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Abstract

This investigation is in the Bishop’s constructive algebra. A commu-
tative anti-ordered semigroup ((S,=, 6=), ·, α) can embedded in an anti-
ordered group if the anti-order relation α is close with the semigroup
operation. Quasi-antiorder relation plays an important role in this em-
bedding.
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1 Introduction and preliminaries

This investigation is in the Bishop’s constructive mathematics in sense of the
following books: [1, 2, 3, 4] and [10]. Undefined notion and notations we refer
to our articles [5, 6, 7, 8] and [9].

Let ((S,=, 6=), ·, α) be an anti-ordered commutative semigroup ([6, 7]), where
α is an anti-order on semigroup S. For relation α we say ([6, 7, 9]) that it is an
anti-order relation on semigroup ((S,=, 6=), ·, α) is holds α ⊆6=, α ⊆ α∗α (where
the operation ′∗′ between relations α and β is defined by (u, v) ∈ β ∗ α ⇐⇒
(∀t)((u, t) ∈ α ∨ (t, v) ∈ β)), 6= = α ∪ α−1 and α is compatible with the semi-
group operation on S in the following sense (xay, xby) ∈ α =⇒ (a, b) ∈ α (for
any a, b, x, y ∈ S). A coequality relation q on S is called anti-congruence on (S, ·)
if (xa, xb) ∈ q and (ax, bx) ∈ q implies (a, b) ∈ q for every a, b, x ∈ S ([5, 8]).
We call α is close with the operation on S if (a, b) ∈ α implies (ax, bx) ∈ α and
(xa, xb) ∈ α.

A relation σ on S is called ([7, 9]) quasi-antiorder relation if σ ⊆ α, σ ⊆ σ∗σ
and σ is compatible with the semigroup operation.
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Let ((S,=, 6=), ·, α) and ((T,=, 6=), ·, β) be anti-ordered semigroups. Let
f : S −→ T be a mapping from S into T . f is called isotone if (∀a, b ∈
S)((a, b) ∈ α =⇒ (f(a), f(b)) ∈ β) holds. f is called reverse isotone if (∀a, b ∈
S)((f(a), f(b)) ∈ β =⇒ ((a, b) ∈ α) holds. f is called a homomorphism if it is
strongly extensional and satisfies f(ab) = f(a)f(b) for all a, b ∈ S. f is called an
isomorphism if it is onto, homomorphism, injective and embedding isotone and
reverse isotone strongly extensional mapping. Two anti-ordered semigroups are
called isomorphic if there exists an isomorphism between them, S is embedded
in T if, by definition, S is isomorphic to a subset of T , i.e. if there exists a
mapping f : S −→ T which is strongly extensional injective and embedding
isotone and reverse isotone homomorphism.

2 The theorem

The result of this paper is the following theorem:

Theorem 2.1 Let ((S,=, 6=), ·, α) be a commutative anti-ordered semigroup with
apartness such that α is closed for the semigroup operation. Then we can con-
struct an anti-ordered group G that there exists a strongly extensional isotone
and reverse isotone mapping from S into G.

Proof. Let ((S,=, 6=), ·, α) be an anti-ordered commutative semigroup where the
relation α is closed for the semigroup operation.

(I) The set (S × S,=2, 6=2), where equality ′ =′2 and coequality ′ 6=′2 given by

(a, b) =2 (x, y)⇐⇒ a = x ∧ b = y, (a, b) 6=2 (x, y)⇐⇒ a 6= x ∨ b 6= y,

with the multiplication ′◦′ on S × S defined by

◦ : (S × S)× (S × S) 3 ((a, b), (c, d)) 7−→ (ac, bd) ∈ S × S,
is a semigroup. Indeed:

(1) The operation ′◦′ is well defined:

(a, b) =2 (x, y) ∧ (c, d) =2 (u, v)⇐⇒ a = x ∧ b = y ∧ c = u ∧ d = v
=⇒ ac = xu ∧ bd = yv
=⇒ (ac, bd) =2 (xu, yv)
⇐⇒ (a, b) ◦ (c, d) =2 (x, y) ◦ (u, v);

(a, b) ◦ (c, d) 6=2 (x, y) ◦ (u, v)⇐⇒ (ac, bd) 6=2 (xu, yv)
⇐⇒ ac 6= xu ∨ bd 6= yv
=⇒ a 6= x ∨ c 6= u ∨ b 6= y ∨ d 6= v
⇐⇒ (a, b) 6=2 (x, y) ∨ (c, d) 6=2 (u, v).

