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OF BANANA TREE GRAPH
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Abstract. The main goal of this paper is to define the closed forms of M -
polynomials for subdivision and complementary graphs of Banana tree graph.
We will also compute closed forms of various degree-based topological indices

of those graphs. It is known that the topological indices will be mentioned
in here are numerical tendencies which often depict quantitative structural
activity/property/toxicity relationships and correlate certain physico-chemical
properties such as boiling point, stability and strain energy. To conclude, we

shall plot surfaces associated to M -polynomials and characterize some facts
about these graphs.

1. Introduction

Graph theory provides an important tool called molecular graph-based struc-
ture descriptor or more commonly topological index to correlated the physico-
chemical properties of chemical compounds with their molecular structure. Topo-
logical indices are the numerical value associated with chemical constitution for
correlation of chemical structure with various physical properties, chemical reac-
tivity or biological activity. The topological index of a molecule is a non-empirical
numerical quantity that quantifies the structure and the branching pattern of the
molecule. Therefore, the topological analysis of a molecule involves translating its
molecular structure into a characteristic unique number (or index) that may be
considered a descriptor of the molecule under examination. Such indices based on
the distances in graph are widely used for establishing relationships between the
structure of molecular graph and their physico-chemical properties.
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158 LOKESHA, SHRUTI, AND CEVIK

We recall that while a graph G(V,E) with vertex set V (G) and edge set E(G) is
connected if there is a path between any pair of vertices in G, the degree of a vertex
is the number of vertices which are connected to that fixed vertex by the edges.
Moreover the distance between any two vertices u and v is denoted by d(u, v) (or
dG(u, v)) and is defined as the length of shortest path between u and v in graph G.
For details on the basics of graph theory, any standard text such as [27] can be of
great help.

Several algebraic polynomials have useful applications in chemistry. The Hosoya
polynomial ([11]) would be the best well-known example, and it plays an impor-
tant role in determining distance-based topological indices. Among other algebraic
polynomials, the M -polynomial ([8]) was introduced in 2015 and plays the same
role in determining closed forms of many degree-based topological indices. These
indices are actually score functions that capture a variety of physico-chemical prop-
erties of chemical compounds such as boiling point, heat of evaporation, heat of
formation, chromatographic retention times, surface tension, and vapor pressure.
For the details, we may refer [4, 6, 7, 16, 25, 29].

In the following with in each different paragraph, we will recall the degree based
topological indices that will be needed in this paper:

The M -polynomial of the graph G is defined as

(1.1) M(G;x, y) =
∑

δ6i6j6∆

mijx
iyj ,

where δ = min{dv : v ∈ V (G)}, ∆ = max{dv; v ∈ V (G)} and mij(G) the number
of edges vu ∈ E(G) such that {dv, du} = {i, j}.

The first and second Zagreb indices

M1(G) =
∑

u∈V (G)

(du)
2 and M2(G) =

∑
uv∈E(G)

(du.dv) ,

respectively, have been introduced more than thirty years ago by I. Gutman and
Trinajstic in [12]. In fact these Zagreb indices found many applications in QSPR
and QSAR studies. For more details on this important topological indices, we refer
to [13, 14, 15, 22, 24]. According to the [21], both the first and the second Zagreb
indices give greater weights to the inner vertices and edges, and smaller weights
to outer vertices and edges which oppose intuitive reasoning. On the other hand,
there also exists the second modified Zagreb index

mM2(G) =
∑

uv∈E(G)

1

du.dv
,

for a simple connected graph G. There also exists a degree based index related to
Zagreb indices which is named as the augmented Zagreb index of G and proposed
by Furtula et al. [9]. It is calculated by the formula

A(G) =
∑

uv∈E(G)

(
dudv

du + dv − 2

)3

.
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Moreover, the tight upper and lower bounds for the augmented Zagreb index of
chemical tree, and the tree with minimal augmented Zagreb index were obtained
again in the reference [9].

The Randic index ([23])

R(G) =
∑

uv∈E(G)

1√
(du.dv)

,

also known as the connectivity index, of G introduced in 1975 by Milan Randic who
has shown that this index is to reflect molecular branching. For the key results on
the Randic index, we may also refer [17, 19]. On the other hand, the inverse
Randic index is defined as:

RRα(G) =
∑

uv∈E(G)

(dudv)
α ,

where α is an arbitrary real number.
Among 148 discrete Adriatic indices ([2, 5]), one of the important of those is

the symmetric division deg index which is defined by

SDD(G) =
∑

uv∈E(G)

(
min(du, dv)

max(du, dv)
+

max(du, dv)

min(du, dv)

)
.

For a collection of recent results on SDD(G), one can see the references [10, 18].
Some of the topological indices are based on the vertex-degree of the graph G.

One of the vertex-degree based topological index is the Harmonic index H(G) that
is defined by

H(G) =
∑

uv∈E(G)

2

du + dv
.

For more results on Harmonic index, we refer citations [20, 26, 28].
The inverse sum index is the descriptor that was selected in [3] as a significant

predictor of total surface area of octane isomers and for which the extremal graphs
obtained with the help of mathematical chemistry have a particular simple and
elegant structure. Actually the inverse sum index is given by

I(G) =
∑

uv∈E(G)

dudv
du + dv

.

In [1], above well known degree based topological indices with M -polynomials
have been listed with a table (see [1, Table 1]). In here, by not re-writing again, we
will also use this table in some of our proofs which will be mentioned as just Table.

Let us also recall the subdivision graph S(G) which is the graph obtained from
G by replacing each edge by a path of length 2 or by inserting a vertex in every
edge of the graph G. Furthermore the complementary graph Ḡ of G is actually a
simple graph on the same set of vertices V (G) in which two vertices u and v are
connected by an edge uv if and only if they are not adjacent in G.
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We finally remind that the Banana tree graph Bn,k is obtained by connecting
one leaf of each n copies of k-star graph with a single root vertex that has order
nk + 1 and size nk. As an example of this graph, we may give Figure 1 in below.

