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EXISTENCE AND UNIQUENESS OF SOLUTIONS

OF SYSTEM OF NEUTRAL FRACTIONAL ORDER

BOUNDARY VALUE PROBLEMS

BY TRIPLE FIXED POINT THEOREM

Kapula Rajendra Prasad, Md. Khuddush and D. Leela

Abstract. In this paper, we establish the existence of unique solution for
system of Caputo-Hadamard type fractional neutral differential equations, for

i = 1, 2, 3, 1 6 t 6 τ, τ > 1,

Dα
[
Dβ

(
Dγui(t)− h

(
t, ui(t)

))
− g

(
t, ui+1−2δij (t)

)]
= f

(
t, ui+2−δij (t)

)
,

u4 = u1 and j =

{
i, if i = 2, 3,

0, otherwise,

ui(1) = A, u′
i(1) = 0, ui(τ) = B; A,B ∈ R,

where δij is a Kronecker delta function, 0 < α, β, γ 6 1 and Dα,Dβ and Dγ

are Caputo-Hadamard fractional derivatives of orders α, β and γ respectively,
by application of tripled fixed point theorems on cone metric spaces.

1. Introduction

The Fractional order differential equations are used to model problems in finance,
fluid dynamics, and other areas of application. Recent investigations have shown
that sometimes physical systems can be modeled more accurately using fractional
derivative formulations [12]. On the other hand neutral functional differential
equations appear in many mathematical models for various types of biological and
physical phenomena [9]. The study on functional fractional neutral differential
equations is very few. In [3], Benchohra et al. studied existence theory for the
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neutral fractional differential equation with initial condition

Dα[x(t)− g(t, xt)] = f(t, xt), t ∈ [0, b], 0 < α < 1

x(t) = ϕ(t), t ∈ (−∞, 0].

based on the Banach contraction principle and nonlinear alternative Leray-Schauder
fixed point theory. Agarwal, Zhou and He [1] considered the initial value problem
of fractional neutral functional differential equations with bounded delay of the
form

cDα[x(t)− g(t, xt)] = f(t, xt), t ∈ [0, b], 0 < α < 1

x(t) = ϕ(t), t ∈ [t0,∞), t0 > 0.

and established existence criterion by using Krasnoselskiis fixed point theorem.
Yukunthorn et al. [16] stadied the existence of solutions for an impulsive hybrid
system of multi-orders CaputoHadamard fractional differential equations

CDαk
tk

x(t) = f(t, x(t)), t ∈ [t0, T ]\{t1, t2, · · · tm}
∆x(tk) = ϕk(x(tk)), k = 1, 2, · · · ,m,

∆δx(tk) = ϕ∗
k(x(tk)), k = 1, 2, · · · ,m,

x(t0) = Iµt0g(ξ, x(ξ)), x(T ) = Iνtmh(η, x(η)),

by using KrasnoselskiiZabreiko, Sadovski and ORegan fixed point theorems. Re-
cently, Gambo et al. [6] considered generalized Caputo fractional order Cauchy
problem (

C
a D

α, ρx
)
(t) = h

[
t, x(t),

(
C
a D

α1, ρx
)
(t), · · · ,

(
C
a D

αm, ρx
)
(t)

]
(γkx)(a) = dk, dk ∈ R (k = 0, 1, · · · , n− 1) ,

and by using Banach fixed point theorem, the existence and uniqueness of solution
established. Bashir Ahmad et al. [2] studied existence theory for fractional order
neutral boundary value problem

Dω[Dκx(t)− h(t, x(t))] = f(t, x(t)), t ∈ [0,T],T > 1

x(1) = 0, x(T) = 0

by applying various fixed point theorems.
In 2007, Huang and Zhang [7] generalized the concept of metric spaces, by

replacing real numbers as an ordered Banach space, proved certain fixed point
theorems of contractive mappings on complete cone metric space by assuming the
normality of a cone. Sh. Rezapour and R. Hamlbarani [15] generalized the above
results by omitting the assumption of normality on the cone. Subsequently many
authors have generalized the results of Huang and Zhang and studied fixed point
theorems for normal and non-normal cones. Recently, Kumar and Pitchiamani [14]
defined a generalized T−contraction and derive some new coupled fixed point the-
orems in cone metric spaces with total ordering condition. Motivated by aforemen-
tioned works, in this paper we establish tripled fixed point theorems on complete
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cone metric spaces and then, as an application we study system of neutral fractional
order boundary value problem, for i = 1, 2, 3, 1 6 t 6 τ, τ > 1,

