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Abstract

A connection of lattice of quasi-antiorders of set with apartness with
the direct square of lattice of coequalities of set with apartness is ob-
tained.
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1 Introduction

This investigation is in Bishop’s constructive mathematics. Let us consider a set
with apartness (S,=, 6=). A binary relation σ ⊆ S×S is called a quasi-antiorder
of S if σ is consistent and cotransitive. If we set σ′ = σ−1 = {(x, y) : (y, x) ∈ σ},
then =(S), the family of all quasi-antiorders of S, becomes an involution lattice
=(S) = (=(S),∧,∨,′ ) where ∧ is the cotransitive fulfillment of the intersection,
and ∨ is the union. The sublattice {σ ∈ =(S) : σ′ = σ} = Q(S) is just
the coequality lattice of S. Let Q(S) × Q(S) denote the direct square of the
lattice Q(S) equipped with the involution defined by (α, β)′ = (β, α). Then
Q(S)×Q(S) is an involution lattice.
For anti-ordered sets (S,=, 6=, α) and (T,=, 6=, β), and a mapping ϕ : S −→ T ,
let

Φ : =(T ) 3 σ 7−→ {(x, x′) ∈ S × S : (ϕ(x), ϕ(x′)) ∈ σ} = ϕ−1(σ) ∈ =(S)
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and

F : Q(T )×Q(T ) 3 (q, q′) 7−→ (ϕ−1(q), ϕ−1(q′)) ∈ Q(S)×Q(S).

For lattices =(S) and Q(S) consider the following mappings ϑ, µ : =(S) −→
Q(S), defined by

ϑ(σ) = c(σ ∩ α) ∪ c(σ−1α−1), µ(σ) = c(σ ∩ α−1) ∪ c(σ−1 ∩ α),

and Ψ : Q(S)×Q(S) −→ =(S) defined by

(q1, q2) = c(q1 ∩ α) ∪ c(q2 ∩ α−1).

To prove that Θ : =(S) −→ Q(S)×Q(S), defined by

Θ(σ) = (ϑ(σ), µ(σ))

for any σ ∈ =(S), and Ψ are natural transformations, let ϕ : S −→ T be
a surjective strongly extensional isotone and reverse isotone mapping between
anti-order relational systems. We have to show that the following equality holds

ΘS ◦ Φ = F ◦ΘT ,

i.e. that the following diagram

=(T ) −→ =(S)y

y
Q(T )×Q(T ) −→ Q(S)×Q(S)

commutes. Following ideas presented in article [4] we analyze similar situation
on connection between quasi-antiorders and coequality relations on anti-ordered
sets with apartness. This article is a continuation of the second author’s forth-
coming article [8].

2 Preliminaries

Let (A,=, 6=) be a set in the sense of [1], [2], [3] and [9], where ’ 6=’ is a binary
relation on A which satisfies the following properties:

¬(x 6= x), x 6= y =⇒ y 6= x, x 6= z =⇒ x 6= y ∨ y 6= z,
x 6= y ∧ y = z =⇒ x 6= z,

called apartness (A. Heyting). Let Y be a subset of A and x ∈ A. The subset
Y of A is strongly extensional in A if and only if y ∈ Y =⇒ y 6= x ∨ x ∈ Y ([1],
[9]).

Let ϕ : (A,=, 6=) −→ (B,=, 6=) be a mapping. We say that :
(a) ϕ is strongly extensional if and only if
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(∀a, b ∈ A)(ϕ(a) 6= ϕ(b) =⇒ a 6= b);

(b) ϕ is an embedding if and only if

(∀a, b ∈ A)(a 6= b =⇒ ϕ(a) 6= ϕ(b)).

Let α ⊆ A×B and β ⊆ B ×C be relations. The filled product ([5]) of relations
α and β is the relation

β ∗ α = {(a, c) ∈ A× C : (∀b ∈ B)((a, b) ∈ α ∨ (b, c) ∈ β}.
It is easy to check that the filled product is associative. (See, for example, [6])
For β = α we put 2α = α ∗ α, and for given natural n, by induction, we define

n+1α = nα ∗ α (= α ∗ nα), 1α = α.

Besides, for any relation α ⊆ X ×X, we can construct the relation

c(α) =
⋂

n∈N

nα.

It is clear that c(α) ⊆ α and the following c(α) ⊆ c(α)∗c(α) is valid. It is called
cotransitive internal fulfilment of α. This notion was studied by the second
author in his articles [5] and [6]. If α is a consistent relation on set A, then c(α)
is the maximal quasi-antiorder on A under α (see, for example, article [5] or in
[6])
A relation α on A is anti-order on A ([7], [8]) if and only if

α ⊆ 6=, α ⊆ α ∗ α, 6=⊆ α ∪ α−1.