Figure 1: The subdivision graph of Banana tree graph B3,5

It has been recently presented some computational aspects for the line graphs
of Banana tree graph by Ahmad et. al. (see [1]). Motivated from this work, in this
paper, we will state and proof the closed forms of M -polynomials of subdivision
and complementary graphs of Banana tree graph, and then will compute many
topological indices for those graphs obtained from Banana tree graph.

2. M-polynomial of the subdivision graph of Banana tree graph

In the following first main result, we will focus on M -polynomial of the subdi-
vision graph of Banana tree graph.

Theorem 2.1. Let F be the subdivision graph of Banana tree graph. Then the
M -polynomial of F is presented by

M(F ;x, y) = k(n− 2)xy2 + k(n− 1)x2yn−1 + 2kx2y2 + kx2yk .

Proof. In the proof, by considering the subdivision graph F of Banana tree
graph for n = 3 and k = 5 as shown in Figure 1, we will make a generalization for
arbitrary values n and k. Actually we will follow a similar way as in the proof of
[1, Theorem 3.1].

First note that the graph F contains 2kn+1 vertices and 2kn edges. There are
four types of edges in F based on degrees of end vertices of each edge. The first edge
partitions E1(F ) contains k(n − 2) edges uv, where du = 1, dv = 2. The second
edge partitions E2(F ) contains k(n − 1) edges uv, where du = 2, dv = (n − 1).
The third edge partitions E3(F ) contains 2k edges uv, where du = 2, dv = 2. The
fourth edge partitions E4(F ) contains k edges uv, where du = 2, dv = k. Replacing
G by F in Equation (1.1), we have

M(F ;x, y) =
∑
i6j

mijx
iyj

=
∑
162

m(1)(2)xy
2 +

∑
26(n−1)

m(2)(n−1)x
2y(n−1) +

∑
262

m(2)(2)jx
2y2 +

+
∑
26k

m(2)(k)x
2yk

=
∑

uv∈E1(G)

m(1)(2)xy
2 +

∑
uv∈E2(G)

m(2)(n−1)x
2y(n−1) +
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+
∑

uv∈E3(G)

m(2)(2)jx
2y2 +

∑
uv∈E4(G)

m(2)(k)x
2yk

= |E1(G)|xy2 + |E2(G)|x2y(n−1) + |E3(G)|x2y2 + |E4(G)|x2yk

= k(n− 2)xy2 + k(n− 1)x2yn−1 + 2kx2y2 + kx2yk ,

as required. Hence the result. �

Figure 2: Plot of M -polynomial for subdivision graph of Banana tree graph.

As a next step of the above theorem, let us compute some degree-based topo-
logical indices depicted in the first section of this paper for the subdivision graph
of Banana tree graph in terms of M -polynomial.

Corollary 2.1. Let F be a subdivision graph of the Banana tree graph. Then

• M1(F ) = 3k(n− 2) + k(n− 1)(n+ 1) + 8k + k(k + 2).

• M2(F ) = 2k(n− 2) + 2k(n− 1)2 + 8k + 2k2.

• mM2(F ) =
k

2
[(n− 2) + 1 +

1

k
+ 1].

• Rα(F ) = 2α+1k(n− 2) + 2α+1(n− 1)α+2k + 22α+3k + 2α+1kα+2.

• RRα(F ) =
k(n− 2)

2α
+

k(n− 1)1−α

2α
+ 21−2αk +

k1−α

2α
.

• SDD(F ) =
5k(n− 2)

2
+

k(n2 − 2n+ 5)

2
+ 4k +

(m2 + 4)

2
.

• H(F ) =
2k(n− 2)

3
+

2k(n− 1)

n+ 1
+

2k

k + 2
+ k.

• I(F ) =
2k(n− 2)

3
+

2k(n− 1)2

n+ 1
+ 2k +

2k2

k + 2
.

• A(F ) = 8k(n− 2) + 8k(n− 1) + 16k + 8k.
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Proof. By Theorem 2.1, we know that

M(F ;x, y) = f(x, y) = k(n− 2)xy2 + k(n− 1)x2yn−1 + 2kx2y2 + kx2yk.

Therefore, we obtain

Dxf(x, y) = k(n− 2)xy2 + 2k(n− 1)x2yn−1 + 4kx2y2 + 2kx2yk,

Dyf(x, y) = 2k(n− 2)xy2 + k(n− 1)2x2yn−1 + 4kx2y2 + k2x2yk,

DyDxf(x, y) = 2k(n− 2)xy2 + 2k(n− 1)2x2yn−1 + 8kx2y2 + 2k2x2yk,

Sy(f(x, y)) =
k(n− 2)

2
xy2 + kx2yn−1 + kx2y2 + x2yk,

SxSy(f(x, y)) =
k

2

[
(n− 2)xy2 + x2yn−1 + x2y2 +

x2yk

k

]
,

Dα
y (f(x, y)) = 2α+1k(n− 2)xy2 + k(n− 1)α+2x2yn−1 + 2α+2kx2y2 + kα+2x2yk,

Dα
xD

α
y (f(x, y)) = 2α+1k(n− 2)xy2 + 2α+1(n− 1)α+2kx2yn−1 + 22α+3kx2y2+

2α+1kα+2x2yk,

Sα
y (f(x, y)) =

k(n− 2)

2α
xy2 + k(n− 1)1−αx2yn−1 + 21−αkx2y2 + k1−αx2yk,

Sα
xS

α
y (f(x, y)) =

k(n− 2)

2α
xy2 +

k(n− 1)1−α

2α
x2yn−1 + 21−2αkx2y2 +

k1−α

2α
x2yk,

SyDx(f(x, y)) =
k(n− 2)