(1.1)


Dα

[
Dβ

(
Dγui(t)− h

(
t, ui(t)

))
− g

(
t, ui+1−2δij (t)

)]
= f

(
t, ui+2−δij (t)

)
,

u4 = u1 and j = i for i = 2, 3 and zero otherwise,

ui(1) = A, u′
i(1) = 0, ui(τ) = B; A,B ∈ R,

where δij is a Kronecker delta function, 0 < α, β, γ 6 1 and Dα,Dβ and Dγ

are Caputo-Hadamard fractional derivatives of orders α, β and γ respectively. We
establish the existence of unique solution solution for (1.1).

Definition 1.1. ( [7]) Let X be a real Banach Space. A subset P of X is
called a cone if the following conditions are satisfied

(i) P is closed, nonempty and P ̸= {θ};
(ii) α, β ∈ R+ and u, v ∈ P imply that αu+ βv ∈ P;

(iii) P ∪ (−P) = {θ}.
Given a cone P of X define a partial ordering 4 with respect to P by u 4 v if

and only if v − u ∈ P. We shall write u ≺ v to indicate that u 4 v but u ̸= v while

u ≪ v will stand for v − u ∈
◦
P(interior of P). A cone P is called normal if there is

a number C > 0 such that for all u, v ∈ X,

θ 4 u 4 v implies ∥u∥ 6 C∥v∥,

or equivalently, if, for any n, un 4 vn 4 wn and lim
n→∞

un = lim
n→∞

wn = l imply

lim
n→∞

vn = l.

The least positive number C satisfying above inequality is called the normal con-
stant of P.

Theorem 1.2 ( [10]). Let E be a vector space and P be a partial ordering cone
with partial order 4 defined by u 4 v if and only if v − u ∈ P. Then 4 is a total
order on E if and only if P ∪ (−P) = E.

Definition 1.3. ( [7]) Let X be a nonempty set and d : X × X → E be a
mapping such that the following conditions hold:

(i) θ 4 d(u, v) for all u, v ∈ X and d(u, v) = θ if and only if u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) 4 d(u,w) + d(w, v) for all u, v, w ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.4. ( [7]) Let (X, d) be a cone metric space. We say that {un}
is;

(i) a Cauchy sequence if for every k ∈ X with θ ≪ k there is N such that for all
m,n > N, d(un, um) ≪ k;
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(ii) a convergent sequence if for every k ∈ X with θ ≪ k there is N such that
for all n > N, d(un, l) ≪ c, for some l ∈ X. We denote it by lim

n→∞
un = l or un → l.

A cone metric space X is said to be complete if every Cauchy sequence in X
is convergent in X.

Theorem 1.5 ( [5]). Let (X, d) be a cone metric space. Then the following
properties hold: (X need not be normal).

(i) If u 4 vand v ≪ w, then u ≪ w;

(ii) if θ 4 u ≪ k for each c ∈
◦
P, then u = θ;

(iii) if E is a real Banach space with a cone P and if c 4 αc where c ∈ P and
0 6 α < 1, then c = θ.

(iv) if a ∈
◦
P, un ∈ E and un → θ, then there exists n0 such that for all n > n0,

we have un ≪ a.

Definition 1.6. ( [5]) Let (X, d) be a cone metric space, P be a solid cone
and f : X → X. Then

(i) f is said to be continuous if lim
n→∞

un = u implies that lim
n→∞

fun = fu, for

all {un} in X.

(ii) f is said to be sequentially convergent if, for every sequence {un}, such
that {fun} is convergent, then {un} also is convergent.

(iii) f is said to be subsequentially convergent if, for every sequence {un}, such
that {fun} is convergent, then {un} has a convergent subsequence.

Definition 1.7. ( [5]) Let (X, d) be a cone metric space and T, f : X → X
two mappings. A mapping f is said to be a T−Hardy–Rogers contraction, if there
exist ai > 0, i = 1, 2, · · · , 5 with

∑5
i=1 = ai < 1 such that for u, v ∈ X,

d(Tfu, Tfv) 4 a1d(Tu, Tv) + a2d(Tu, Tfu) + a3d(Tv, Tfv) + a4d(Tu, Tfv)

+ a5d(Tv, Tfu).

