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WEAK IMPLICATIVE ALGEBRA TO

THE SET-THEORETICAL YANG-BAXTER EQUATION

Tahsin Oner, Tugce Katican, and Necla Kircali Gursoy

Abstract. In this paper, we present a weak implication algebra which is a
bounded Hilbert algebra with the specific condition after introducing basic
definitions and properties of Hilbert and bounded Hilbert algebras. Then

we build some solutions to the set-theoretical Yang-Baxter equation by using
properties of weak implication algebra.

1. Introduction

Henkin and Skolem introduced a Hilbert algebra for frameworks in non-classical
logics [6]. This algebraic structure is an algebraic counterpart of Hilbert’ s positive
implicative propositional calculus [17], that is, a part of the propositional logic
involving the implication operator and the constant 1. After Diego analysed the
concept of a Hilbert algebra and related notions [5], Busneag and Ghiţǎ studied
on some lattice properties of Hilbert algebras [4]. During the recent years, A. S.
Nasab and A. B. Saeid introduced a weak implication algebra which is a bounded
Hilbert algebra (W,−→, 1) with the condition (w1 −→ w2) −→ w1 = w1 for all
w1, w2 ∈ W such that w2 ̸= 0, named as (I), (because W is a Boolean algebra when
w2 = 0). They showed that every Boolean algebra is a weak implication algebra
and its inverse is generally not true. Then they demonstrated that a totally ordered
Hilbert algebra and a weak implication algebra are not same [18].

Besides, the Yang-Baxter equation was fundamentally used in theoretical physics
[16] and statical mechanics [1, 2], [19], and so it can be applied to various workspaces
of science, technology and industry. During the recent years, this equation has
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been widely used in various scientific frameworks such as quantum groups, quan-
tum mechanics, quantum computing, knot theory, braid goups, integrable systems,
non-commutative geometry, C*-algebras, etc.(see, for instance, [7]-[12]). In addi-
tion to these, to build set-teoretical solutions to this equation becomes significant
for researchers in a wide range of mathematical frameworks. Especially, Oner et
al. studied on set-theoretical solutions to the Yang-Baxter equation using some
algebras such as Wajsberg Algebras [13], BL-algebras [14] and MTL-algebras [15].
Therefore, we search solutions to the set-theoretical Yang-Baxter equation in a
weak implication algebra by using its properties.

It is given a definition of the Yang-Baxter equation which is widely used in
various scientific workspaces after recalling basic definitions and concepts related
to a weak implication algebra which is a bounded Hilbert algebra with the condition
(I). Then we investigate some solutions to the set-teoretical Yang-Baxter equation
by using properties of a weak implication algebra. Indeed, we build some solutions
that are not usually solutions to the set-theoretical Yang-Baxter equation in a
Hilbert or a bounded Hilbert algebra but are solutions in a weak implication algebra.
Also, it is illustrated that they are not solutions to the set-theoretical Yang-Baxter
equation in a Hilbert or a bounded Hilbert algebra.

2. Preliminaries

In this part, we remind certain definitions and notions about a weak implication
algebra and the Yang-Baxter equation.

Definition 2.1. ([5]) A Hilbert algebra is an algebra (W,−→, 1) of type (2, 0)
such that the following axioms are satisfied for all w1, w2, w3 ∈ W :

(H1) w1 −→ (w2 −→ w1) = 1
(H2) (w1 −→ (w2 −→ w3)) −→ ((w1 −→ w2) −→ (w1 −→ w3)) = 1
(H3) If w1 −→ w2 = w2 −→ w1 = 1, then w1 = w2.

Proposition 2.1 ([3, 4]). In each Hilbert algebra W , the following relations
hold for all w1, w2, w3 ∈ W :

(h1) 1 −→ w1 = w1, w1 −→ w1 = 1, w1 −→ 1 = 1,
(h2) w1 6 w2 −→ w1, w1 6 (w1 −→ w2) −→ w2,
(h3) w1 −→ (w1 −→ w2) = w1 −→ w2,
(h4) ((w1 −→ w2) −→ w2) −→ w2 = w1 −→ w2,
(h5) w1 −→ (w2 −→ w3) = w2 −→ (w1 −→ w3),
(h6) w1 −→ w2 6 (w2 −→ w3) −→ (w1 −→ w3),
(h7) w1 −→ w2 6 (w3 −→ w1) −→ (w3 −→ w2),
(h8) if w1 6 w2, then w2 −→ w3 6 w1 −→ w3 and w3 −→ w1 6 w3 −→ w2,
(h9) w1 −→ (w2 −→ w3) = (w1 −→ w2) −→ (w1 −→ w3),
(h10) (w1 −→ w2) −→ ((w2 −→ w1) −→ w1) = (w2 −→ w1) −→ ((w1 −→

w2) −→ w2),
(h11) (w1 −→ w2) −→ (w2 −→ w1) = w2 −→ w1,
(h12) ((w1 −→ w2) −→ w1) −→ w2 = w1 −→ w2.
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Lemma 2.1 ([4]). The relation 6 defined by w1 6 w2 ⇔ w1 −→ w2 = 1 is a
partial order on W called the naturel ordering on W , and 1 is the greatest element
of W with respect to this order.