2
xy2 + 2kx2yn−1 + 2kx2y2 + 2x2yk,

SxDy(f(x, y)) = 2k(n− 2)xy2 +
(n− 1)2

2
kx2yn−1 + 2kx2y2 +

k2

2
x2yk,

Jf(x, y) = k(n− 2)x3 + k(n− 1)xn+1 + 2kx4 + kxk+2,

SxJf(x, y) =
k(n− 2)

3
x3 +

k(n− 1)

n+ 1
xn+1 +

k

2
x4 +

k

k + 2
xk+2,

JDxDyf(x, y) = 2k(n− 2)x3 + 2k(n− 1)2xn+1 + 8kx4 + 2k2xk+2,

SxJDxDyf(x, y) =
2k(n− 2)

3
x3 +

2k(n− 1)2

n+ 1
xn+1 + 2kx4 +

2k2

k + 2
xk+2,

D3
yf(x, y) = 8k(n− 2)xy2 + k(n− 1)4x2yn−1 + 16kx2y2 + k4x2yk,

D3
xD

3
yf(x, y) = 8k(n− 2)xy2 + 8k(n− 1)4x2yn−1 + 128kx2y2 + 8k4x2yk,

JD3
xD

3
yf(x, y) = 8k(n− 2)x3 + 8k(n− 1)4xn+1 + 128kx4 + 8k4xk+2,
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Q−2JD
3
xD

3
yf(x, y) = 8k(n− 2)x+ 8k(n− 1)4xn−1 + 128kx2 + 8k4xk,

S3
xQ−2JD

3
xD

3
yf(x, y) = 8k(n− 2)x+ 8k(n− 1)xn−1 + 16kx2 + 8kxk.

After all, by using the Table, we have the following graphs of different indices.

M1(F ) = (Dx +Dy)f(x, y)|x=y=1

= 3k(n− 2) + k(n− 1)(n+ 1) + 8k + k(k + 2).

Rα(F ) = Dα
xD

α
y f(x, y)|x=y=1

= 2α+1k(n− 2) + 2α+1(n− 1)α+2k + 22α+3k + 2α+1kα+2.

H(F ) = 2SxJf(x, y)|x=y=1

=
2k(n− 2)

3
+

2k(n− 1)

n+ 1
+

2k

k + 2
+ k.

I(F ) = (SxJDxDy)f(x, y)|x=y=1

=
2k(n− 2)

3
+

2k(n− 1)2

n+ 1
+ 2k +

2k2

k + 2
.

�
2.1. Surfaces representing M-polynomials of subdivision graph of Ba-

nana tree graph.
We use Maple 15 to represent graphs of M -polynomials of the subdivision

graphs of Banana tree graph given in the proof of Corollary 2.1. From these graphs,
it can seen that the behavior of the polynomials differ along different parameters.
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3. M-polynomial of the complementary graph of Banana tree graph

In this second main section of this paper, we will demonstrate theM -polynomial
of the complementary graph of Banana tree graph. Hence the other main result is
the following.

Theorem 3.1. Let H be the complementary graph of Banana graph. Then the
M -polynomial of the graph H is

M(H;x, y) = f(x, y)

=
k(k − 1)

2
xn(k−1)+1yn(k−1)+1 + k(k − 1)xn(k−1)+1ykn−2 +

+kxn(k−1)+1yk(n−1) + (k2n− kn− 2k2 + 2k)xn(k−1)+1ykn−1 +

+
k(k − 1)

2
xkn−2ykn−2 + k2(n− 2)xkn−2ykn−1 +

k(n− 2)xk(n−1)ykn−1 +

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2
xkn−1ykn−1.

Proof. In this proof, we will follow quite similar way as in the proof of Theo-
rem 2.1. Hence, by considering the complementary graph H of Banana tree graph
for arbitrary values n and k, we will make a generalization.

We note that the graph H contains kn(kn−1)
2 edges. There are eight types of

edges in H as in the following:

The first edge partitions E1(G) contains k(k−1)
2 edges uv, where du = n(k −

1) + 1 = dv.
The second edge partitions E2(G) contains k(k − 1) edges uv, where du =

n(k − 1) + 1, dv = kn− 2.
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The third edge partitions E3(G) contains k edges uv, where du = n(k− 1)+ 1,
dv = k(n− 1).

The fourth edge partitions E4(G) contains (k2n − kn − 2k2 + 2k) edges uv,
where du = n(k − 1) + 1, dv = kn− 1.

The fifth edge partitions E5(G) contains k(k−1)
2 edges uv, where du = kn− 2,

dv = kn− 2.
The sixth edge partitions E6(G) contains k2(n−2) edges uv, where du = kn−2,

dv = kn− 1.
The seventh edge partitions E7(G) contains k(n − 2) edges uv, where du =

k(n− 1), dv = kn− 1.

Finally the eighth edge partitions E8(G) contains k2n2−4k2n−kn+4k2+2k
2 edges

uv, where du = kn− 1, dv = kn− 1.
Replacing G by H in Equation (1.1), we have

M(H;x, y) =
∑

[n(k−1)+1]6[n(k−1)+1]

m[n(k−1)+1][n(k−1)+1]x
n(k−1)+1yn(k−1)+1 +

+
∑

[n(k−1)+1]6(kn−2)

m[n(k−1)+1](kn−2)x
n(k−1)+1y(kn−2) +

+
∑

[n(k−1)+1]6k(n−1)

m[n(k−1)+1][k(n−1)]x
n(k−1)+1yk(n−1) +

+
∑

[n(k−1)+1]6(kn−1)

m[n(k−1)+1](kn−1)x
n(k−1)+1ykn−1 +

+
∑

(kn−2)6(kn−2)

m(kn−2)(kn−2)x
kn−2ykn−2 +

+
∑

(kn−2)6(mn−1)

m(kn−2)(kn−1)x
kn−2ykn−1 +

+
∑

[k(n−1)]6(kn−1)

m[k(n−1)](kn−1)x
k(n−1)ykn−1 +

+
∑

(kn−1)6(kn−1)

m(kn−1)(kn−1)x
kn−1ykn−1.
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Therefore,

