A CONNECTION BETWEEN QUASI-ANTIORDERS AND PAIRS OF COEQUALITIES ${ }^{1}$

Duško Bogdanic ${ }^{2 / 2}$, Daniel Abraham Romano ${ }^{[3}$ and Milovan Vinčic ${ }^{41}$

Abstract

A connection of lattice of quasi-antiorders of set with apartness with the direct square of lattice of coequalities of set with apartness is obtained.

AMS Mathematics Subject Classification (2000): Primary: 03F65, Secondary: 06B99

Key words and phrases: Constructive mathematics, set with apartness, coequality, anti-order and quasi-antiorder

Dedicated to professor Siniša Crvenkovć on his 60th birthday

1 Introduction

This investigation is in Bishop's constructive mathematics. Let us consider a set with apartness $(S,=, \neq)$. A binary relation $\sigma \subseteq S \times S$ is called a quasi-antiorder of S if σ is consistent and cotransitive. If we set $\sigma^{\prime}=\sigma^{-1}=\{(x, y):(y, x) \in \sigma\}$, then $\Im(S)$, the family of all quasi-antiorders of S, becomes an involution lattice $\Im(S)=\left(\Im(S), \wedge, \vee,^{\prime}\right)$ where \wedge is the cotransitive fulfillment of the intersection, and \vee is the union. The sublattice $\left\{\sigma \in \Im(S): \sigma^{\prime}=\sigma\right\}=\mathbf{Q}(S)$ is just the coequality lattice of S. Let $\mathbf{Q}(S) \times \mathbf{Q}(S)$ denote the direct square of the lattice $\mathbf{Q}(S)$ equipped with the involution defined by $(\alpha, \beta)^{\prime}=(\beta, \alpha)$. Then $\mathbf{Q}(S) \times \mathbf{Q}(S)$ is an involution lattice.
For anti-ordered sets $(S,=, \neq, \alpha)$ and $(T,=, \neq, \beta)$, and a mapping $\varphi: S \longrightarrow T$, let
$\Phi: \Im(T) \ni \sigma \longmapsto\left\{\left(x, x^{\prime}\right) \in S \times S:\left(\varphi(x), \varphi\left(x^{\prime}\right)\right) \in \sigma\right\}=\varphi^{-1}(\sigma) \in \Im(S)$

[^0]and
$$
F: \mathbf{Q}(T) \times \mathbf{Q}(T) \ni\left(q, q^{\prime}\right) \longmapsto\left(\varphi^{-1}(q), \varphi^{-1}\left(q^{\prime}\right)\right) \in \mathbf{Q}(S) \times \mathbf{Q}(S)
$$

For lattices $\Im(S)$ and $\mathbf{Q}(S)$ consider the following mappings $\vartheta, \mu: \Im(S) \longrightarrow$ $\mathbf{Q}(S)$, defined by

$$
\vartheta(\sigma)=c(\sigma \cap \alpha) \cup c\left(\sigma^{-1} \alpha^{-1}\right), \quad \mu(\sigma)=c\left(\sigma \cap \alpha^{-1}\right) \cup c\left(\sigma^{-1} \cap \alpha\right)
$$

and $\Psi: \mathbf{Q}(S) \times \mathbf{Q}(S) \longrightarrow \Im(S)$ defined by

$$
\left(q_{1}, q_{2}\right)=c\left(q_{1} \cap \alpha\right) \cup c\left(q_{2} \cap \alpha^{-1}\right)
$$

To prove that $\Theta: \Im(S) \longrightarrow \mathbf{Q}(S) \times \mathbf{Q}(S)$, defined by

$$
\Theta(\sigma)=(\vartheta(\sigma), \mu(\sigma))
$$

for any $\sigma \in \Im(S)$, and Ψ are natural transformations, let $\varphi: S \longrightarrow T$ be a surjective strongly extensional isotone and reverse isotone mapping between anti-order relational systems. We have to show that the following equality holds

$$
\Theta_{S} \circ \Phi=F \circ \Theta_{T}
$$

i.e. that the following diagram

commutes. Following ideas presented in article 4 we analyze similar situation on connection between quasi-antiorders and coequality relations on anti-ordered sets with apartness. This article is a continuation of the second author's forthcoming article 8.