Definition 2.2. ([4]) If a Hilbert algebra W has a least element 0 according
to the natural ordering on W , then it is called a bounded Hilbert algebra.

In a bounded Hilbert algebra W , the unary operation ∗ on W is defined by
w∗

1 = w1 −→ 0 for all w1 ∈ W .

Proposition 2.2 ([4]). ] If W is a bounded Hilbert algebra and w1, w2 ∈ W ,
then

(bh1) 0∗ = 1, 1∗ = 0,
(bh2) w1 −→ w∗

2 = w2 −→ w∗
1,

(bh3) w1 −→ w∗
1 = w∗

1, w
∗
1 −→ w1 = w∗∗

1 , w1 6 w∗∗
1 , w1 6 w∗

1 −→ w2,
(bh4) w1 −→ w2 6 w∗

2 −→ w∗
1,

(bh5) if w1 6 w2, then w∗
2 6 w∗

1,
(bh6) w∗∗∗

1 = w∗
1,

(bh7) (w1 −→ w2)
∗∗ = w1 −→ w∗∗

2 = w∗∗
1 −→ w∗∗

2 ,
(bh8) (w2 −→ w1)

∗ 6 w1 −→ w2.

Theorem 2.1 ([4]). For a bounded Hilbert algebra W , the following conditions
are equivalent:

(a) w∗∗
1 = w1 for every w1 ∈ W ,

(b) W is a Boolean algebra according to the natural ordering on W , in which
w1 ∧ w2 = (w1 −→ w∗

2)
∗, w1 ∨ w2 = w∗

1 −→ w2.

Corollary 2.1 ([4]). A bounded Hilbert algebra W is a Boolean algebra (ac-
cording to the natural ordering on W ) if and only if (w1 −→ w2) −→ w1 = w1 for
all w1, w2 ∈ W .

Corollary 2.2 ([4]). For a bounded Hilbert algebra W , the following condi-
tions are equivalent:

(a) W is a Boolean algebra (according to the natural ordering on W ),
(b) (w1 −→ w2) −→ w2 = (w2 −→ w1) −→ w1,
(c) w∗

1 −→ w2 = w∗
2 −→ w1,

(d) (w1 −→ w2) −→ w2 = w1 ∨ w2,
(e) w∗

1 −→ w2 = w1 ∨ w2,

Definition 2.3. ([18]) A bounded Hilbert algebra W is called a weak impli-
cation algebra if it satisfies in the following condition:

(I) (w1 −→ w2) −→ w1 = w1 for all w1, w2 ∈ W such that w2 ̸= 0.

(If w2 = 0, then (w1 −→ 0) −→ w1 = w∗∗
1 = w1, Thus, W is a Boolean algebra.)

Proposition 2.3 ([18]). Every Boolean algebra is a weak implication algebra.

Let k be a field and tensor products be defined over this field. For a k-space
V , we denote by τ : V ⊗ V −→ V ⊗ V the twist map defined by τ(v ⊗ w) = w ⊗ v
and by I : V −→ V the identity map over the space V ; for a k-linear map R :
V ⊗ V −→ V ⊗ V , let R12 = R⊗ I, R23 = I ⊗R, and R13 = (I ⊗ τ)(R⊗ I)(τ ⊗ I).
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Definition 2.4. ([12]) A Yang-Baxter operator is k-linear map R : V ⊗V −→
V ⊗V , which is invertible, and it satisfies the braid condition called the Yang-Baxter
equation:

R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23. (1)

If R satisfies Equation (1), then both R ◦ τ and τ ◦ R satisfy the quantum Yang-
Baxter equation(QYBE):

R12 ◦R13 ◦R23 = R23 ◦R13 ◦R12. (2)

Lemma 2.2 ([12]). Equations (1) and (2) are equivalent to each other.

3. The Solutions to the set-theoretical Yang-Baxter Equation in a
weak implication algebra

In this part, we build solutions to the set-theoretical Yang-Baxter equation in
a weak implication algebra.

To do this, we give first the following definition.

Definition 3.1. ([12]) Let X be a set and S : X ×X −→ X ×X, S(u, v) =
(u′, v′) be a map. The map S is a solution of the set-theoretical Yang-Baxter
equation if it satisfies the following equation:

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23,

which is also equivalent

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12,

where

S12 : X ×X ×X −→ X ×X ×X,S12(u, v, w) = (u′, v′, w),

S23 : X ×X ×X −→ X ×X ×X,S23(u, v, w) = (u, v′, w′),

S13 : X ×X ×X −→ X ×X ×X,S13(u, v, w) = (u′, v, w′).

Now, we find solutions of the set-theoretical Yang-Baxter equation by using
the properties of a weak implication algebra.