M(H;x, y) =
∑

uv∈E1(G)

m[n(k−1)+1][n(k−1)+1]x
n(k−1)+1yn(k−1)+1 +

+
∑

uv∈E2(G)

m[n(k−1)+1](kn−2)x
n(k−1)+1ykn−2 +

+
∑

uv∈E3(G)

m[n(k−1)+1][k(n−1)]x
n(k−1)+1yk(n−1) +

+
∑

uv∈E4(G)

m[n(k−1)+1](kn−1)x
n(k−1)+1ykn−1 +

+
∑

uv∈E5(G)

m(kn−2)(kn−2)x
kn−2ykn−2 +

+
∑

uv∈E6(G)

m(kn−2)(kn−1)x
kn−2ykn−1 +

+
∑

uv∈E7(G)

m[k(n−1)](kn−1)x
k(n−1)ykn−1 +

+
∑

uv∈E8(G)

m(kn−1)(kn−1)x
kn−1ykn−1.

In fact, from this last equality we obtain

M(H;x, y) = |E1(G)|xn(k−1)+1yn(k−1)+1 + |E2(G)|xn(k−1)+1ykn−2 +

+|E3(G)|xn(k−1)+1yk(n−1) + |E4(G)|xn(k−1)+1ykn−1 +

+|E5(G)|xkn−2ykn−2 + |E6(G)|xkn−2ykn−1 +

+|E7(G)|xk(n−1)ykn−1 + |E8(G)|xkn−1ykn−1

which is equal to the

=
k(k − 1)

2
xn(k−1)+1yn(k−1)+1 + k(k − 1)xn(k−1)+1ykn−2 +

+kxn(k−1)+1yk(n−1) + (k2n− kn− 2k2 + 2k)xn(k−1)+1ykn−1 +

+
k(k − 1)

2
xkn−2ykn−2 + k2(n− 2)xkn−2ykn−1 +

+k(n− 2)xk(n−1)ykn−1 +

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2
xkn−1ykn−1.

Hence the result. �
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Figure 3: Plot of M -polynomial for the complementary graph of Banana tree
graph.

As a next step of Theorem 3.1, let us compute some degree-based topological
indices which were depicted in the first section of this paper for the complementary
graph of Banana tree graph in terms of M -polynomial.

Corollary 3.1. Let H be the complementary graph of the Banana tree graph.
Then

• M1(H) = [n(k − 1) + 1]k(k − 1) + (2kn− n− 1)k(k − 1) +

+(2kn− k − n+ 1)k + (2kn− n) + (k2n− kn− 2k2 + 2k) +

+(kn− 2)k(k − 1) + (2kn− 3)k2(n− 2) +

[k(n− 1) + (kn− 1)]k(n− 2) + (kn− 1)(k2n2 − 4k2n− kn+ 4k2 + 2k).

• M2(H) =
[n(k − 1) + 1]2[k(k − 1)]

2
+ (k − 2)[n(k − 1) + 1][k(k − 1)] +

+k2(n− 1)[n(k − 1) + 1] +

+(kn− 1)[n(k − 1) + 1](k2n− kn− 2k2 + 2k) +
(kn− 2)2[k(k − 1)]

2
+

+(kn− 1)(kn− 2)[k2(n− 2)] + k2(kn− 1)(n− 1)(n− 2) + (kn− 1)2

k2n2 − 4k2n− kn+ 4k2 + 2k

2
.

• mM2(H) =
k(k − 1)

2[n(k − 1) + 1]2
+

k(k − 1)

(kn− 2)[n(k − 1) + 1]
+

+
1

(n− 1)[n(k − 1) + 1]
+
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k2n− kn− 2k2 + 2k

(kn− 1)[n(k − 1) + 1]
+

k(k − 1)

2(kn− 2)2
+

+
k2(n− 2)

(kn− 1)(kn− 2)
+

k(n− 2)

(kn− 1)[k(n− 1)]

k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)2
.

• Rα(H) =
[n(k − 1) + 1]2(α+1)[k(k − 1)]

2
+ (kn− 2)α+1[n(k − 1) + 1]α+1

k(k − 1) + [k(n− 1)]α+1

[n(k − 1) + 1]α+1k + (kn− 1)α+1[n(k − 1) + 1]α+1(k2n− kn− 2k2 + 2k) +

(kn− 2)2(α+1)[k(k − 1)]

2
+ (kn− 1)α+1(kn− 2)α+1k2(n− 2) + (kn− 1)α+1

[k(n− 1)]α+1k(n− 2) +
(kn− 1)2(α+1)(k2n2 − 4k2n− kn+ 4k2 + 2k)

2
.

• RRα(H) =
k(k − 1)

2[n(k − 1) + 1]2α
+

k(k − 1)

(kn− 2)α[n(k − 1) + 1]α
+

+
k

[k(n− 1)]α[n(k − 1) + 1]α

+
k2n− kn− 2k2 + 2k

(kn− 1)α[n(k − 1) + 1]α
+

k(k − 1)

2(kn− 2)2α
+

k2(n− 2)

(kn− 1)α(kn− 2)α

+
k(n− 2)

(kn− 1)α[k(n− 1)]α
+

k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)2α
.

• SDD(H) = k(k − 1) + { [n(k − 1) + 1]

(kn− 2)
+

(kn− 2)

[n(k − 1) + 1]
}[k(k − 1)] +

+
[n(k − 1) + 1]

(n− 1)
+

k2(n− 1)

[n(k − 1) + 1]
+

+{ [n(k − 1) + 1]

(kn− 1)
+

(kn− 1)

[n(k − 1) + 1]
}(k2n− kn− 2k2 + 2k)

+k(k − 1) + { (kn− 2)

(kn− 1)
+

(kn− 1)

kn− 2
}[k2(n− 2)] +

+{k(n− 1)

kn− 1
+

(kn− 1)

k(n− 1)
}[k(n− 2)] +

+(k2n2 − 4k2n− kn+ 4k2 + 2k).