For anti-order on set A we say that it is complete anti-order if α ∩ α−1 = ∅
holds. As in [7], a relation τ ⊆ A×A is a quasi-antiorder on A if and only if

τ ⊆ α (⊆ 6=), τ ⊆ τ ∗ τ .

Quasi-antiorder τ is complete if τ ∩ τ−1 = ∅ holds. Let us note that if α and β
are (quasi-)anti-orders on a set, then the union α∪β is also a (quasi-)anti-order.
Finally, relation q ⊆ A×A is a coequality relation on A if

q ⊆ 6=, q−1 = q, q ⊆ q ∗ q.
Let ϕ : ((A,=, 6=), α) −→ ((B,=, 6=), β) be a strongly extensional mapping of
relational systems. ϕ is called isotone if

(∀x, y ∈ A)((x, y) ∈ α =⇒ (ϕ(x), ϕ(y)) ∈ β);

ϕ is called reverse isotone if and only if

(∀x, y ∈ A)((ϕ(x), ϕ(y)) ∈ β =⇒ (x, y) ∈ α).

Let us note that if ϕ : ((A,=, 6=), α) −→ ((B,=, 6=), β) is a strongly extensional
mapping of quasi-antiorder systems then the relation ϕ−1(β) = {(x, y) ∈ A×A :
(ϕ(x), ϕ(y)) ∈ β} is a quasi-antiorder too. It is easy to verify the following:
(1) ϕ is isotone if α ⊆ ϕ−1(β) and
(2) ϕ is reverse isotone if ϕ−1(β) ⊆ α.
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3 Proofs

1. Φ is an isotone mapping between lattices =(T ) and =(S). Indeed, if σ
and τ are quasi-antiorders on semigroup T , then ϕ−1(σ) and ϕ−1(τ) are quasi-
antiorders on S. Suppose that σ ⊆ τ . If (a, a′) ∈ ϕ−1(σ), i.e. if (ϕ(a), ϕ(b)) ∈
σ ⊆ τ , then (a, b) ∈ ϕ−1(τ) and, hence, Φ is an isotone mapping.
2. F is an isotone mapping from lattice Q(T )×Q(T ) to lattice Q(S)×Q(S).
In fact, if q and q′ are a pair of coequalities on semigroup T , then ϕ−1(q) and
ϕ−1(q′) are coequalities on S.
3. The mappings ϑ, µ : =(S) −→ Q(S) are correctly defined isotone mappings.
Let σ be a quasi-antiorder on semigroup S. It is clear that ϑ(σ) = c(σ ∩ α) ∪
c(σ−1∩α−1) and µ(σ) = c(σ∩α−1)∪ c(σ−1∩α) are consistent and cotransitive
relations on S.
3.1. Let (a, b) be an arbitrary element of ϑ(σ). Then (a, b) ∈ c(σ∩α) or (a, b) ∈
c(σ−1 ∩ α−1). Assume that (a, b) ∈ c(σ ∩ α). Then (b, a) ∈ σ−1 ∩ α−1. Further
on, out of (a, b) ∈ 2(σ∩α), i.e. out of (∀t)((a, t) ∈ σ∩α ∨ (t, b) ∈ σ∩α) we have
(∀t)((b, t) ∈ σ−1 ∩ α−1 ∨ (t, a) ∈ σ−1 ∩ α−1). Hence, we have (b, a) ∈ 2(σ−1 ∩
α−1). Suppose that the implication (a, b) ∈ n(σ ∩ α) =⇒ (b, a) ∈ n(σ−1 ∩ α−1)
holds for natural number n. Now, out of (a, b) ∈ n+1(σ∩α) = (σ∩α)∗ n(σ∩α),
i.e. from (∀t)((a, t) ∈ (σ ∩ α) ∨ (t, b) ∈ n(σ ∩ α)) we have (∀t)((b, t) ∈ σ−1 ∩
α−1 ∨ (t, a) ∈ n(σ−1 ∩α−1)). This means that (b, a) ∈ n+1(σ−1 ∩α−1). So, by
induction, we have the implication (a, b) ∈ c(σ∩α) =⇒ (b, a) ∈ c(σ−1∩α−1). For
the implication (a, b) ∈ c(σ−1 ∩α−1) =⇒ (b, a) ∈ (σ ∩α) the proof is analogous
to the previous proof. Therefore, finally, we have that (a, b) ∈ ϑ(σ) =⇒ (b, a) ∈
ϑ(σ).
3.2. The proof that relation µ(σ) = c(σ ∩ α−1) ∪ c(σ−1 ∩ α) is a coequality
relation on the set S is analogous.
4. Let q1 and q2 be coequalities on set S. It is easy to check that the relation
Ψ(q1, q2) = c(q1 ∩ α) ∪ c(q2 ∩ α−1) is a quasi-antiorder relation on S.
5. Let ϕ be an isotone and reverse isotone mapping from anti-ordered set
(S,=, 6=, α) onto anti-ordered set (T,=, 6=, β), and let σ be an arbitrary quasi-
antiorder relation on set T . Then, we have

(ΘS ◦ Φ)(σ) = (F ◦ΘT )(σ).