Theorem 3.1. Let (W,−→, 1) be a weak implication algebra. Then S(w1, w2) =
(w1 −→ w2, w1) is a solution to the set-theoretical Yang-Baxter equation in the weak
implication algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w1 −→ w2, w1, w3)

S23(w1, w2, w3) = (w1, w2 −→ w3, w2).
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We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3:

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)(w1 −→ w2, w1, w3)
= S12(S23(w1 −→ w2, w1, w3))
= S12(w1 −→ w2, w1 −→ w3, w1)
= ((w1 −→ w2) −→ (w1 −→

w3), w1 −→ w2, w1)
= (w1 −→ (w2 −→ w3), w1 −→ w2, w1) (h9)
= S23(w1 −→ (w2 −→ w3), w1, w2)
= S23(S12(w1, w2 −→ w3, w2))
= (S23 ◦ S12)(w1, w2 −→ w3, w2)
= (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12 ◦ S23)(w1, w2, w3).

Thus, S(w1, w2) = (w1 −→ w2, w1) is a solution of the set-theoretical Yang-Baxter
equation in the weak implication algebra. �

Theorem 3.2. Let (W,−→, 1) be a weak implication algebra. Then S(w1, w2) =
(w∗

2 , w
∗
1) is a solution to the set-theoretical Yang-Baxter equation in the weak im-

plication algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w∗
2 , w

∗
1 , w3)

S23(w1, w2, w3) = (w1, w
∗
3 , w

∗
2).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3:

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)(w

∗
2 , w

∗
1 , w3)

= S12(S23(w
∗
2 , w

∗
1 , w3))

= S12(w
∗
2 , w

∗
3 , w

∗∗
1 )

= (w∗∗
3 , w∗∗

2 , w∗∗
1 )

= S23(w
∗∗
3 , w∗

1 , w
∗
2)

= (S23(S12(w1, w
∗
3 , w

∗
2))

= (S23 ◦ S12)(w1, w
∗
3 , w

∗
2)

= (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12 ◦ S23)(w1, w2, w3)

Hence, S(w1, w2) = (w∗
2 , w

∗
1) is a solution to the set-theoretical Yang-Baxter equa-

tion in the weak implication algebra. �

Theorem 3.3. Let (W,−→, 1) be a weak implication algebra. Then S(w1, w2) =
((w1 −→ w2) −→ w2, w2) is a solution to the set-theoretical Yang-Baxter equation
in the weak implication algebra.
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Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = ((w1 −→ w2) −→ w2, w2, w3)

S23(w1, w2, w3) = (w1, (w2 −→ w3) −→ w3, w3).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3. Then it is obtained from Corollary 2.2 (b), Propo-
sition 2.3, (h4) and (h5) that

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)((w1 −→ w2) −→ w2, w2, w3)
= S12(S23((w1 −→ w2) −→ w2, w2, w3))
= S12((w1 −→ w2) −→ w2,

(w2 −→ w3) −→ w3, w3)
= ((((w1 −→ w2) −→ w2) −→ ((w2

−→ w3) −→ w3)) −→ ((w2 −→ w3)
−→ w3), (w2 −→ w3) −→ w3, w3)

= ((((w1 −→ w2) −→ w2) −→ ((w3

−→ w2) −→ w2)) −→ ((w3 −→ w2)
−→ w2), (w2 −→ w3) −→ w3, w3)

= (((w3 −→ w2) −→ (((w1 −→ w2)
−→ w2) −→ w2)) −→ ((w3 −→ w2)
−→ w2), (w2 −→ w3) −→ w3, w3)

= (((w3 −→ w2) −→ (w1 −→
w2)) −→ ((w3 −→ w2) −→
w2), (w2 −→ w3) −→ w3, w3)

= ((w1 −→ ((w2 −→ w3) −→
w3)) −→ ((w2 −→ w3) −→
w3), (w2 −→ w3) −→ w3, w3)

and

(S23 ◦ S12 ◦ S23)(w1, w2, w3) = (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12)(w1, (w2 −→ w3) −→ w3, w3)
= S23(S12(w1, (w2 −→ w3) −→ w3, w3))
= S23((w1 −→ ((w2 −→ w3) −→

w3)) −→ ((w2 −→ w3) −→
w3), (w2 −→ w3) −→ w3, w3)

= ((w1 −→ ((w2 −→ w3) −→ w3)) −→
((w2 −→ w3) −→ w3), (((w2 −→
w3) −→ w3) −→ w3) −→ w3, w3)

= ((w1 −→ ((w2 −→ w3) −→
w3)) −→ ((w2 −→ w3) −→ w3),
(w2 −→ w3) −→ w3, w3).

So, S(w1, w2) = ((w1 −→ w2) −→ w2, w2) is a solution to the set-theoretical Yang-
Baxter equation in the weak implication algebra. �

Corollary 3.1. Let (W,−→, 1) be a weak implication algebra. Then
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S(w1, w2) = ((w2 −→ w1) −→ w1, w1),
S(w1, w2) = ((w2 −→ w1) −→ w1, w2), and
S(w1, w2) = ((w1 −→ w2) −→ w2, w1)

are solutions to the set-theoretical Yang-Baxter equation in the weak implication
algebra.