• H(H) =
k(k − 1)

2[n(k − 1) + 1]
+

2k(k − 1)

2kn− (n+ 1)
+

2k

2kn− (k + n) + 1
+

+
2(k2n− kn− 2k2 + 2k)

2mn− n
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+
k(k − 1)

2(kn− 2)
+

2k2(n− 2)

2kn− 3
+

2k(n− 2)

2kn− (k + 1)
+

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)
.

• I(H) =
[n(k − 1) + 1][k(k − 1)]

8
+

(k − 2)[n(k − 1) + 1][k(k − 1)]

2kn− (n+ 1)
+

+
k2(n− 1)[n(k − 1) + 1]

2kn− (k + n) + 1

+
(kn− 1)[n(k − 1) + 1](k2n− kn− 2k2 + 2k)

2kn− n
+

(kn− 2)[k(k − 1)]

4

+
(kn− 1)(kn− 2)[k2(n− 2)]

2kn− 3
+

k2(kn− 1)(n− 1)(n− 2)

2kn− (k + 1)

+
(kn− 1)(k2n2 − 4k2n− kn+ 4k2 + 2k)

4
.

• A(H) =
[n(k − 1) + 1]6[k(k − 1)]

2[[n(k − 1)]3
+

(kn− 2)3[n(k − 1) + 1]3[k(k − 1)]

[2kn− (n+ 3)]3

+
[k(n− 1)]3[n(k − 1) + 1]3k

[2kn− (k + n+ 1)]3
+

+
(kn− 1)3[n(k − 1) + 1]3(k2n− kn− 2k2 + 2k)

[2kn− (n+ 2)]3

+
(kn− 2)6[k(k − 1)]

2[2(kn− 2)]3
+

(kn− 1)3(kn− 2)3k2(n− 2)

(2kn− 5)3
+

+
(kn− 1)3[k(n− 1)3][k(n− 2)]

[2kn− (k + 3)]3

+(kn− 1)6
k2n2 − 4k2n− kn+ 4k2 + 2k

2[2(kn− 2)]3
.

Proof. Considering the equality in Theorem 3.1, we have

Dxf(x, y) =
k(k − 1)[n(k − 1) + 1]

2
xn(k−1)+1yn(k−1)+1 +

+[n(k − 1) + 1]k(k − 1)xn(k−1)+1ykn−2

+[n(k − 1) + 1]kxn(k−1)+1yk(n−1) +

+[n(k − 1) + 1](k2n− kn− 2k2 + 2k)xn(k−1)+1

ykn−1 + (kn− 2)
k(k − 1)

2
xkn−2ykn−2 +

(kn− 2)k2(n− 2)xkn−2ykn−1 + k2(n− 1)

(n− 2)xk(n−1)ykn−1 + (kn− 1)
k2n2 − 4k2n− kn+ 4k2 + 2k

2

xkn−1ykn−1,



170 LOKESHA, SHRUTI, AND CEVIK

Dyf(x, y) = [n(k − 1) + 1]
k(k − 1)

2
xn(k−1)+1yn(k−1)+1 +

+(kn− 2)k(k − 1)xn(k−1)+1ykn−2 +

+k2(n− 1)xn(k−1)+1yk(n−1) + (kn− 1)(k2n− kn− 2k2 + 2k)

xn(k−1)+1ykn−1 + (kn− 2)
k(k − 1)

2
xkn−2ykn−2 +

(kn− 1)k2(n− 2)xkn−2ykn−1 +

(kn− 1)[k(n− 2)]xk(n−1)ykn−1 +

(kn− 1)
k2n2 − 4k2n− kn+ 4k2 + 2k

2
xkn−1ykn−1,

DyDxf(x, y) = [n(k − 1) + 1]2
k(k − 1)

2
xn(k−1)+1yn(k−1)+1 +

+(k − 2)[n(k − 1) + 1][k(k − 1)]xn(k−1)+1ykn−2 +

+k2(n− 1)[n(k − 1) + 1]xn(k−1)+1yk(n−1)

+(kn− 1)[n(k − 1) + 1]

(k2n− kn− 2k2 + 2k)xn(k−1)+1ykn−1 + (kn− 2)2

k(k − 1)

2
xkn−2ykn−2 + (kn− 1)

(kn− 2)[k2(n− 2)]xkn−2ykn−1 + k2(kn− 1)

(n− 1)(n− 2)xk(n−1)ykn−1 + (kn− 1)2

k2n2 − 4k2n− kn+ 4k2 + 2k

2
xkn−1ykn−1,

Sy(f(x, y)) =
k(k − 1)

2[n(k − 1) + 1]
xn(k−1)+1yn(k−1)+1 +

k(k − 1)

(kn− 2)

xn(k−1)+1ykn−2 +
1

(n− 1)
xn(k−1)+1yk(n−1)

+
k2n− kn− 2k2 + 2k

(kn− 1)
xn(k−1)+1ykn−1 +

k(k − 1)

2(kn− 2)

xkn−2ykn−2 +
k2(n− 2)

kn− 1
xkn−2ykn−1

+
k(n− 2)

kn− 1
xk(n−1)ykn−1 +

k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)

xkn−1ykn−1,

SxSy(f(x, y)) =
k(k − 1)

2[n(k − 1) + 1]2
xn(k−1)+1yn(k−1)+1 +

+
k(k − 1)

(kn− 2)[n(k − 1) + 1]
xn(k−1)+1ykn−2
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+
1