2 Preliminaries

Let $(A,=, \neq)$ be a set in the sense of [1], [2], 3] and [9], where ' \neq ' is a binary relation on A which satisfies the following properties:

$$
\begin{gathered}
\neg(x \neq x), x \neq y \Longrightarrow y \neq x, x \neq z \Longrightarrow x \neq y \vee y \neq z, \\
x \neq y \wedge y=z \Longrightarrow x \neq z,
\end{gathered}
$$

called apartness (A. Heyting). Let Y be a subset of A and $x \in A$. The subset Y of A is strongly extensional in A if and only if $y \in Y \Longrightarrow y \neq x \vee x \in Y$ ([1], [9).
Let $\varphi:(A,=, \neq) \longrightarrow(B,=, \neq)$ be a mapping. We say that :
(a) φ is strongly extensional if and only if

$$
(\forall a, b \in A)(\varphi(a) \neq \varphi(b) \Longrightarrow a \neq b) ;
$$

(b) φ is an embedding if and only if

$$
(\forall a, b \in A)(a \neq b \Longrightarrow \varphi(a) \neq \varphi(b)) .
$$

Let $\alpha \subseteq A \times B$ and $\beta \subseteq B \times C$ be relations. The filled product (5) of relations α and β is the relation

$$
\beta * \alpha=\{(a, c) \in A \times C:(\forall b \in B)((a, b) \in \alpha \vee(b, c) \in \beta\} .
$$

It is easy to check that the filled product is associative. (See, for example, [6]) For $\beta=\alpha$ we put ${ }^{2} \alpha=\alpha * \alpha$, and for given natural n, by induction, we define

$$
{ }^{n+1} \alpha={ }^{n} \alpha * \alpha\left(=\alpha *{ }^{n} \alpha\right),{ }^{1} \alpha=\alpha .
$$

Besides, for any relation $\alpha \subseteq X \times X$, we can construct the relation

$$
c(\alpha)=\bigcap_{n \in N}{ }^{n} \alpha .
$$

It is clear that $c(\alpha) \subseteq \alpha$ and the following $c(\alpha) \subseteq c(\alpha) * c(\alpha)$ is valid. It is called cotransitive internal fulfilment of α. This notion was studied by the second author in his articles [5] and [6]. If α is a consistent relation on set A, then $c(\alpha)$ is the maximal quasi-antiorder on A under α (see, for example, article [5] or in [6)
A relation α on A is anti-order on $A(7,[8)$ if and only if

$$
\alpha \subseteq \neq, \alpha \subseteq \alpha * \alpha, \neq \subseteq \alpha \cup \alpha^{-1}
$$

For anti-order on set A we say that it is complete anti-order if $\alpha \cap \alpha^{-1}=\emptyset$ holds. As in [7, a relation $\tau \subseteq A \times A$ is a quasi-antiorder on A if and only if

$$
\tau \subseteq \alpha(\subseteq \neq), \quad \tau \subseteq \tau * \tau
$$

Quasi-antiorder τ is complete if $\tau \cap \tau^{-1}=\emptyset$ holds. Let us note that if α and β are (quasi-)anti-orders on a set, then the union $\alpha \cup \beta$ is also a (quasi-)anti-order. Finally, relation $q \subseteq A \times A$ is a coequality relation on A if

$$
q \subseteq \neq, q^{-1}=q, \quad q \subseteq q * q .
$$

Let $\varphi:((A,=, \neq), \alpha) \longrightarrow((B,=, \neq), \beta)$ be a strongly extensional mapping of relational systems. φ is called isotone if

$$
(\forall x, y \in A)((x, y) \in \alpha \Longrightarrow(\varphi(x), \varphi(y)) \in \beta) ;
$$

φ is called reverse isotone if and only if

$$
(\forall x, y \in A)((\varphi(x), \varphi(y)) \in \beta \Longrightarrow(x, y) \in \alpha)
$$

Let us note that if $\varphi:((A,=, \neq), \alpha) \longrightarrow((B,=, \neq), \beta)$ is a strongly extensional mapping of quasi-antiorder systems then the relation $\varphi^{-1}(\beta)=\{(x, y) \in A \times A$: $(\varphi(x), \varphi(y)) \in \beta\}$ is a quasi-antiorder too. It is easy to verify the following:
(1) φ is isotone if $\alpha \subseteq \varphi^{-1}(\beta)$ and
(2) φ is reverse isotone if $\varphi^{-1}(\beta) \subseteq \alpha$.