Remark 3.1. S(w1, w2) = ((w1 −→ w2) −→ w2, w2) is a solution to the set-
theoretical Yang-Baxter equation in the weak implication algebra by Theorem 3.3
but it is not a solution to the set-theoretical Yang-Baxter equation in a Hilbert
algebra.

Example 3.1. Consider a bounded Hilbert algebra (W,−→, 1) with following
Hasse diagram where W = {0, x, y, z, 1}:

Figure 1

The binary operation −→ on W has the Cayley table as below:

−→ 0 x y z 1
0 1 1 1 1 1
x 0 1 1 1 1
y 0 x 1 1 1
z 0 x y 1 1
1 0 x y z 1

But this algebra is not a weak implication algebra since (y −→ x) −→ y = 1 ̸= y.
Because

(S12 ◦ S23 ◦ S12)(x, 0, z) = ((((x −→ 0) −→ 0) −→ ((0 −→ z) −→ z))
−→ ((0 −→ z) −→ z), (0 −→ z) −→ z, z)

= ((1 −→ z) −→ z, z, z)
= (1, z, z)
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and

(S23 ◦ S12 ◦ S23)(x, 0, z) = ((x −→ ((0 −→ z) −→ z)) −→ ((0
−→ z) −→ z), (0 −→ z) −→ z, z)

= ((x −→ z) −→ z, z, z)
= (z, z, z)

that is, (S12 ◦ S23 ◦ S12)(x, 0, z) ̸= (S23 ◦ S12 ◦ S23)(x, 0, z), S(w1, w2) = ((w1 −→
w2) −→ w2, w2) is not a solution to the set-theoretical Yang-Baxter equation in
this bounded Hilbert algebra.

Lemma 3.1. Let (W,−→, 1) be a weak implication algebra. Then

(a) S(w1, w2) = (w1, w1),
(b) S(w1, w2) = (w1, w2)

are solutions to the set-theoretical Yang-Baxter equation in the weak implication
algebra.

Proof. (a) S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w1, w1, w3)

S23(w1, w2, w3) = (w1, w2, w2).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3:

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)(w1, w1, w3)
= S12(S23(w1, w1, w3))
= S12(w1, w1, w1)
= (w1, w1, w1)
= S23(w1, w1, w2)
= S23(S12(w1, w2, w2))
= (S23 ◦ S12)(w1, w2, w2)
= (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12 ◦ S23)(w1, w2, w3).

Therefore, S(w1, w2) = (w1, w1) is a solution to the set-theoretical Yang-Baxter
equation in the weak implication algebra.

(b) S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w1, w2, w3)

S23(w1, w2, w3) = (w1, w2, w3).

Since

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (w1, w2, w3) = (S23 ◦ S12 ◦ S23)(w1, w2, w3)

for all (w1, w2, w3) ∈ W 3, then S(w1, w2) = (w1, w2) is a solution to the set-
theoretical Yang-Baxter equation in the weak implication algebra. �

Theorem 3.4. Let (W,−→, 1) be a weak implication algebra. Then

(a) S(w1, w2) = ((w1 −→ w2) −→ w1, w1),
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(b) S(w1, w2) = ((w1 −→ w2) −→ w1, w2)

are solutions of the set-theoretical Yang-Baxter equation in the weak implication
algebra.

Proof. Since (W,−→, 1) is a weak implication algebra, S(w1, w2) = ((w1 −→
w2) −→ w1, w1) = (w1, w1) and S(w1, w2) = ((w1 −→ w2) −→ w1, w2) = (w1, w2).
Therefore, they are solutions of the set-theoretical Yang-Baxter equation in the
weak implication algebra by Lemma 3.1. �

Remark 3.2. S(w1, w2) = ((w1 −→ w2) −→ w1, w1) and S(w1, w2) = ((w1 −→
w2) −→ w1, w2) are solutions to the set-theoretical Yang-Baxter equation in the
weak implication algebra by Theorem 3.4 while they are not solutions to the set-
theoretical Yang-Baxter equation in a Hilbert algebra.

Example 3.2. Let W = [0, 1] with 0 < w1 < w2 < w3 < 1, and we define
w1 −→ w2 = min(1, 1 − w1 + w2) for all w1, w2 ∈ W . Then (W,−→, 1) is a
bounded Hilbert algebra. For some (w1, w3, w2) ∈ W 3,

(S12 ◦ S23 ◦ S12)(w1, w3, w2) = (w1, w1, w1)

and

(S23 ◦ S12 ◦ S23)(w1, w3, w2) = ((w1 −→ ((w3 −→ w2)
−→ w3)) −→ w1, w1, w1)

= ((w1 −→ min(1, 2w3

−w2)) −→ w1, w1, w1)
= (min(1, 2w1 −min(1,

2w3 − w2)), w1, w1)

To examine that (S12 ◦ S23 ◦ S12)(w1, w3, w2) = (S23 ◦ S12 ◦ S23)(w1, w3, w2), it is
sufficient to show that

min(1, 2w1 −min(1, 2w3 − w2)) = w1.