(2) The operation ′◦′ is associative:

((a, b)◦ (x, y))◦ (u, v) =2 (ax, by)◦ (u, v) =2 (axu, byv) =2 (a, b)◦ ((x, y)◦ (u, v)).
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(3) Let us defined relation γ on ((S × S,=2, 6=2), ◦) by

((a, b), (c, d)) ∈ γ ⇐⇒ (a, c) ∈ α ∨ (d, b) ∈ α.
Then
(3.1) ((a, b), (c, d)) ∈ γ ⇐⇒ (a, c) ∈ α ∨ (d, b) ∈ α
=⇒ a 6= c ∨ d 6= b
=⇒ (a, b) 6=2 (c, d);

(3, 2) a 6= c ∨ d 6= b =⇒ (a, c) ∈ α ∨ (c, a) ∈ α ∨ (d, b) ∈ α ∨ (b, d) ∈ α
=⇒ ((a, b), (c, d)) ∈ γ ∨ ((c, d), (a, b)) ∈ γ;

(3.3) ((a, b), (c, d)) ∈ γ ⇐⇒ (a, c) ∈ α ∨ (d, b) ∈ α
=⇒ (a, x) ∈ α ∨ (x, c) ∈ α ∨ (d, y) ∈ α ∨ (y, b) ∈ α
=⇒ ((a, b), (x, y)) ∈ γ ∨ ((x, y), (c, d)) ∈ γ.

(3.4) ((a, b) ◦ (u, v)), ((c, d) ◦ (u, v)) ∈ γ ⇐⇒ ((au, bv), (cu, dv)) ∈ γ
⇐⇒ (au, cu) ∈ α ∨ (dv, bv) ∈ α
=⇒ (a, c) ∈ α ∨ (d, b) ∈ α
⇐⇒ ((a, b), (c, d)) ∈ γ.

(3.5) ((u, v) ◦ (a, b), (u, v) ◦ (c, d)) ∈ γ =⇒ ((a, b), (c, d)) ∈ γ
(Analogously to (3.4))

So, the relation γ is an anti-order on (S × S,=2, 6=2).

(II) Let σ be the relation on ((S × S,=2, 6=2), ◦, γ) defined as follows

((a, b), (c, d)) ∈ σ ⇐⇒ (ad, bc) ∈ α.
σ is a quasi-anriorder relation on ((S × S,=2, 6=2), ◦, γ). In fact:

(1) ((a, b), (c, d)) ∈ σ ⇐⇒ (ad, bc) ∈ α
=⇒ (ad, cd) ∈ α ∨ (cd, bc) ∈ α
=⇒ (a, c) ∈ α ∨ (d, b) ∈ α
=⇒ ((a, b), (c, d)) ∈ γ;

(2) ((a, b), (e, f)) ∈ σ ⇐⇒ (af, be) ∈ α
=⇒ (afdc, bedc) ∈ α (because α is closed for the semigroup operation)
=⇒ (afdc, fcbc) ∈ α ∨ (fcbc, bedc) ∈ α
=⇒ (ad, bc) ∈ α ∨ (cf, de) ∈ α
=⇒ ((a, b), (c, d)) ∈ σ ∨ ((c, d), (e, f)) ∈ σ;

(3) ((a, b) ◦ (e, f), (c, d) ◦ (e, f)) ∈ σ ⇐⇒ ((ae, bf), (ce, df)) ∈ σ
⇐⇒ (aedf, bfce) ∈ α
=⇒ (ad, bc) ∈ α
⇐⇒ ((a, b), (c, d)) ∈ σ;