Definition 1.8. ( [13]) Let (X, d) be a cone metric space and T : X → X be
a mapping. A mapping S : X ×X → X is called a T−Sabetghadam–contraction if
there exist a, b > 0 with a+ b < 1 such that for all u, v ∈ X

d(TS(u, v), TS(ũ, ṽ)) 4 ad(Tu, T ũ) + bd(Tv, T ṽ).

Definition 1.9. ( [11]) Let (X, d) be a cone metric space. An element (u, v) ∈
X×X is called a coupled fixed point of the mapping F : X×X → X if F (u, v) = u
and F (v, u) = v.

Definition 1.10. ( [14]) Let (X, d) be a cone metric space with P∪(−P) = E,
(i.e. P is a total ordering cone) and T : X → X be a mapping. A mapping
S : X × X → X is called a generalized T−contraction if there exists λ with
0 6 λ < 1 such that

d(TS(u, v), TS(ũ, ṽ)) 6 λmax{d(Tu, T ũ), d(Tv, T ṽ)}.
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for all u, v, ũ, ṽ ∈ X,

Definition 1.11. ( [4]) An element (u, v, w) ∈ X3 is called a tripled fixed point
of the mapping F : X3 → X if F (u, v, w) = u, F (v, u, w) = v and F (w, v, u) = w.

The rest of the paper is organized in the following fashion. In Section 2, we
provide some definitions and lemmas that provide useful information regarding the
behavior of solution of the boundary value problem (1.1), then we construct the
Green’s function for (1.1), estimate bounds for the Green’s function, and some
lemmas are established which are needed in our main results. In Section 3, we
establish tripled fixed point theorems on cone metric space. In Section 4, we es-
tablish existence of solution for (1.1). Finally, an example is given to demonstrate
our results.

2. Green’s function and bounds

In this section, we list some definitions and lemmas which are useful for our
later discussions, and constructed Green’s function for (1.1), and established certain
lemmas for the bounds of the Green’s function.

Definition 2.1. ( [8]) The Hadamard derivative of fractional order r for a
function p : [1,∞) → R is defined as

Drp(x) =
1

Γ(n− r)

(
x
d

dx

)n ∫ x

1

(
log

x

s

)n−r−1
p(s)

s
ds,

n− 1 < r < n, n = [r] + 1, where [r] denotes the integer part of the real number r
and log(·) = loge(·).

Definition 2.2. ( [8]) The Hadamard fractional integral of order r for a func-
tion p : [1,∞) → R is defined as

I rp(x) =
1

Γ(r)

∫ x

1

(
log

x

s

)r−1
p(s)

s
ds, r > 0,

provided the integral exists.

Lemma 2.3. The problem

(2.1)
Dα

[
Dβ

(
Dγu(t)− h

(
t, u(t)

))
− g

(
t, v(t)

)]
= f

(
t, w(t)

)
,

u(1) = A, u′(1) = 0, u(τ) = B; A,B ∈ R,

is equivalent to the following integral equation

(2.2)

u(t) =

∫ τ

1

Gh(t, s)h(s, u(s))ds+

∫ τ

1

Gg(t, s)g(s, v(s))ds

+

∫ τ

1

Gf (t, s)f(s, w(s))ds+

(
log t

log τ

)β+γ

(B −A) +A,



128 K. R. PRASAD, MD. KHUDDUSH AND D. LEELA

where

Gh(t, s) =


∆1

s

[(
log

t

s

)γ−1(
log τ

)β+γ

−
(
log t

)β+γ(
log

τ

s

)γ−1]
, s 6 t,

−∆1

s

(
log t

)β+γ(
log

τ

s

)γ−1

, t 6 s,

Gg(t, s) =



∆2

s

[(
log

t

s

)β+γ−1(
log τ

)β+γ

−
(
log t

)β+γ(
log τ

s

)β+γ−1]
, s 6 t,

−∆2

s

(
log t

)β+γ(
log

τ

s

)β+γ−1

, t 6 s,

Gf (t, s) =



∆3

s

[(
log

t

s

)α+β+γ−1(
log τ

)β+γ

−
(
log t

)β+γ(
log τ

s

)α+β+γ−1]
, s 6 t,

−∆3

s

(
log t

)β+γ(
log

τ

s

)α+β+γ−1

, t 6 s,

∆1 =
1(

log τ
)β+γ

Γ(γ)
, ∆2 =

1(
log τ

)β+γ
Γ(β + γ)

and

∆3 =
1(

log τ
)β+γ

Γ(α+ β + γ)
.