Then there exist two cases.

Case I w1 = 1 which is a contradiction by the hypothesis.

Case II Let 2w1 −min(1, 2w3 − w2) = w1, i.e., min(1, 2w3 − w2) = w1. So,
there exist two subcases.

(a) w1 = 1 which is a contradiction by the hypothesis.
(b) 2w3 − w2 = w1, i.e., w3 = w1+w2

2 which is a contradiction by the
hypothesis.

Therefore, S(w1, w2) = ((w1 −→ w2) −→ w1, w1) is not a solution to the
set-theoretical Yang-Baxter equation in this Hilbert algebra. Similarly, it can be
seen that S(w1, w2) = ((w1 −→ w2) −→ w1, w2) is also not a solution to the
set-theoretical Yang-Baxter equation in this Hilbert algebra.

Theorem 3.5. Let (W,−→, 1) be a weak implication algebra. Then S(w1, w2) =
((w1 −→ w2)

∗∗, w1) is a solution to the set-theoretical Yang-Baxter equation in the
weak implication algebra.
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Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = ((w1 −→ w2)
∗∗, w1, w3)

S23(w1, w2, w3) = (w1, (w2 −→ w3)
∗∗, w2).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W3:

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3)
= (S12 ◦ S23)((w1 −→ w2)

∗∗, w1, w3)
= S12(S23((w1 −→ w2)

∗∗, w1, w3))
= S12((w1 −→ w2)

∗∗, (w1 −→ w3)
∗∗, w1)

= (((w1 −→ w2)
∗∗ −→ (w1 −→

w3)
∗∗)∗∗, (w1 −→ w2)

∗∗, w1)
= (((w1 −→ w2) −→ (w1 −→

w3))
∗∗∗∗, (w1 −→ w2)

∗∗, w1) (bh7)
= (((w1 −→ w2) −→ (w1 −→

w3))
∗∗, (w1 −→ w2)

∗∗, w1) (bh6)
= ((w1 −→ (w2 −→ w3))

∗∗,
(w1 −→ w2)

∗∗, w1) (h9)

and

(S23 ◦ S12 ◦ S23)(w1, w2, w3) = (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12)(w1, (w2 −→ w3)

∗∗, w2)
= S23(S12(w1, (w2 −→ w3)

∗∗, w2))
= S23((w1 −→ (w2 −→ w3)

∗∗)∗∗, w1, w2)
= ((w1 −→ (w2 −→ w3)

∗∗)∗∗,
(w1 −→ w2)

∗∗, w1)
= ((w1 −→ (w2 −→ w3))

∗∗∗∗,
(w1 −→ w2)

∗∗, w1) (bh7)
= ((w1 −→ (w2 −→ w3))

∗∗,
(w1 −→ w2)

∗∗, w1). (bh6)

Thus, S(w1, w2) = ((w1 −→ w2)
∗∗, w1) is a solution of the set-theoretical Yang-

Baxter equation in the weak implication algebra. �

Theorem 3.6. Let (W,−→, 1) be a weak implication algebra. Then S(w1, w2) =
(w2, w

∗
1) is a solution of the set-theoretical Yang-Baxter equation in the weak im-

plication algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w2, w
∗
1 , w3)

S23(w1, w2, w3) = (w1, w3, w
∗
2)

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3:
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(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)(w2, w

∗
1 , w3)

= S12(S23(w2, w
∗
1 , w3))

= S12(w2, w3, w
∗∗
1 )

= (w3, w
∗
2 , w

∗∗
1 )

= S23(w3, w
∗
1 , w

∗
2)

= S23(S12(w1, w3, w
∗
2))

= (S23 ◦ S12)(w1, w3, w
∗
2)

= (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12 ◦ S23)(w1, w2, w3).

Hence, S(w1, w2) = (w2, w
∗
1) is a solution of the set-theoretical Yang-Baxter equa-

tion in the weak implication algebra. �

Theorem 3.7. Let (W,−→, 1) be a weak implication algebra. Then S(w1, w2) =
((w1 −→ w2)

∗∗, w∗∗
1 ) is a solution of the set-theoretical Yang-Baxter equation in the

weak implication algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = ((w1 −→ w2)
∗∗, w∗∗

1 , w3)

S23(w1, w2, w3) = (w1, (w2 −→ w3)
∗∗, w∗∗

2 ).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = S(23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3. Then it follows from (bh6), (bh7) and (h9) that

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)((w1 −→ w2)

∗∗, w∗∗
1 , w3)

= S12(S23((w1 −→ w2)
∗∗, w∗∗

1 , w3))
= S12((w1 −→ w2)

∗∗, (w∗∗
1 −→ w3)

∗∗, w∗∗∗∗
1 )

= S12((w1 −→ w2)
∗∗, w∗∗∗∗

1 −→ w∗∗
3 , w∗∗∗∗

1 )
= S12((w1 −→ w2)