3 Proofs

1. Φ is an isotone mapping between lattices $\Im(T)$ and $\Im(S)$. Indeed, if σ and τ are quasi-antiorders on semigroup T, then $\varphi^{-1}(\sigma)$ and $\varphi^{-1}(\tau)$ are quasiantiorders on S. Suppose that $\sigma \subseteq \tau$. If $\left(a, a^{\prime}\right) \in \varphi^{-1}(\sigma)$, i.e. if $(\varphi(a), \varphi(b)) \in$ $\sigma \subseteq \tau$, then $(a, b) \in \varphi^{-1}(\tau)$ and, hence, Φ is an isotone mapping.
2. F is an isotone mapping from lattice $\mathbf{Q}(T) \times \mathbf{Q}(T)$ to lattice $\mathbf{Q}(S) \times \mathbf{Q}(S)$. In fact, if q and q^{\prime} are a pair of coequalities on semigroup T, then $\varphi^{-1}(q)$ and $\varphi^{-1}\left(q^{\prime}\right)$ are coequalities on S.
3. The mappings $\vartheta, \mu: \Im(S) \longrightarrow \mathbf{Q}(S)$ are correctly defined isotone mappings. Let σ be a quasi-antiorder on semigroup S. It is clear that $\vartheta(\sigma)=c(\sigma \cap \alpha) \cup$ $c\left(\sigma^{-1} \cap \alpha^{-1}\right)$ and $\mu(\sigma)=c\left(\sigma \cap \alpha^{-1}\right) \cup c\left(\sigma^{-1} \cap \alpha\right)$ are consistent and cotransitive relations on S.
3.1. Let (a, b) be an arbitrary element of $\vartheta(\sigma)$. Then $(a, b) \in c(\sigma \cap \alpha)$ or $(a, b) \in$ $c\left(\sigma^{-1} \cap \alpha^{-1}\right)$. Assume that $(a, b) \in c(\sigma \cap \alpha)$. Then $(b, a) \in \sigma^{-1} \cap \alpha^{-1}$. Further on, out of $(a, b) \in{ }^{2}(\sigma \cap \alpha)$, i.e. out of $(\forall t)((a, t) \in \sigma \cap \alpha \vee(t, b) \in \sigma \cap \alpha)$ we have $(\forall t)\left((b, t) \in \sigma^{-1} \cap \alpha^{-1} \vee(t, a) \in \sigma^{-1} \cap \alpha^{-1}\right)$. Hence, we have $(b, a) \in{ }^{2}\left(\sigma^{-1} \cap\right.$ $\left.\alpha^{-1}\right)$. Suppose that the implication $(a, b) \in^{n}(\sigma \cap \alpha) \Longrightarrow(b, a) \in^{n}\left(\sigma^{-1} \cap \alpha^{-1}\right)$ holds for natural number n. Now, out of $(a, b) \in{ }^{n+1}(\sigma \cap \alpha)=(\sigma \cap \alpha) *{ }^{n}(\sigma \cap \alpha)$, i.e. from $(\forall t)\left((a, t) \in(\sigma \cap \alpha) \vee(t, b) \in{ }^{n}(\sigma \cap \alpha)\right)$ we have $(\forall t)\left((b, t) \in \sigma^{-1} \cap\right.$ $\left.\alpha^{-1} \vee(t, a) \in{ }^{n}\left(\sigma^{-1} \cap \alpha^{-1}\right)\right)$. This means that $(b, a) \in{ }^{n+1}\left(\sigma^{-1} \cap \alpha^{-1}\right)$. So, by induction, we have the implication $(a, b) \in c(\sigma \cap \alpha) \Longrightarrow(b, a) \in c\left(\sigma^{-1} \cap \alpha^{-1}\right)$. For the implication $(a, b) \in c\left(\sigma^{-1} \cap \alpha^{-1}\right) \Longrightarrow(b, a) \in(\sigma \cap \alpha)$ the proof is analogous to the previous proof. Therefore, finally, we have that $(a, b) \in \vartheta(\sigma) \Longrightarrow(b, a) \in$ $\vartheta(\sigma)$.
3.2. The proof that relation $\mu(\sigma)=c\left(\sigma \cap \alpha^{-1}\right) \cup c\left(\sigma^{-1} \cap \alpha\right)$ is a coequality relation on the set S is analogous.
4. Let q_{1} and q_{2} be coequalities on set S. It is easy to check that the relation $\Psi\left(q_{1}, q_{2}\right)=c\left(q_{1} \cap \alpha\right) \cup c\left(q_{2} \cap \alpha^{-1}\right)$ is a quasi-antiorder relation on S.
5. Let φ be an isotone and reverse isotone mapping from anti-ordered set $(S,=, \neq, \alpha)$ onto anti-ordered set $(T,=, \neq, \beta)$, and let σ be an arbitrary quasiantiorder relation on set T. Then, we have