Proof. The solution of the Hadamard fractional differential equation in (1.1)
can be written as [8]

(2.3)

u(t) =
1

Γ(γ)

∫ t

1

(
log

t

s

)γ−1
h(s, u(s))

s
ds+

∫ t

1

(
log

t

s

)β+γ−1
g(s, v(s))

Γ(β + γ)s
ds

+
1

Γ(α+ β + γ)

∫ t

1

(
log

t

s

)α+β+γ−1
f(s, w(s))

s
ds+ c1

(log t)β+γ

Γ(β + γ + 1)

+ c2
(log t)γ

Γ(γ + 1)
+ c3,
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where c1, c2, c3 ∈ R are arbitrary constants. In view of the boundary condition in
(1.1), it follows from (2.3) that c3 = A, c2 = 0 and

c1 =
Γ(β + γ + 1)

(log τ)β+γ

[
(B −A) +

1

Γ(γ)

∫ τ

1

(
log

τ

s

)γ−1
h(s, u(s))

s
ds

+
1

Γ(β + γ)

∫ τ

1

(
log

τ

s

)β+γ−1
g(s, v(s))

s
ds

+
1

Γ(α+ β + γ)

∫ τ

1

(
log

τ

s

)α+β+γ−1
f(s, w(s))

s
ds

]
.

Substituting the value of c1, c2 and c3 in (2.3), we get the solution (2.2). By direct
computation, we can show that u(t) given by (2.2) satisfies the problem (2.1). This
completes the proof. �

Lemma 2.4. Let Gh(t, s), Gg(t, s) and Gf (t, s) be given in the Lemma 2.3.
Then

(i) max
t∈[1,τ ]

∫ τ

1

|Gh(t, s)|ds =
2
(
log τ

)γ
Γ(γ + 1)

,

(ii) max
t∈[1,τ ]

∫ τ

1

|Gg(t, s)|ds =
2
(
log τ

)β+γ

Γ(β + γ + 1)
,

(iii) max
t∈[1,τ ]

∫ τ

1

|Gf (t, s)|ds =
2
(
log τ

)α+β+γ

Γ(α+ β + γ + 1)
.

Proof. By direct integration, we can get the identities. So, we omit the details
here. �

3. Tripled fixed point theorems

In this Section we establish tripled fixed point theorems which will be useful in
main results. For this, we define the following contraction condition.

Let (X, d) be a cone metric space with P ∪ (−P) = E, (P is a total ordering
cone) and S : X → X be a mapping. A mapping F : X3 → X is called a generalized
S−contraction if there exists α with 0 6 α < 1 such that

(3.1) d
(
SF (u, v, w),SF (ũ, ṽ, w̃)

)
4 αmax

{
d(Su,Sũ), d(Sv,S ṽ), d(Sw,Sw̃)

}
,

for all u, v, w, ũ, ṽ, w̃ ∈ X.

Theorem 3.1. Let (X, d) be a complete cone metric space, P be a solid cone
with P ∪ (P) = E and S : X → X be a continuous, one-to-one mapping and
F : X3 → X be a mapping such that (3.1) holds for all u, v, w, ũ, ṽ, w̃ ∈ X. Then

(i) there exist ũ0, ṽ0, w̃0 ∈ X such that

lim
n→∞

SFn(u0, v0, w0) = ũ0, lim
n→∞

SFn(v0, u0, w0) = ṽ0

and
lim

n→∞
SFn(w0, v0, u0) = w̃0,
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where Fn(u0, v0, w0) = un, F
n(v0, u0, w0) = vn and Fn(w0, v0, u0) = wn are the

iterative sequences;

(ii) if S is subsequentially convergent, then {Fn(u0, v0, w0)}, {Fn(v0, u0, w0)}
and {Fn(w0, v0, u0)} have a convergent subsequence;

(iii) there exist unique û0, v̂0, ŵ0 ∈ X such that

F (û0, v̂0, ŵ0) = û0, F (v̂0, û0, ŵ0) = v̂0

and

F (ŵ0, v̂0, û0) = ŵ0;

(iv) if S is a sequentially convergent, then for every u0, v0, w0 ∈ X, the sequence
{Fn(u0, v0, w0)} converges to û0 ∈ X, the sequence {Fn(v0, u0, w0)} converges to
v̂0 ∈ X and the sequence {Fn(w0, v0, u0)} converges to ŵ0 ∈ X.