∗∗, (w1 −→ w3)
∗∗, w∗∗

1 )
= (((w1 −→ w2)

∗∗ −→ (w1 −→
w3)

∗∗)∗∗, (w1 −→ w2)
∗∗∗∗, w∗∗

1 )
= (((w1 −→ w2) −→ (w1 −→

w3))
∗∗∗∗, (w1 −→ w2)

∗∗∗∗, w∗∗
1 )

= ((w1 −→ (w2 −→ w3))
∗∗,

(w1 −→ w2)
∗∗, w∗∗

1 )
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and

(S23 ◦ S12 ◦ S23)(w1, w2, w3) = (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12)(w1, (w2 −→ w3)

∗∗, w∗∗
2 )

= S23(S12(w1, (w2 −→ w3)
∗∗, w∗∗

2 ))
= S23((w1 −→ (w2 −→

w3)
∗∗)∗∗, w∗∗

1 , w∗∗
2 )

= S23((w1 −→ (w2 −→
w3))

∗∗, w∗∗
1 , w∗∗

2 )
= ((w1 −→ (w2 −→ w3))

∗∗,
(w∗∗

1 −→ w∗∗
2 )∗∗, w∗∗∗∗

1 )
= ((w1 −→ (w2 −→ w3))

∗∗,
(w1 −→ w2)

∗∗, w∗∗
1 ).

So, S(w1, w2) = ((w1 −→ w2)
∗∗, w∗∗

1 ) is a solution of the set-theoretical Yang-
Baxter equation in the weak implication algebra. �

Theorem 3.8. Let (W,−→, 1) be a weak implication algebra. Then S(w1, w2) =
((w1 −→ w∗

2)
∗, w1) is a solution of the set-theoretical Yang-Baxter equation in the

weak implication algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = ((w1 −→ w∗
2)

∗, w1, w3)

S23(w1, w2, w3) = (w1, (w2 −→ w∗
3)

∗, w2).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = S(23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3. Then it is obtained from (bh2), (bh6), (bh7), (h3),
(h5), Theorem 2.1(a) and Proposition 2.3 that

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)((w1 −→ w∗

2)
∗, w1, w3)

= S12(S23((w1 −→ w∗
2)

∗, w1, w3))
= S12((w1 −→ w∗

2)
∗, (w1 −→ w∗

3)
∗, w1)

= (((w1 −→ w∗
2)

∗ −→ (w1 −→
w∗

3)
∗∗)∗, (w1 −→ w∗

2)
∗, w1)

= (((w1 −→ w∗
2)

∗ −→ (w1 −→
w∗

3))
∗, (w1 −→ w∗

2)
∗, w1)

= ((w1 −→ ((w1 −→ w∗
2)

∗ −→
w∗

3))
∗, (w1 −→ w∗

2)
∗, w1)

= ((w1 −→ (w3 −→ (w1 −→
w∗

2)))
∗, (w1 −→ w∗

2)
∗, w1)

= ((w1 −→ (w1 −→ (w3 −→
w∗

2)))
∗, (w1 −→ w∗

2)
∗, w1)

= ((w1 −→ (w3 −→ w∗
2))

∗,
(w1 −→ w∗

2)
∗, w1)

= ((w1 −→ (w2 −→ w∗
3))

∗,
(w1 −→ w∗

2)
∗, w1))
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and

(S23 ◦ S12 ◦ S23)(w1, w2, w3) = (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12)(w1, (w2 −→ w∗

3)
∗, w2)

= S23(S12(w1, (w2 −→ w∗
3)

∗, w2))
= S23((w1 −→ (w2 −→ w∗

3)
∗∗)∗, w1, w2)

= ((w1 −→ (w2 −→ w∗
3)

∗∗)∗, (w1 −→ w∗
2)

∗, w1)
= ((w1 −→ (w2 −→ w∗

3))
∗, (w1 −→ w∗

2)
∗, w1)

Hence, S(w1, w2) = ((w1 −→ w∗
2)

∗, w1) is a solution of the set-theoretical Yang-
Baxter equation in the weak implication algebra. �

Corollary 3.2. Let (W,−→, 1) be a weak implication algebra. Then

S(w1, w2) = ((w2 −→ w∗
1)

∗, w1),
S(w1, w2) = ((w2 −→ w∗

1)
∗, w2), and

S(w1, w2) = ((w1 −→ w∗
2)

∗, w2).

are solutions to the set-theoretical Yang-Baxter equation in the weak implication
algebra.