(4)((e, f) ◦ (a, b), (e, f) ◦ (c, d)) ∈ σ =⇒ ((a, b), (c, d)) ∈ σ (Analogously to (3))

Finally, ((S×S,=2, 6=2), ◦ is anti-ordered semigroup under the anti-order γ and
the relation σ is an quasi-antiorder on ((S × S,=2, 6=2), ◦).
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(III) By the Lemma 1 in the paper [7], and by Theorem 3 in the paper [5],
the relation q = σ ∪ σ−1 is an anticongruence on ((S × S,=2, 6=2), ◦) and the
factor-set (S × S)/q with multiplication ′⊗′ and the anti-order ′Θ′ given below

((a, b))q ⊗ ((c, d))q =1 ((a, b) ◦ (c, d))q =1 ((ac, bd))q,

(((a, b))q, ((c, d))q) ∈ Θ⇐⇒ ((a, b), (c, d)) ∈ σ.

is an anti-ordered semigroup. Further, we have that (((S × S)/q,=1, 6=1),⊗) is
a commutative anti-ordered group. Indeed:

(1)The first, we have

((a, b))q ⊗ ((c, d))q =1 ((ac, bd))q =1 ((ca, db))q =1 ((c, d))q ⊗ ((a, b))q

(2) We will prove that ((a, a))q =1 ((b, b))q for any a, b ∈ S. let a, b ∈ S be arbi-
trary elements of S. Since ab = ba, we have (ab, ba) ./ α, i.e. ((a, a), (n, b)) ./ σ
and ((b, b), (a, a)) ./ σ. Thus, ((a, a, ))q =1 ((b, b))q

(3) Let ((c, d))q be an arbitrary element of (S × S)/q and a be an arbitrary
element of S. Then, ((a, a))q ⊗ ((c, d))q =1 ((ac, ad))q =1 ((c, d))q. We prove
that ((ac, ad), (c, d)) ./ q Since ((ad)c, c(ad)) ./ q and (c(ad), d(ac)) ./ q because
the semigroup S is a commutative semigroup, we have ((c, d), (ac, ad)) ./ σ and
((ac, ad), (c, d)) ./ σ. Thus, ((ac, ad), (c, d)) ./ q

(4) Let ((c, d))q be an arbitrary element of (S × S)/q. then, (((c, d))q)−1 =1

((d, c))q. Indeed, we have

((c, d)q ⊗ ((d, c))q =1 ((cd, dc))q =1 ((a, a))q

(IV) At he end, we prove that S is embeddable in (((S × S)/q,=1, 6=1),⊗). We
consider the mapping

ϕ : S 3 a 7−→ ((a2, a))q ∈ (S × S)/q

Then:
(1) The first, from the equality

ϕ(ab) =1 ((abab, ab))q =1 (((ab)2, ab))q =1 ((a2, a))q ⊗ ((b2, b))q =1 ϕ(a)⊗ ϕ(b)

we conclude that the mapping ϕ is well defined. the second, let ϕ(a) =1

ϕ(b) for some a, b ∈ S. This means ((a2, a))q 6=1 ((b2, b))q. Thus, we have
((a2, a), (b2, b)) ∈ q and (a2b, ab2) ∈ α or (b2a, ba2) ∈ α. Therefore, we conclude
that ϕ is a ctrongly extensional mapping because we have a 6= b from the both
cases.

(2)Let a, b ∈ S such that (a, b) ∈ α. Then, (a2b, ab2) ∈ α because the rela-
tion α is closed for the semigroup operation. Thus, ((a2, a), (b2, b)) ∈ σ and
(((a2, a))q, ((b2, b))q) ∈ Θ. Opposite, we have
(((a2, a))q, ((b2, b))q) ∈ Θ⇐⇒ ((a2, a), (b2, b)) ∈ σ
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⇐⇒ (a2b, ab2) ∈ α
=⇒ (a, b) ∈ α
because α is compatible with the semigroup operation. Therefore, the mapping
ϕ is isotone and reverse isotone homomorphism. 2
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