Proof. For u0, v0 ∈ X, define

un+1 =F (un, vn, wn) = Fn+1(u0, v0, w0),∀n = 0, 1, 2, · · ·
vn+1 =F (vn, un, wn) = Fn+1(v0, u0, w0),∀n = 0, 1, 2, · · ·
wn+1 =F (wn, vn, un) = Fn+1(w0, v0, u0),∀n = 0, 1, 2, · · ·

By (3.1) , we have

d(Sun,Sun+1) = d
(
SF (un−1, vn−1, wn−1),SF (un, vn, wn)

)
4αmax

{
d(Sun−1,Sun), d(Svn−1,Svn), d(Swn−1,Swn)

}
,

d(Svn,Svn+1) = d
(
SF (vn−1, un−1, wn−1),SF (vn, un, wn)

)
4αmax

{
d(Svn−1,Svn), d(Sun−1,Sun), d(Swn−1,Swn)

}
and

d(Swn,Swn+1) = d
(
SF (wn−1, vn−1, un−1),SF (wn, vn, un)

)
4αmax

{
d(Swn−1,Swn), d(Svn−1,Svn), d(Sun−1,Sun)

}
Let dn = max{d(Sun,Sun+1), d(Svn,Svn+1), d(Swn,Swn+1)}. Then

dn 4αmax{d(Sun−1,Sun), d(Svn−1,Svn), d(Swn−1,Swn)}
=αdn−1.

Continuing in this way, we get

θ 4 dn 4 αdn−1 4 · · · 4 αnd0.

If d0 = θ, then (u0, v0, w0) is a tripled fixed point of F. Assume that d0 > θ and for
n > l, we have

(3.2) d(Sul,Sun) 4d(Sul,Sul+1) + d(Sul+1,Sul+2) + · · ·+ d(Sun−1,Sun),

(3.3) d(Svl,Svn) 4d(Svl,Svl+1) + d(Svl+1,Svl+2) + · · ·+ d(Svn−1,Svn),
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and

(3.4) d(Swl,Swn) 4d(Swl,Swl+1) + d(Swl+1,Swl+2) + · · ·+ d(Swn−1,Swn).

From (3.2)-(3.4), we obtain

max{d(Sul,Sun), d(Svl,Svn), d(Swl,Swn)}
4 max{d(Sul,Sul+1), d(Svl,Svl+1), d(Swl,Swl+1)}+ · · ·

+max{d(Sun−1,Sun), d(Svn−1,Svn), d(Swn−1,Swn)}
= dl + dl+1 + · · ·+ dn−1

4 (αl + αl+1 + · · ·+ αn−1)d0

4 αl

1− α
d0.

Now from Theorem 1.5, we have for every a ∈
◦
P, there exists a positive integer N

such that

max{d(Sul,Sun), d(Svl,Svn),Swl,Swn} ≪ a ∀ n > l > N

which implies that {Sun}, {Svn} and {Swn} are Cauchy sequences in X. By the
completeness of X, we can find ũ0, ṽ0, w̃0 ∈ X such that

lim
n→∞

SFn(u0, v0, w0) = ũ0, lim
n→∞

SFn(v0, u0, w0) = ṽ0

and

lim
n→∞

SFn(w0, v0, u0) = w̃0.

If S is subsequentially convergent, then Fn(u0, v0, w0), F
n(v0, u0, w0) and

Fn(w0, v0, u0) have convergent subsequences. Thus, there exist û0, v̂0, ŵ0 in X
and sequences {unk

}, {vnk
} and {wnk

} such that

(3.5)

 lim
k→∞

Fnk(u0,v0, w0) = û0, lim
k→∞

Fnk(v0, u0, w0) = v̂0,

lim
k→∞

Fnk(w0, v0, u0) = ŵ0.