Theorem 3.9. Let (W,−→, 1) be a weak implication algebra. If (w1 −→ w2)
∗ =

w2 −→ w1 for all w1, w2 ∈ W , then S(w1, w2) = ((w1 −→ w2)
∗, w1) is a solution

to the set-theoretical Yang-Baxter equation in the weak implication algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = ((w1 −→ w2)
∗, w1, w3)

S23(w1, w2, w3) = (w1, (w2 −→ w3)
∗, w2).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W3:

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)((w1 −→ w2)

∗, w1, w3)
= S12(S23((w1 −→ w2)

∗, w1, w3))
= S12((w1 −→ w2)

∗, (w1 −→ w3)
∗, w1)

= (((w1 −→ w2)
∗ −→ (w1 −→

w3)
∗)∗, (w1 −→ w2)

∗, w1)
= (((w1 −→ w3) −→ (w1 −→

w2)
∗∗)∗, (w1 −→ w2)

∗, w1) (bh2)
= (((w1 −→ w3) −→ (w1 −→

w2))
∗∗∗, (w1 −→ w2)

∗, w1) (bh7)
= ((w1 −→ (w3 −→ w2))

∗,
(w1 −→ w2)

∗, w1) ((h9) and (bh6))
= ((w1 −→ (w2 −→ w3)

∗)∗,
(w1 −→ w2)

∗, w1) (hyp.)

and
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(S23 ◦ S12 ◦ S23)(w1, w2, w3) = (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12)(w1, (w2 −→ w3)

∗, w2)
= S23(S12(w1, (w2 −→ w3)

∗, w2))
= S23((w1 −→ (w2 −→ w3)

∗)∗, w1, w2)
= ((w1 −→ (w2 −→ w3)

∗)∗, (w1 −→ w2)
∗, w1).

Thus, S(w1, w2) = ((w1 −→ w2)
∗, w1) is a solution to the set-theoretical Yang-

Baxter equation in the weak implication algebra. �

Theorem 3.10. Let (W,−→, 1) be a weak implication algebra. Then

S(w1, w2) = (w∗
1 −→ w2, 0)

is a solution to the set-theoretical Yang-Baxter equation in the weak implication
algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w∗
1 −→ w2, 0, w3)

S23(w1, w2, w3) = (w1, w
∗
2 −→ w3, 0).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W3. Then it follows from (bh1), (h1), (h5), Corollary
2.2 (c) and Proposition 2.3 that

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)(w

∗
1 −→ w2, 0, w3)

= S12(S23(w
∗
1 −→ w2, 0, w3))

= S12(w
∗
1 −→ w2, w3, 0)

= ((w∗
1 −→ w2)

∗ −→ w3, 0, 0)
= (w∗

3 −→ (w∗
1 −→ w2), 0, 0)

= (w∗
1 −→ (w∗

3 −→ w2), 0, 0)
= (w∗

1 −→ (w∗
2 −→ w3), 0, 0)

= (w∗
1 −→ (w∗

2 −→ w3), 0
∗ −→ 0, 0)

= S23(w
∗
1 −→ (w∗

2 −→ w3), 0, 0)
= S23(S12(w1, w

∗
2 −→ w3, 0))

= S23 ◦ S12(w1, w
∗
2 −→ w3, 0)

= S23 ◦ S12(S23(w1, w2, w3))
= S23 ◦ S12 ◦ S23(w1, w2, w3)

So, S(w1, w2) = (w∗
1 −→ w2, 0) is a solution to the set-theoretical Yang-Baxter

equation in the weak implication algebra. �

Corollary 3.3. Let (W,−→, 1) be a weak implication algebra. Then

S(w1, w2) = (w∗
2 −→ w1, 0)

is a solution to the set-theoretical Yang-Baxter equation in a weak implication al-
gebra.
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Remark 3.3. S(w1, w2) = (w∗
1 −→ w2, 0) is a solution to the set-theoretical

Yang-Baxter equation in a weak implication algebra by Theorem 3.10 while it is
not a solution to the set-theoretical Yang-Baxter equation in a bounded Hilbert
algebra.

Example 3.3. Consider a bounded Hilbert algebra (W,−→, 1) with the fol-
lowing Hasse diagram where W = {0, x, y, z, t, 1}:

Figure 2

The binary operation −→ on W has the Cayley table as follow:

−→ 0 x y z t 1
0 1 1 1 1 1 1
x 0 1 1 z t 1
y 0 x 1 z t 1
z 0 x 1 1 1 1
t 0 x y z 1 1
1 0 x y z t 1

However this algebra is not a weak implication algebra because (y −→ z) −→ y =
1 ̸= y. Since

(S12 ◦ S23 ◦ S12)(0, y, 0) = (0∗ −→ (0∗ −→ y), 0, 0)
= (y, 0, 0) ((bh1) and (h1))

and

(S23 ◦ S12 ◦ S23)(0, y, 0) = (0∗ −→ (y∗ −→ 0), 0, 0)
= (1 −→ (0 −→ 0), 0, 0) (bh1)
= (1, 0, 0), (h1)

i. e., S12 ◦ S23 ◦ S12)(0, y, 0) ̸= (S23 ◦ S12 ◦ S23)(0, y, 0), S(w1, w2) = (w∗
1 −→ w2, 0)

is not a solution to the set-theoretical Yang-Baxter equation in this algebra.

Theorem 3.11. Let (W,−→, 1) be a weak implication algebra. Then

S(w1, w2) = (w∗
1 −→ w2, w2)

is a solution to the set-theoretical Yang-Baxter equation in the weak implication
algebra.
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Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w∗
1 −→ w2, w2, w3)

S23(w1, w2, w3) = (w1, w
∗
2 −→ w3, w3).