This means

(ϑ(ϕ−1(σ)), µ(ϕ−1(σ))) = (ϕ−1(ϑ(σ)), ϕ−1(µ(σ)))

i.e. we need to prove the following ϑ(ϕ−1(σ)) = ϕ−1(ϑ(σ)) and µ(ϕ−1(σ)) =
ϕ−1(µ(σ)).
5.1. Let (x, z) be an arbitrary element of ϕ−1(ϑ(σ)). Then,

(ϕ(x), ϕ(z)) ∈ ϑ(σ) = c(σ ∩ β) ∪ c(σ−1 ∩ β−1)

and hence
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(ϕ(x), ϕ(z)) ∈ c(σ ∩ β) ∨ (ϕ(x), ϕ(z)) ∈ c(σ−1 ∩ β−1).

Assume (ϕ(x), ϕ(z)) ∈ c(σ∩β) =
⋂

n(σ∩β). Out of (ϕ(x), ϕ(z)) ∈ σ∩β we have
(x, z) ∈ ϕ−1(σ) ∩ α, because ϕ is a reverse isotone mapping. If (ϕ(x), ϕ(z)) ∈
2(σ ∩ β), i.e. if (ϕ(x), t) ∈ σ ∩ β holds or (t, ϕ(z)) ∈ σ ∩ β holds for any t of T ,
then, since ϕ is surjective holds (ϕ(x), ϕ(s)) ∈ σ ∩ β or (ϕ(s), ϕ(z)) ∈ σ ∩ β for
any s of S. Thus, (x, s) ∈ ϕ−1(σ) ∩ α or (s, z) ∈ ϕ−1(σ) ∩ α and, by definition
of filed product, (x, z) ∈ 2(ϕ−1(σ)∩α). Suppose that the following implication
is valid:

(ϕ(x), ϕ(z)) ∈ c(σ ∩ β) =⇒ (x, z) ∈ n(ϕ−1(σ) ∩ α)

for any x, z of S. Now, as in the case of (ϕ(x), ϕ(z)) ∈ 2(σ ∩ β) out of
(ϕ(x), ϕ(z)) ∈ c(σ ∩ β), we prove that (ϕ(x), ϕ(z)) ∈ n+1(ϕ−1(σ) ∩ α). So,
by induction, we have that the implication

(ϕ(x), ϕ(z)) ∈ c(σ ∩ β) =⇒ (x, z) ∈ c(ϕ−1(σ) ∩ α)

is valid. The implication

(ϕ(x), ϕ(z)) ∈ c(σ−1 ∩ β−1) =⇒ (x, z) ∈ c((ϕ−1(σ))−1 ∩ α−1)

has analogous proof. Therefore, we have ϑ(ϕ−1(σ)) = ϕ−1(ϑ(σ)).
5.2. The equality µ(ϕ−1(σ)) = ϕ−1(µ(σ)) we proved similarly.
6. For the mapping ΘT : =(T ) −→ Q(T )×Q(T ), defined by Θ(σ) = (ϑ(σ), µ(σ))
for any σ ∈ =(T ), and the mapping Ψ : Q(T ) × Q(T ) −→ =(T ), defined by
Ψ(q1, q2) = c(q1∩α)∪ c(q2∩α−1) for any pair of coequalities q1, q2 ∈ Q(T ), has
the following properties: If relation σ ∈ =(T ) is compatible, i.e. if σ ∩ σ−1 = ∅,
we have:
(Ψ ◦Θ)(σ) = Ψ(Θ(σ)) = Ψ((ϑ(σ), µ(σ)))
= c(ϑ(σ) ∩ β) ∪ c(µ(σ) ∩ β−1)
= c((c(σ ∩ β) ∪ c(σ−1 ∩ β−1)) ∩ β) ∪ c((c(σ ∩ β−1) ∪ c(σ−1 ∩ β)) ∩ β−1)
= c(c(σ ∩ β)) ∪ c(c(σ ∩ β−1))
= c(σ ∩ β) ∪ c(σ ∩ β−1)
⊆ (σ ∩ β) ∪ (σ ∩ β−1)
= σ ∩ (β ∪ β−1)
= σ∩ 6= = σ.
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[3] R. Mines, F. Richman and W. Ruitenburg: A course of constructive algebra,
Springer, New York 1988

[4] I.Chajda and A.G.Pinus: On quasiorders of universal algebras; Algebra i
Logika, 32(1993), 308-325

[5] D.A.Romano: On construction of maximal coequality relation and its ap-
plications; In : Proceedings of 8th international conference on Logic and
Computers Sciences ”LIRA ’97”, Novi Sad, September 1-4, 1997, (Editors:
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