Since S is continuous, we have

(3.6)

 lim
k→∞

SFnk(u0,v0, w0) = Sû0, lim
k→∞

SFnk(v0, u0, w0) = S v̂0

lim
k→∞

SFnk(w0, v0, u0) = Sŵ0.

Hence, from (3.5) and (3.6), we have

Sû0 = ũ0,S v̂0 = ṽ0 and Sŵ0 = w̃0.
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Next, by triangle inequality and (3.1), we have

d(SF (û0, v̂0, ŵ0),Sû0) 4 d
(
SF (û0, v̂0, ŵ0),SF (unk

, vnk
, wnk

)
)

+ d
(
SF (unk

, vnk
, wnk

), û0

)
4 αmax

{
d(Sû0,Sunk

), d(S v̂0,Svnk
), d(Sŵ0,Swnk

)
}

+ d
(
SF (unk

, vnk
, wnk

),Sû0

)
4 αmax

{
d(Sû0,Sunk

), d(S v̂0,Svnk
), d(Sŵ0,Swnk

)
}

+ d
(
Sunk+1,Sû0

)
Applying Theorem1.5 , we have d(SF (û0, v̂0, ŵ0),Sû0) = θ, i.e., SF (û0, v̂0, ŵ0) =
Sû0. As S is one-to-one, we have F (û0, v̂0, ŵ0) = û0. Similarly, we can prove
F (v̂0, û0, ŵ0) = v̂0 and F (ŵ0, v̂0, û0) = ŵ0. Therefore, (û0, v̂0, ŵ0) is a tripled fixed
point of F.

Now, suppose (ǔ0, v̌0, w̌0) is another tripled fixed point of F, then

d(Sû0,Sǔ0) = d
(
SF (û0, v̂0, ŵ0),SF (ǔ0, v̌0, w̌0)

)
4 max{d(Sû0,Sǔ0), d(S v̂0,S v̌0), d(Sŵ0,Sw̌0)}.

Similarly,

d(S v̂0,S v̌0) 4 max{d(S v̂0,S v̌0), d(Sû0,Sǔ0), d(Sŵ0,Sw̌0)}
and

d(Sŵ0,Sw̌0) 4 max{d(Sŵ0,Sw̌0), d(S v̂0,S v̌0), d(Sû0,Sǔ0)},
which implies that

max{d(Sû0,Sǔ0), d(S v̂0,S v̌0), d(Sŵ0,Sw̌0)}

4 αmax
{
d(Sû0,Sǔ0), d(S v̂0,S v̌0), d(Sŵ0,Sw̌0)

}
.

Since α < 1, d(Sû0,Sǔ0) = d(S v̂0,S v̌0) = d(Sŵ0,Sw̌0). i.e., Sû0 = Sǔ0,S v̂0 = S v̌0
and Sŵ0 = Sw̌0. Since S is one-to-one, we have (û0, v̂0, ŵ0) = (ǔ0, v̌0, w̌0). Further,
if S is sequentially convergent, by replacing n by nk, we get

lim
n→∞

Fn(u0, v0, w0) = û0, lim
n→∞

Fn(v0, u0, w0) = v̂0

and

lim
n→∞

Fn(w0, v0, u0) = ŵ0.

This completes the proof. �

Corollary 3.2. Let (X, d) be a complete cone metric space, P be a solid cone
and S : X → X be continuous, one-to-one mapping and F : X3 → X be a mapping
such that

d
(
SF (u, v, w),SF (ũ, ṽ, w̃)

)
4 αmax

{
d(Su,Sũ), d(Sv,S ṽ), d(Sw,Sw̃),

d(Su,Sũ) + d(Sv,S ṽ) + d(Sw,Sw̃)
3

}
,
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for all u, v, w, ũ, ṽ, w̃ ∈ X where 0 6 α < 1. Then the conclusions (i) − (iv) of
Theorem 3.1 hold.