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all ((w1, w2, w3) ∈ W 3. Then it is ontained from (h3), (h5), Corollary 2.2
(c) and Proposition 2.3 that

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)(w

∗
1 −→ w2, w2, w3)

= S12(S23(w
∗
1 −→ w2, w2, w3))

= ((w∗
1 −→ w2)

∗ −→ (w∗
2

−→ w3), w
∗
2 −→ w3, w3)

= ((w∗
2 −→ w3)

∗ −→ (w∗
1

−→ w2), w
∗
2 −→ w3, w3)

= (w∗
1 −→ ((w∗

2 −→ w3)
∗

−→ w2), w
∗
2 −→ w3, w3)

= (w∗
1 −→ (w∗

2 −→ (w∗
2 −→

w3)), w
∗
2 −→ w3, w3)

= (w∗
1 −→ (w∗

2 −→ w3),
w∗

2 −→ w3, w3)

and

(S23 ◦ S12 ◦ S23)(w1, w2, w3) = (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12)(w1, w

∗
2 −→ w3, w3)

= S23(S12(w1, w
∗
2 −→ w3, w3))

= S23(w
∗
1 −→ (w∗

2 −→ w3), w
∗
2 −→ w3, w3)

= (w∗
1 −→ (w∗

2 −→ w3),
(w∗

2 −→ w3)
∗ −→ w3, w3)

= (w∗
1 −→ (w∗

2 −→ w3), w
∗
3

−→ (w∗
3 −→ w2), w3)

= (w∗
1 −→ (w∗

2 −→ w3),
w∗

3 −→ w2, w3)
= (w∗

1 −→ (w∗
2 −→

w3), w
∗
2 −→ w3, w3)

Therefore, S(w1, w2) = (w∗
1 −→ w2, w2) is a solution to the set-theoretical Yang-

Baxter equation in the weak implication algebra. �

Theorem 3.12. Let (W,−→, 1) be a weak implication algebra. Then

S(w1, w2) = (w∗∗
2 , w∗

1)

is a solution to the set-theoretical Yang-Baxter equation in the weak implication
algebra.

Proof. S12 and S23 are defined in the following forms:

S12(w1, w2, w3) = (w∗∗
2 , w∗

1 , w3)
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S23(w1, w2, w3) = (w1, w
∗∗
3 , w∗

2)

We show that the equality (S12◦S23◦S12)(w1, w2, w3) = (S23◦S12◦S23)(w1, w2, w3)
holds for all (w1, w2, w3) ∈ W 3:

(S12 ◦ S23 ◦ S12)(w1, w2, w3) = (S12 ◦ S23)(S12(w1, w2, w3))
= (S12 ◦ S23)(w

∗∗
2 , w∗

1 , w3)
= S12(S23(w

∗∗
2 , w∗

1 , w3))
= S12(w

∗∗
2 , w∗∗

3 , w∗∗
1 )

= (w∗∗∗∗
3 , w∗∗∗

2 , w∗∗
1 )

= S23(w
∗∗∗∗
3 , w∗

1 , w
∗
2)

= S23(S12(w1, w
∗∗
3 , w∗

2))
= (S23 ◦ S12)(w1, w

∗∗
3 , w∗

2)
= (S23 ◦ S12)(S23(w1, w2, w3))
= (S23 ◦ S12 ◦ S23)(w1, w2, w3).

Therefore, S(w1, w2) = (w∗∗
2 , w∗

1) is a solution to the set-theoretical Yang-Baxter
equation in the weak implication algebra. �

Example 3.4. Consider a weak implication algebra (W,−→, 0, 1) where W =
{0, x, y, z, t, 1} is a set and the binary operation −→ on W has the Cayley table as
follow:

−→ 0 w1 w2 1
0 1 1 1 1
w1 w2 1 w2 1
w2 w1 w1 1 1
1 0 w1 w2 1

Then all found solutions are provided in this algebra.

Remark 3.4. Since every Boolean algebra is a weak implication algebra, all of
solutions of the set-theoretical Yang-Baxter equation in a Boolean algebra [11] are
also solutions in a weak implication algebra.

4. Conclusion

In the study, we present a weak implication algebra which is a bounded Hilbert
algebra (H,−→, 1) with the condition (x −→ y) −→ x = x for all x, y ∈ H such
that y ̸= 0 (because H is a Boolean algebra when y = 0), and the Yang-Baxter
equation which is commonly used in various scientific, technological and industrial
areas. After giving definitions and notions related to this algebraic structure and
the equation, it is searched solutions to the set-theoretical Yang-Baxter equation
in this algebraic structure. In fact, we find some solutions that are not mostly
solutions to the set-theoretical Yang-Baxter equation in a Hilbert or a bounded
Hilbert algebra but are solutions in a weak implication algebra, and exemplified
that they are not solutions to the set-theoretical Yang-Baxter equation in a Hilbert
or a bounded Hilbert algebra.
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