A PROOF OF GENERALIZED LAPLACE’S EXPANSION THEOREM

Milan Janjić

Abstract

Expansion theorems for determinants are usually proved by using other fundamental properties of determinants. When determinants are defined by expanding across the first row, then the standard Laplace’s rule may be obtained directly from the definition. In this note we prove the generalized Laplace’s expansion theorem from the standard Laplace’s rule, and no other properties of determinants are used.

1 Introduction

The following notation will be used. If D is a determinant of the order n and $1 \leq r \leq n$, by $D\left[\begin{array}{c}i_1 & i_2 & \cdots & i_r \\
j_1 & j_2 & \cdots & j_r \end{array}\right]$ will be denoted the minor of the order r lying in the intersection of i_1-th, i_2-th,...,i_r-th rows and j_1-th, j_2-th,...,j_r-th columns of D and by $D^\prime \left[\begin{array}{c}i_1 & i_2 & \cdots & i_r \\
j_1 & j_2 & \cdots & j_r \end{array}\right]$ will be denoted its complement minor, that is, the minor of the order $n-r$ lying in the intersection of remaining $n-r$ rows and columns of D. If $n = r$ we then put $D = 1$. For the set $\{i_1, \ldots, i_s\}$ of natural numbers we use abbreviation $I_s = i_1 + \cdots + i_s$. For two natural numbers j and k we define

$$j(k) = \begin{cases} j & j \leq k, \\ j - 1 & j > k. \end{cases}$$

The Laplace’s rule says that D may be expanded along arbitrary row (or column), that is, the following formula holds

$$D = \sum_{1 \leq k \leq n} (-1)^{i+k} a_{ik} D\left[\begin{array}{c}i \\
k \end{array}\right], \ (i = 1, 2, \ldots, n).$$

A simple proof is given in [1].

[1] Department of Mathematics, Banja Luka University, 2, Mladen Stojanović Street, 78000 Banja Luka, Bosnia and Herzegovina, e-mail: agnus@blis.net
2 Main Result

In this note we shall prove so called generalized Laplace’s expansion theorem, that is, that the determinant D of the order n may be expanded along i_1-th, ..., i_r-th rows, where $1 \leq i_1 < \cdots < i_r \leq n$ are arbitrary.

The proof will run as follows. The determinant D of the order n will be expanded along the i_r-th row. Thus obtained determinants of the order $n-1$ will be expanded along i_1-th, ..., i_{r-1}-th rows, by the induction hypothesis. In the last step of the proof the terms in thus obtained sum will be rearranged to obtain the desired result.

Theorem 2.1 Let D be a determinant of the order n, then for every $1 \leq i_1 < i_2 < \cdots < i_r \leq n$ holds

$$D = \sum_{1 \leq j_1 \cdots < j_r \leq n} (-1)^{i_r+J} D \left[\begin{array}{ccc} i_1 & i_2 & \cdots & i_r \\ j_1 & j_2 & \cdots & j_r \end{array} \right].$$

where j_1, \ldots, j_r run through all subsets of $\{1, 2, \ldots, n\}$ with exactly r elements.

Proof. We use induction on the order of determinant. For determinants of the order 1 and 2 there is nothing to prove. Suppose that our claim holds for determinants of the order $n-1$ and let D be a determinant of the order n. Let $1 \leq i_1 < i_2 < \cdots < i_r \leq n$ be arbitrary. Using (2) we may expand D along i_r-th row to obtain

$$D = \sum_{1 \leq k \leq n} (-1)^{i_r+k} a^i_k \cdot D \left[\begin{array}{c} i_r \\ k \end{array} \right].$$

By (1) the number $j(k)$ is the index of the column of $D \left[\begin{array}{c} i_r \\ k \end{array} \right]$ in which lie elements of j-th column of D. By the induction hypothesis we may expand each determinant $D \left[\begin{array}{c} i_r \\ k \end{array} \right]$ along i_1-th, ..., i_{r-1}-th rows to obtain

$$D = \sum_{1 \leq k \leq n} \sum_{1 \leq l_1 < \cdots < l_{r-1} \leq n \atop l_1, \ldots, l_{r-1} \neq k} (-1)^{i_r+k+l_1(k) + \cdots + l_{r-1}(k)} a^i_k \cdot$$

$$\cdot D \left[\begin{array}{ccc} i_1 & i_2 & \cdots & i_{r-1} \\ l_1 & l_2 & \cdots & l_{r-1} \end{array} \right].$$

We will rearrange terms on the right side of the preceding equation in the following way. Let $1 \leq j_1 < \cdots < j_r \leq n$ be arbitrary. Collect summands which contain the factor $D \left[\begin{array}{ccc} i_1 & i_2 & \cdots & i_r \\ j_1 & j_2 & \cdots & j_r \end{array} \right]$. This factor appears in exactly r summands, that are obtained when k takes one of the values j_1, \ldots, j_r and l_1, \ldots, l_{r-1} take the rest of these values. We conclude that

$$D = \sum_{1 \leq j_1 < \cdots < j_r \leq n} \left\{ \sum_{1 \leq t \leq r} (-1)^{j_1(j_1)+\cdots+j_r(j_r)} a^{i_r}_{j_t} D \left[\begin{array}{ccc} i_1 & \cdots & i_t \\ j_1 & \cdots & j_t \end{array} \right] \right\}.$$
A Proof of Generalized Laplace's Expansion Theorem

\[(-1)^{J_r} \cdot D \begin{bmatrix} i_1 & i_2 & \cdots & i_r \\ j_1 & j_2 & \cdots & j_r \end{bmatrix} \]

holds. Here \(J_t \) means that columns of \(D \begin{bmatrix} i_1 & \cdots & i_t & \cdots & i_{r-1} \\ j_1 & \cdots & J_t & \cdots & j_r \end{bmatrix} \) belong to the columns of \(D \) which indices are in \(\{ j_1, \ldots, j_r \} \backslash \{ j_t \} \) \((t = 1, \ldots, r)\).

Since

\[j_1(j_t) + \cdots + j_r(j_t) = j_1 + \cdots + j_t + (j_{t+1} - 1) + \cdots + (j_r - 1) = j_1 + \cdots + j_r + r - t = J_r + r - t, \]

and

\[(-1)^{r-t} = (-1)^{r+t}, \]

we have

\[
D = \sum_{1 \leq i_1 < \cdots < i_r \leq n} (-1)^{J_r} \left\{ \sum_{1 \leq t \leq r} (-1)^{r+t} a_{i_t}^{j_t} D \begin{bmatrix} i_1 & \cdots & i_t & \cdots & i_{r-1} \\ j_1 & \cdots & J_t & \cdots & j_r \end{bmatrix} \right\}.
\]

The sum \(\sum_{1 \leq t \leq r} (-1)^{r+t} a_{i_t}^{j_t} D \begin{bmatrix} i_1 & \cdots & i_t & \cdots & i_{r-1} \\ j_1 & \cdots & J_t & \cdots & j_r \end{bmatrix} \) is in fact the determinant \(D \begin{bmatrix} i_1 & \cdots & i_t & \cdots & i_r \\ j_1 & \cdots & J_t & \cdots & J_r \end{bmatrix} \) expanded along the \(r \)-th row and the proof is complete.

References

Received by the editors July 31, 2008