Theorem 3.3. Let (X, d) be a complete cone metric space, P be a solid cone
with P ∪ (P) = E and S : X → X be a continuous, one-to-one mapping and
F : X3 → X be a mapping such that

d
(
SF (u, v, w),SF (ũ, ṽ, w̃)

)
4 αmax

{
d
(
SF (u, v, w),Su

)
, d
(
SF (ũ, ṽ, w̃),Sũ

)}
,

for all u, v, w, ũ, ṽ, w̃ ∈ X where 0 6 α < 1. Then conclusions (i)− (iv) of Theorem
3.1 hold.

Proof. The proof is similar to that of Theorem 3.1. �

Corollary 3.4. Let (X, d) be a complete cone metric space, P be a solid cone
and S : X → X be continuous, one-to-one mapping and F : X3 → X be a mapping
such that

d
(
SF (u, v, w),SF (ũ, ṽ, w̃)

)
4 αmax

{
d
(
SF (u, v, w),Su

)
, d
(
SF (ũ, ṽ, w̃),Sũ

)
+

d
(
SF (u, v, w),Su

)
, d
(
SF (ũ, ṽ, w̃),Sũ

)
2

}
,

for all u, v, w, ũ, ṽ, w̃ ∈ X where 0 6 α < 1. Then conclusions (i)− (iv) of Theorem
3.1 hold.

Theorem 3.5. Let (X, d) be a complete cone metric space, P be a solid cone
with P ∪ (P) = E and S : X → X be a continuous, one-to-one mapping and
F : X3 → X be a mapping such that

d
(
SF (u, v, w),SF (ũ, ṽ, w̃)

)
4 αmax{d

(
SF (u, v, w),Sũ

)
, d
(
SF (ũ, ṽ, w̃),Su

)
},

for all u, v, w, ũ, ṽ, w̃ ∈ X where 0 6 α < 1. Then conclusions (i)− (iv) of Theorem
3.1 hold.

Corollary 3.6. Let (X, d) be a complete cone metric space, P be a solid cone
and S : X → X be continuous, one-to-one mapping and F : X3 → X be a mapping
such that

d
(
SF (u, v, w),SF (ũ, ṽ, w̃)

)
4 αmax

{
d
(
SF (u, v, w),Sũ

)
, d
(
SF (ũ, ṽ, w̃),Su

)
+

d
(
SF (u, v, w),Sũ

)
, d
(
SF (ũ, ṽ, w̃),Su

)
2

}
,

for all u, v, w, ũ, ṽ, w̃ ∈ X where 0 6 α < 1. Then conclusions (i)− (iv) of Theorem
3.1 hold.
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4. An application to system of nuetral fractional order boundary value
problem

In this section, we study the existence of solution for system of nuetral boundary
value problem (1.1) using the results we obtained.

Let X = C([1, τ ],R), τ > 1 be together with the metric given by

d(u, v) = sup
t∈[1,τ ]

|u(t)− v(t)|,∀u, v ∈ X.

Theorem 4.1. Suppose that the following hold:
(H1) For every u, v, w, x, y, z ∈ X and t ∈ [1, τ ], we have

|h(t, u(t))− h(t, x(t))| 6 α1|u(t)− x(t)|,

|g(t, v(t))− g(t, y(t))| 6 α2|v(t)− y(t)|,
|f(t, w(t))− f(t, z(t))| 6 α3|w(t)− z(t)|,

where α1, α2, α3 are nonnegative constants with α = max{α1, α2, α3} < 1.

(H2)

(
log τ

)γ
Γ(γ + 1)

+

(
log τ

)β+γ

Γ(β + γ + 1)
+

(
log τ

)α+β+γ

Γ(α+ β + γ + 1)
6 1

2
.

Then the system (1.1) has unique solution in C3([1, τ ],R).

Proof. From Lemma 2.3, the fractional order boundary value problem (1.1)
has an integral formulation given by

u1(t) =

∫ τ

1

Gh(t, s)h(s, u1(s))ds+

∫ τ

1

Gg(t, s)g(s, u2(s))ds

+

∫ τ

1

Gf (t, s)f(s, u3(s))ds+

(
log t

log τ

)β+γ

(B −A) +A,

u2(t) =

∫ τ

1

Gh(t, s)h(s, u2(s))ds+

∫ τ

1

Gg(t, s)g(s, u1(s))ds

+

∫ τ

1

Gf (t, s)f(s, u3(s))ds+

(
log t

log τ

)β+γ

(B −A) +A

u3(t) =

∫ τ

1

Gh(t, s)h(s, u3(s))ds+

∫ τ

1

Gg(t, s)g(s, u2(s))ds

+

∫ τ

1

Gf (t, s)f(s, u1(s))ds+

(
log t

log τ

)β+γ

(B −A) +A.

