, it was first time
that uniform convergence of these wavelets and error estimation of them were
studied.

As an application of Jacobi wavelets in non-linear fractional models, an
efficient scheme with high accuracy was proposed for solving fractional-order
SIR epidemic model expressed as a non-linear system of fractional differential
equations. Along the way, an operational matrix of fractional integration using
BPFs was obtained to transform the problem to a non-linear system of algebraic
equations. The new system was solvable by any standard iteration method such
as Newton-Raphson method or fsolve command of MATLAB software.

Numerical results showed that when ν closes to 1, the solution of fractional-
order model (0 < ν < 1) closes to the solution of integer-order model (ν = 1).
We displayed all of the computations in the matrix form. This scheme makes
the computer programming simple and convenient.

We also performed all of the computations by MATLAB R2015a software
on a 64-bit PC with 2.20 GHz processor and 8 GB memory. It is notable that
the proposed method can be used and extended for solving other non-linear
biological systems arising in mathematical biology.

References

[1] O. A. Arqub and A. El-Ajou. Solution of the fractional epidemic model by homotopy
analysis method. Journal of King Saud University - Science, 25(1)(2013), 73–81.

[2] H. D. Azodi and M.R. Yaghouti. A new method based on fourth kind Chebyshev wavelets
to a fractional-order model of HIV infection of CD4+T cells. Comput. Methods Differ.
Equ., 6(3)(2018), 353–371.

[3] M. R. Eslahchi and M. Kavoosi. The use of Jacobi wavelets for constrained approximation

of rational Bezier curves. Comput. Appl. Math., 37(3)(2018), 3951–3966.
[4] M. H. Heydari, F. M. Maalek Ghaini and M. R. Hooshmandasl. Legendre wavelets

method for numerical solution of time-fractional heat equation. Wavel. Linear Algebra.,
1(1)(2014), 19–31.

[5] M. H. Heydari, M. R. Hooshmandasl, F. Mohammadi and C. Cattani. Wavelets method
for solving systems of nonlinear singular fractional Volterra integro-differential equations.
Commun. Nonlinear Sci. Numer. Simul. , 19(1)(2014), 37–48.

[6] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of
epidemics–I∗. Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 115(772)(1927), 700–721.

[7] H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani and C. M. Khalique. Application

of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl.,
62(3)(2011), 1038–1045.

[8] A. Kilicman and Z. A. Al-Zhour. Kronecker operational matrices for fractional calculus
and some applications. Appl. Math. Comput., 187(1)(2007), 250–265.

[9] Y. Li. Solving a nonlinear fractional differential equation using Chebyshev wavelets. Com-
mun. Nonlinear Sci. Numer. Simul. , 15(9)(2010), 2284–2292.

[10] S. Mallat. A wavelet tour of signal processing, Academic Press, 2000.



JACOBI WAVELETS FOR FRACTIONAL EPIDEMIC MODEL 197

[11] F. Mohammadi. Numerical solution of Bagley-Torvik equation using Chebyshev wavelet
operational matrix of fractional derivative. Int. J. Adv. Appl. Math. Mech., 2(1)(2014),
83–91.

[12] I. Podlubny. Fractional differential equations, Academic Press, 1999.

[13] M. U. Rehman and U. Saeed. Gegenbauer wavelets operational matrix method for frac-
tional differential equations. J. Korean Math. Soc., 52(5)(2015), 1069–1096.

[14] M. U. Rehman and R. A. Khan. The Legendre wavelet method for solving fractional dif-

ferential equations. Commun. Nonlinear Sci. Numer. Simul., 16(11)(2011), 4163–4173.
[15] S. Z. Rida, A. A. M. Arafa and Y. A. Gaber. Solution of the fractional epidemic model

by L-ADM. J. Fract. Calc. Appl., 7(1)(2016), 189–195.
[16] L. J. Rong and P. Chang. Jacobi wavelet operational matrix of fractional integration

for solving fractional integro-differential equation. J. Phys. Conf. Ser., 693 (2016), ID:
012002 (pp. 1–14).
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