(n− 1)[n(k − 1) + 1]
xn(k−1)+1yk(n−1) +

+
k2n− kn− 2k2 + 2k

(kn− 1)[n(k − 1) + 1]
xn(k−1)+1ykn−1

+
k(k − 1)

2(kn− 2)2
xkn−2ykn−2 +

+
k2(n− 2)

(kn− 1)(kn− 2)
xkn−2ykn−1

+
k(n− 2)

(kn− 1)[k(n− 1)]
xk(n−1)ykn−1 +

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)2

xkn−1ykn−1,

Dα
y (f(x, y)) = [n(k − 1) + 1]α+1 k(k − 1)

2
xn(k−1)+1yn(k−1)+1 +

(kn− 2)α+1k(k − 1)xn(k−1)+1ykn−2

+[k(n− 1)]α+1kxn(k−1)+1yk(n−1) +

(kn− 1)α+1(k2n− kn− 2k2 + 2k)

xn(k−1)+1ykn−1 + (kn− 2)α+1

k(k − 1)

2
xkn−2ykn−2 + (kn− 1)α+1k2(n− 2)xkn−2ykn−1

+(kn− 1)α+1[k(n− 2)]xk(n−1)ykn−1 + (kn− 1)α+1

k2n2 − 4k2n− kn+ 4k2 + 2k

2

xkn−1ykn−1,

Dα
xD

α
y (f(x, y)) = [n(k − 1) + 1]2(α+1) k(k − 1)

2
xn(k−1)+1yn(k−1)+1 +

(kn− 2)α+1[n(k − 1) + 1]α+1

k(k − 1)xn(k−1)+1ykn−2 + [k(n− 1)]α+1[n(k − 1) + 1]α+1

kxn(k−1)+1yk(n−1)

+(kn− 1)α+1[n(k − 1) + 1]α+1(k2n− kn− 2k2 + 2k)

xn(k−1)+1ykn−1 +

(kn− 2)2(α+1) k(k − 1)

2
xkn−2ykn−2 +

(kn− 1)α+1(kn− 2)α+1k2(n− 2)xkn−2ykn−1

+(kn− 1)α+1[k(n− 1)]α+1k(n− 2)xk(n−1)ykn−1 +

(kn− 1)2(α+1)
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k2n2 − 4k2n− kn+ 4k2 + 2k

2

xkn−1ykn−1,

Sα
y (f(x, y)) =

k(k − 1)

2[n(k − 1) + 1]α
xn(k−1)+1yn(k−1)+1

+
k(k − 1)

(kn− 2)α
xn(k−1)+1ykn−2

+
k

[k(n− 1)]α
xn(k−1)+1yk(n−1)

+
k2n− kn− 2k2 + 2k

(kn− 1)α
xn(k−1)+1ykn−1

+
k(k − 1)

2(kn− 2)α
xkn−2ykn−2

+
k2(n− 2)

(kn− 1)α
xkn−2ykn−1 +

k(n− 2)

(kn− 1)α
xk(n−1)ykn−1

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)α
xkn−1ykn−1,

Sα
xS

α
y (f(x, y)) =

k(k − 1)

2[n(k − 1) + 1]2α
xn(k−1)+1yn(k−1)+1

+
k(k − 1)

(kn− 2)α[n(k − 1) + 1]α
xn(k−1)+1ykn−2 +

k

[k(n− 1)]α[n(k − 1) + 1]α
xn(k−1)+1yk(n−1)

+
k2n− kn− 2k2 + 2k

(kn− 1)α[n(k − 1) + 1]α
xn(k−1)+1

ykn−1 +
k(k − 1)

2(kn− 2)2α
xkn−2ykn−2 +

k2(n− 2)

(kn− 1)α(kn− 2)α
xkn−2ykn−1 +

k(n− 2)

(kn− 1)α[k(n− 1)]α
xk(n−1)ykn−1

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)2α

xkn−1ykn−1,

SyDx(f(x, y)) =
k(k − 1)

2
xn(k−1)+1yn(k−1)+1 +
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[n(k − 1) + 1][k(k − 1)]

(kn− 2)
xn(k−1)+1ykn−2

+
[n(k − 1) + 1]

(n− 1)
xn(k−1)+1yk(n−1) +

[n(k − 1) + 1](k2n− kn− 2k2 + 2k)

(kn− 1)
xn(k−1)+1

ykn−1 +
k(k − 1)

2
xkn−2ykn−2 +

(kn− 2)[k2(n− 2)]

kn− 1
xkn−2ykn−1 +

[k(n− 1)]k(n− 2)

kn− 1

xk(n−1)ykn−1 +

k2n2 − 4k2n− kn+ 4m2 + 2k

2
xkn−1ykn−1,

SxDy(f(x, y)) =
k(k − 1)

2
xn(k−1)+1yn(k−1)+1 +

k(k − 1)(kn− 2)

[n(k − 1) + 1]
xn(k−1)+1ykn−2 +

k2(n− 1)

[n(k − 1) + 1]
xn(k−1)+1yk(n−1) +

(kn− 1)(k2n− kn− 2k2 + 2k)

[n(k − 1) + 1]
xn(k−1)+1ykn−1

+
k(k − 1)

2
xkn−2ykn−2 +

(k − 1)[k2(n− 2)]

kn− 2
xkn−2ykn−1 +

(kn− 1)(n− 2)

n− 1
xk(n−1)ykn−1

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2
xkn−1yn−1,

Jf(x, y) =
k(k − 1)

2
x2[n(k−1)+1] + k(k − 1)x2kn−(n+1) +

kx2kn−(k+n)+1 + (k2n− kn− 2k2 + 2k)

x2kn−n +
k(k − 1)

2
x2(kn−2) + k2(n− 2)

x2kn−3 + k(n− 2)x2kn−(k+1)

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2
x2(kn−1),
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SxJf(x, y) =
k(k − 1)