$$
\left(\Theta_{S} \circ \Phi\right)(\sigma)=\left(F \circ \Theta_{T}\right)(\sigma)
$$

This means

$$
\left(\vartheta\left(\varphi^{-1}(\sigma)\right), \mu\left(\varphi^{-1}(\sigma)\right)\right)=\left(\varphi^{-1}(\vartheta(\sigma)), \varphi^{-1}(\mu(\sigma))\right)
$$

i.e. we need to prove the following $\vartheta\left(\varphi^{-1}(\sigma)\right)=\varphi^{-1}(\vartheta(\sigma))$ and $\mu\left(\varphi^{-1}(\sigma)\right)=$ $\varphi^{-1}(\mu(\sigma))$.
5.1. Let (x, z) be an arbitrary element of $\varphi^{-1}(\vartheta(\sigma))$. Then,

$$
(\varphi(x), \varphi(z)) \in \vartheta(\sigma)=c(\sigma \cap \beta) \cup c\left(\sigma^{-1} \cap \beta^{-1}\right)
$$

and hence

$$
(\varphi(x), \varphi(z)) \in c(\sigma \cap \beta) \vee(\varphi(x), \varphi(z)) \in c\left(\sigma^{-1} \cap \beta^{-1}\right)
$$

Assume $(\varphi(x), \varphi(z)) \in c(\sigma \cap \beta)=\bigcap^{n}(\sigma \cap \beta)$. Out of $(\varphi(x), \varphi(z)) \in \sigma \cap \beta$ we have $(x, z) \in \varphi^{-1}(\sigma) \cap \alpha$, because φ is a reverse isotone mapping. If $(\varphi(x), \varphi(z)) \in$ ${ }^{2}(\sigma \cap \beta)$, i.e. if $(\varphi(x), t) \in \sigma \cap \beta$ holds or $(t, \varphi(z)) \in \sigma \cap \beta$ holds for any t of T, then, since φ is surjective holds $(\varphi(x), \varphi(s)) \in \sigma \cap \beta$ or $(\varphi(s), \varphi(z)) \in \sigma \cap \beta$ for any s of S. Thus, $(x, s) \in \varphi^{-1}(\sigma) \cap \alpha$ or $(s, z) \in \varphi^{-1}(\sigma) \cap \alpha$ and, by definition of filed product, $(x, z) \in{ }^{2}\left(\varphi^{-1}(\sigma) \cap \alpha\right)$. Suppose that the following implication is valid:

$$
(\varphi(x), \varphi(z)) \in c(\sigma \cap \beta) \Longrightarrow(x, z) \in{ }^{n}\left(\varphi^{-1}(\sigma) \cap \alpha\right)
$$

for any x, z of S. Now, as in the case of $(\varphi(x), \varphi(z)) \in{ }^{2}(\sigma \cap \beta)$ out of $(\varphi(x), \varphi(z)) \in c(\sigma \cap \beta)$, we prove that $(\varphi(x), \varphi(z)) \in{ }^{n+1}\left(\varphi^{-1}(\sigma) \cap \alpha\right)$. So, by induction, we have that the implication

$$
(\varphi(x), \varphi(z)) \in c(\sigma \cap \beta) \Longrightarrow(x, z) \in c\left(\varphi^{-1}(\sigma) \cap \alpha\right)
$$

is valid. The implication

$$
(\varphi(x), \varphi(z)) \in c\left(\sigma^{-1} \cap \beta^{-1}\right) \Longrightarrow(x, z) \in c\left(\left(\varphi^{-1}(\sigma)\right)^{-1} \cap \alpha^{-1}\right)
$$