Define an operators F , F : X3 → X by

F(u1, u2, u3) = (F (u1, u2, u3), F (u2, u1, u3), F (u3, u2, u1),

where

F (x, y, z) =

∫ τ

1

Gh(t, s)h(s, x(s))ds+

∫ τ

1

Gg(t, s)g(s, y(s))ds

+

∫ τ

1

Gf (t, s)f(s, z(s))ds+

(
log t

log τ

)β+γ

(B −A) +A.
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Then (u, v, w) is the solution of (1.1) if and only if F(u, v, w) = (u, v, w), i.e.,
F (u, v, w) = u, F (v, u, w) = v and F (w, v, u) = w. In other words (u, v, w) is the
solution of (1.1) if and only if (u, v, w) is a tripled fixed point of F. Existence of
such a point follows from Theorem 3.1, by taking S as identity mapping. For
u, v, w, x, y, z ∈ X and t ∈ [1, τ ], we have

|F (u, v, w)(t)− F (x, y, z)(t)| 6
∫ τ

1

|Gh(t, s)||h(s, u(s))− h(s, x(s))|ds

+

∫ τ

1

|Gg(t, s)||g(s, v(s))− g(s, y(s))|ds

+

∫ τ

1

|Gf (t, s)||f(s, w(s))− f(s, z(s))|ds.

Now using (H1), we get

|F (u, v,w)(t)− F (x, y, z)(t)|

6α1

∫ τ

1

|Gh(t, s)||u(s)− x(s)|ds+ α2

∫ τ

1

|Gg(t, s)||v(s)− y(s)|ds

+ α3

∫ τ

1

|Gf (t, s)||w(s))− z(s)|ds

6α
[ ∫ τ

1

|Gh(t, s) +Gg(t, s) +Gf (t, s)
]

×max
{
||u(s)− x(s)|, ||v(s)− y(s)|, ||w(s)− z(s)|

}
ds

6α
[ ∫ τ

1

|Gh(t, s) +Gg(t, s) +Gf (t, s)
]
ds×max

{
d(u, x), d(v, y), d(w, z)

}
6α

[2( log τ)γ
Γ(γ + 1)

+
2
(
log τ

)β+γ

Γ(β + γ + 1)
+

2
(
log τ

)α+β+γ

Γ(α+ β + γ + 1)

]
×max

{
d(u, x), d(v, y), d(w, z)

}
6αmax

{
d(u, x), d(v, y), d(w, z)

}
.

Thus,

d(F (u, v, w), F (x, y, z)) 6 αmax
{
d(u, x), d(v, y), d(w, z)

}
for all u, v, w, x, y, z ∈ X. Which shows that the contraction condition of Theorem
3.1 holds. Therefore, F has a unique tripled fixed point (ũ, ṽ, w̃) ∈ C3([1, τ ],R)
which is the unique solution of (1.1).

Example 4.2. Consider the problem (1.1) with

α =
1

5
, β =

1

2
, γ =

7

10
, τ = 1.15,

f(t, x) = f1(t) +
1

7
sinx, g(t, x) = g1(t) +

3

7
cosx
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and

h(t, x) = h1(t) +
2

7
e−x

where f1, g1, h1 are any real value continuous functions on [1, τ ]. Then it can be
seen by direct calculations that

|h(t, u(t))− h(t, x(t))| 6 2

7
|u(t)− x(t)|,

|g(t, v(t))− g(t, y(t))| 6 3

7
|v(t)− y(t)|,

|f(t, w(t))− f(t, z(t))| 6 1

7
|w(t)− z(t)|,

and (
log τ

)γ
Γ(γ + 1)

+

(
log τ

)β+γ

Γ(β + γ + 1)
+

(
log τ

)α+β+γ

Γ(α+ β + γ + 1)
≈ 0.4143646338 <

1

2
.

Thus, all the conditions of Theorem 4.1 are satisfied. Therefore, the problem (1.1)
with above choices has a unique solution on [1, 1.15].
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