4[n(k − 1) + 1]
x2[n(k−1)+1]

+
k(k − 1)

2kn− (n+ 1)
x2kn−(n+1) +

k

2kn− (k + n) + 1

x2kn−(k+n)+1 +
(k2n− kn− 2k2 + 2k)

2mn− n

x2kn−n +
k(k − 1)

4(kn− 2)
x2(kn−2) +

k2(n− 2)

2kn− 3
x2kn−3 +

k(n− 2)

2kn− (k + 1)
x2kn−(k+1) +

k2n2 − 4k2n− kn+ 4k2 + 2k

4(kn− 1)
x2(kn−1),

JDxDyf(x, y) = [n(k − 1) + 1]2
k(k − 1)

2
x2[n(k−1)+1] +

(k − 2)[n(k − 1) + 1][k(k − 1)]x2kn−(n+1)

+k2(n− 1)[n(k − 1) + 1]x2kn−(k+n)+1 +

(kn− 1)[n(k − 1) + 1](k2n− kn− 2k2 + 2k)x2kn−n

+(kn− 2)2
k(k − 1)

2
x2(kn−2) + (kn− 1)

(kn− 2)[k2(n− 2)]x2kn−3 +

+k2(kn− 1)(n− 1)(n− 2)x2kn−(k+1)

+
(kn− 1)2(k2n2 − 4k2n− kn+ 4k2 + 2k)

2
x2(kn−1),

SxJDxDyf(x, y) =
[n(k − 1) + 1][k(k − 1)]

8
x2[n(k−1)+1] +

(k − 2)[n(k − 1) + 1][k(k − 1)]

2kn− (n+ 1)
x2kn−(n+1) +

+
k2(n− 1)[n(k − 1) + 1]

2kn− (k + n) + 1
x2kn−(k+n)+1 +

(kn− 1)[n(k − 1) + 1](k2n− kn− 2k2 + 2k)

2kn− n
x2kn−n

+
(kn− 2)[k(k − 1)]

4
x2(kn−2)

+
(kn− 1)(kn− 2)[k2(n− 2)]

2kn− 3
x2kn−3 +

k2(kn− 1)(n− 1)(n− 2)

2kn− (k + 1)
x2kn−(k+1) +

+
(kn− 1)(k2n2 − 4k2n− kn+ 4k2 + 2k)

4
x2(kn−1),
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D3
yf(x, y) = [n(k − 1) + 1]3

k(k − 1)

2
xn(k−1)+1yn(k−1)+1 +

(kn− 2)3k(k − 1)xn(k−1)+1ykn−2

+[k(n− 1)]3kxn(k−1)+1yk(n−1) +

(kn− 1)3(k2n− kn− 2k2 + 2k)xn(k−1)+1ykn−1

+(kn− 2)3
k(k − 1)

2
xkn−2ykn−2 +

(kn− 1)3k2(n− 2)xkn−2ykn−1 + (kn− 1)3

[k(n− 2)]xk(n−1)ykn−1 + (kn− 1)3

k2n2 − 4k2n− kn+ 4k2 + 2k

2
xkn−1ykn−1,

D3
xD

3
yf(x, y) =

[n(k − 1) + 1]6[k(k − 1)]

2
xn(k−1)+1yn(k−1)+1 +

(kn− 2)3[n(k − 1) + 1]3[k(k − 1)]

xn(k−1)+1ykn−2 + [k(n− 1)]3[n(k − 1) + 1]3

kxn(k−1)+1yk(n−1) + (kn− 1)3

[n(k − 1) + 1]3(k2n− kn− 2k2 + 2k)xn(k−1)+1ykn−1

+(kn− 2)6
k(k − 1)

2
xkn−2ykn−2

+(kn− 1)3(kn− 2)3k2(n− 2)xkn−2ykn−1 +

(kn− 1)3[k(n− 1)3][k(n− 2)]xk(n−1)

ykn−1 + (kn− 1)6
k2n2 − 4k2n− kn+ 4k2 + 2k

2

xkn−1ykn−1,

JD3
xD

3
yf(x, y) =

[n(k − 1) + 1]6[k(k − 1)]

2
x2[n(k−1)+1] +

(kn− 2)3[n(k − 1) + 1]3[k(k − 1)]x2kn−(n+1)

+[k(n− 1)]3[n(k − 1) + 1]3kx2kn−(k+n)+1 +

(kn− 1)3[n(k − 1) + 1]3

(k2n− kn− 2k2 + 2k)x2kn−n + (kn− 2)6

k(k − 1)

2
x2(kn−2) + (kn− 1)3(kn− 2)3

k2(n− 2)x2kn−3 + (kn− 1)3[k(n− 1)3][k(n− 2)]

x2kn−(k+1) + (kn− 1)6

k2n2 − 4k2n− kn+ 4k2 + 2k

2
x2(kn−1),
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Q−2JD
3
xD

3
yf(x, y) =

[n(k − 1) + 1]6[k(k − 1)]

2
x2[n(k−1)] +

(kn− 2)3[n(k − 1) + 1]3[k(k − 1)]x2kn−(n+3)

+[k(n− 1)]3[n(k − 1) + 1]3kx2kn−(k+n+1) + (kn− 1)3

[n(k − 1) + 1]3(k2n− kn− 2k2 + 2k)x2kn−(n+2)

+
(kn− 2)6[k(k − 1)]

2
x2(kn−3)

+(kn− 1)3(kn− 2)3k2(n− 2)x2kn−5 +

(kn− 1)3[k(n− 1)3][k(n− 2)]

x2kn−(k+3) + (kn− 1)6

k2n2 − 4k2n− kn+ 4k2 + 2k

2
x2(kn−2),

S3
xQ−2JD

3
xD

3
yf(x, y) =

[n(k − 1) + 1]6[k(k − 1)]