has analogous proof. Therefore, we have $\vartheta\left(\varphi^{-1}(\sigma)\right)=\varphi^{-1}(\vartheta(\sigma))$.
5.2. The equality $\mu\left(\varphi^{-1}(\sigma)\right)=\varphi^{-1}(\mu(\sigma))$ we proved similarly.
6. For the mapping $\Theta_{T}: \Im(T) \longrightarrow \mathbf{Q}(T) \times \mathbf{Q}(T)$, defined by $\Theta(\sigma)=(\vartheta(\sigma), \mu(\sigma))$ for any $\sigma \in \Im(T)$, and the mapping $\Psi: \mathbf{Q}(T) \times \mathbf{Q}(T) \longrightarrow \Im(T)$, defined by $\Psi\left(q_{1}, q_{2}\right)=c\left(q_{1} \cap \alpha\right) \cup c\left(q_{2} \cap \alpha^{-1}\right)$ for any pair of coequalities $q_{1}, q_{2} \in \mathbf{Q}(T)$, has the following properties: If relation $\sigma \in \Im(T)$ is compatible, i.e. if $\sigma \cap \sigma^{-1}=\emptyset$, we have:

```
\((\Psi \circ \Theta)(\sigma)=\Psi(\Theta(\sigma))=\Psi((\vartheta(\sigma), \mu(\sigma)))\)
\(=c(\vartheta(\sigma) \cap \beta) \cup c\left(\mu(\sigma) \cap \beta^{-1}\right)\)
\(=c\left(\left(c(\sigma \cap \beta) \cup c\left(\sigma^{-1} \cap \beta^{-1}\right)\right) \cap \beta\right) \cup c\left(\left(c\left(\sigma \cap \beta^{-1}\right) \cup c\left(\sigma^{-1} \cap \beta\right)\right) \cap \beta^{-1}\right)\)
\(=c(c(\sigma \cap \beta)) \cup c\left(c\left(\sigma \cap \beta^{-1}\right)\right)\)
\(=c(\sigma \cap \beta) \cup c\left(\sigma \cap \beta^{-1}\right)\)
\(\subseteq(\sigma \cap \beta) \cup\left(\sigma \cap \beta^{-1}\right)\)
\(=\sigma \cap\left(\beta \cup \beta^{-1}\right)\)
\(=\sigma \cap \neq=\sigma\).
```


References

[1] E. Bishop: Foundations of constructive analysis; McGraw-Hill, New York 1967.
[2] D. S. Bridges and F. Richman, Varieties of constructive mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987
[3] R. Mines, F. Richman and W. Ruitenburg: A course of constructive algebra, Springer, New York 1988
[4] I.Chajda and A.G.Pinus: On quasiorders of universal algebras; Algebra i Logika, 32(1993), 308-325
[5] D.A.Romano: On construction of maximal coequality relation and its applications; In : Proceedings of $8^{\text {th }}$ international conference on Logic and Computers Sciences "LIRA '97", Novi Sad, September 1-4, 1997, (Editors: R.Tošić and Z.Budimac), Institute of Mathematics, Novi Sad 1997, 225-230
[6] D.A.Romano: Some relations and subsets of semigroup with apartness generated by the principal consistent subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13(2002), 7-25
[7] D.A.Romano: A note on quasi-antiorder in semigroup; Novi Sad J. Math., 37(1)(2007), 3-8
[8] D.A.Romano: On quasi-antiorders and coequality relations; 1-12 pp. (To appear)
[9] A. S. Troelstra and D. van Dalen: Constructivism in mathematics, An Introduction; North-Holland, Amsterdam 1988.

Received by the editors on September 21, 2008

[^0]: ${ }^{1}$ This paper is partially supported by the Ministry of science and technology of the Republic of Srpska, Bosnia and Herzegovina
 ${ }^{2}$ Mathematical Institute, University of Oxford, UK and Department of Mathematics, Banja Luka University, 2, Mladen Stojanović Street, 78000 Banja Luka, Bosnia and Herzegovina, e-mail: dusko.bogdanic@queens.ox.ac.yu
 ${ }^{3}$ Department of Mathematics, Banja Luka University, 2, Mladen Stojanović Street, 78000 Banja Luka, Bosnia and Herzegovina, e-mail: daniel.a.romano@hotmail.com
 ${ }^{4}$ Faculty of Mechanical Engineering, Banja Luka University, 71, Stepa Stepanović Street, 78000 Banja Luka, Bosnia and Herzegovina