2[2n(k − 1)]3
x2n(k−1) +

(kn− 2)3[n(k − 1) + 1]3[k(k − 1)]

[2kn− (n+ 3)]3

x2kn−(n+3)

+
[k(n− 1)]3[n(k − 1) + 1]3k

[2kn− (k + n+ 1)]3
x2kn−(k+n+1)

+
(kn− 1)3[n(k − 1) + 1]3(k2n− kn− 2k2 + 2k)

[2kn− (n+ 2)]3

x2kn−(n+2)

+
(kn− 2)6[k(k − 1)]

2[2(kn− 2)]3
x2(kn−2) +

(kn− 1)3(kn− 2)3k2(n− 2)

(2kn− 5)3
x2kn−5

+
(kn− 1)3[k(n− 1)3][k(n− 2)]

[2kn− (k + 3)]3

x2kn−(k+3) + (kn− 1)6

k2n2 − 4k2n− kn+ 4k2 + 2k

2[2(kn− 2)]3

x2(kn−2).

Then by using the Table, we have the following graphs of different indices.

mM2(H) = SxSyf(x, y)|x=y=1

=
k(k − 1)

2[n(k − 1) + 1]2
+

k(k − 1)

(kn− 2)[n(k − 1) + 1]
+

1

(n− 1)[n(k − 1) + 1]
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+
k2n− kn− 2k2 + 2k

(kn− 1)[n(k − 1) + 1]
+

k(k − 1)

2(kn− 2)2
+

k2(n− 2)

(kn− 1)(kn− 2)
+

k(n− 2)

(kn− 1)[k(n− 1)]
+

k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)2
.

RRα(H) = Sα
xS

α
y f(x, y)|x=y=1

=
k(k − 1)

2[n(k − 1) + 1]2α
+

k(k − 1)

(kn− 2)α[n(k − 1) + 1]α

+
k

[k(n− 1)]α[n(k − 1) + 1]α

+
k2n− kn− 2k2 + 2k

(kn− 1)α[n(k − 1) + 1]α
+

k(k − 1)

2(kn− 2)2α
+

k2(n− 2)

(kn− 1)α(kn− 2)α

+
k(n− 2)

(kn− 1)α[k(n− 1)]α

+
k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)2α
.

SDD(H) = (DxSy + SxDy)f(x, y)|x=y=1

= k(k − 1) + { [n(k − 1) + 1]

(kn− 2)
+

(kn− 2)

[n(k − 1) + 1]
}[k(k − 1)] +

[n(k − 1) + 1]

(n− 1)

+
k2(n− 1)

[n(k − 1) + 1]
+ { [n(k − 1) + 1]

(kn− 1)
+

(kn− 1)

[n(k − 1) + 1]
}

(k2n− kn− 2k2 + 2k)

+k(k − 1) + { (kn− 2)

(kn− 1)
+

(kn− 1)

kn− 2
}[k2(n− 2)] +

{k(n− 1)

kn− 1
+

(kn− 1)

k(n− 1)
}[k(n− 2)]

+(k2n2 − 4k2n− kn+ 4k2 + 2k).

H(H) = 2SxJf(x, y)|x=y=1

=
k(k − 1)

2[n(k − 1) + 1]
+

2k(k − 1)

2kn− (n+ 1)
+

2k

2kn− (k + n) + 1
+

2(k2n− kn− 2k2 + 2k)

2mn− n

+
k(k − 1)

2(kn− 2)
+

2k2(n− 2)

2kn− 3
+

2k(n− 2)

2kn− (k + 1)
+
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k2n2 − 4k2n− kn+ 4k2 + 2k

2(kn− 1)
.

I(H) = (SxJDxDy)f(x, y)|x=y=1

=
[n(k − 1) + 1][k(k − 1)]

8
+

(k − 2)[n(k − 1) + 1][k(k − 1)]

2kn− (n+ 1)
+

k2(n− 1)[n(k − 1) + 1]

2kn− (k + n) + 1

+
(kn− 1)[n(k − 1) + 1](k2n− kn− 2k2 + 2k)

2kn− n
+

(kn− 2)[k(k − 1)]

4

+
(kn− 1)(kn− 2)[k2(n− 2)]

2kn− 3
+

k2(kn− 1)(n− 1)(n− 2)

2kn− (k + 1)

+
(kn− 1)(k2n2 − 4k2n− kn+ 4k2 + 2k)

4
.

A(H) = (S3
xQ−2JD

3
xD

3
y)f(x, y)|x=y=1

=
[n(k − 1) + 1]6[k(k − 1)]

2[[n(k − 1)]3
+

(kn− 2)3[n(k − 1) + 1]3[k(k − 1)]

[2kn− (n+ 3)]3

+
[k(n− 1)]3[n(k − 1) + 1]3k

[2kn− (k + n+ 1)]3
+

(kn− 1)3[n(k − 1) + 1]3(k2n− kn− 2k2 + 2k)

[2kn− (n+ 2)]3

+
(kn− 2)6[k(k − 1)]

2[2(kn− 2)]3
+

(kn− 1)3(kn− 2)3k2(n− 2)

(2kn− 5)3
+

(kn− 1)3[k(n− 1)3][k(n− 2)]

[2kn− (k + 3)]3

+(kn− 1)6
k2n2 − 4k2n− kn+ 4k2 + 2k

2[2(kn− 2)]3
.

Hence the result.
�

3.1. Surfaces representing M-polynomials of complementary graph
of Banana tree graph.

We used Maple 15 to represent graphs of M -polynomials of the complementary
graphs of Banana tree graph presented in the proof of Corollary 3.1. From these
graphs, it can seen that the behavior of the polynomials differ along different pa-
rameters.
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[13] I. Gutman and N. Trinajstić. Graph theory and molecular orbitals. Total φ-electron energy
of alternate hydrocarbons. Chem. Phys. Lett., 17(1972), 535–538.
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