A Construction of Anti-ordered group by an Anti-ordered Semigroup with Apartness ${ }^{\llbracket}$

Daniel Abraham Romano ${ }^{2}$

Abstract

This investigation is in the Bishop's constructive algebra. A commutative anti-ordered semigroup $((S,=, \neq), \cdot, \alpha)$ can embedded in an antiordered group if the anti-order relation α is close with the semigroup operation. Quasi-antiorder relation plays an important role in this embedding.

AMS Mathematics Subject Classification (2000): Primary 03F65, Secondary 20M10
Key words and phrases: Constructive mathematics, semigroup with apartness, anti-order, quasi-antiorder

1 Introduction and preliminaries

This investigation is in the Bishop's constructive mathematics in sense of the following books: [1, 2, 3, 4] and [10]. Undefined notion and notations we refer to our articles [5, 6, 7, 8, and 9].

Let $((S,=, \neq), \cdot, \alpha)$ be an anti-ordered commutative semigroup ($[6,7])$, where α is an anti-order on semigroup S. For relation α we say ($6, ~ 7, ~ 9])$ that it is an anti-order relation on semigroup $((S,=, \neq), \cdot, \alpha)$ is holds $\alpha \subseteq \neq, \alpha \subseteq \alpha * \alpha$ (where the operation ' $*^{\prime}$ between relations α and β is defined by $(u, v) \in \beta * \alpha \Longleftrightarrow$ $(\forall t)((u, t) \in \alpha \vee(t, v) \in \beta)), \neq=\alpha \cup \alpha^{-1}$ and α is compatible with the semigroup operation on S in the following sense $(x a y, x b y) \in \alpha \Longrightarrow(a, b) \in \alpha$ (for any $a, b, x, y \in S$). A coequality relation q on S is called anti-congruence on (S, \cdot) if $(x a, x b) \in q$ and $(a x, b x) \in q$ implies $(a, b) \in q$ for every $a, b, x \in S$ ([5, 8). We call α is close with the operation on S if $(a, b) \in \alpha$ implies $(a x, b x) \in \alpha$ and $(x a, x b) \in \alpha$.

A relation σ on S is called ([7, 9) quasi-antiorder relation if $\sigma \subseteq \alpha, \sigma \subseteq \sigma * \sigma$ and σ is compatible with the semigroup operation.

[^0]Let $((S,=, \neq), \cdot, \alpha)$ and $((T,=, \neq), \cdot, \beta)$ be anti-ordered semigroups. Let $f: S \longrightarrow T$ be a mapping from S into $T . \quad f$ is called isotone if $(\forall a, b \in$ $S)((a, b) \in \alpha \Longrightarrow(f(a), f(b)) \in \beta)$ holds. f is called reverse isotone if $(\forall a, b \in$ $S)((f(a), f(b)) \in \beta \Longrightarrow((a, b) \in \alpha)$ holds. f is called a homomorphism if it is strongly extensional and satisfies $f(a b)=f(a) f(b)$ for all $a, b \in S . f$ is called an isomorphism if it is onto, homomorphism, injective and embedding isotone and reverse isotone strongly extensional mapping. Two anti-ordered semigroups are called isomorphic if there exists an isomorphism between them, S is embedded in T if, by definition, S is isomorphic to a subset of T, i.e. if there exists a mapping $f: S \longrightarrow T$ which is strongly extensional injective and embedding isotone and reverse isotone homomorphism.

2 The theorem

The result of this paper is the following theorem:

Theorem 2.1 Let $((S,=, \neq), \cdot, \alpha)$ be a commutative anti-ordered semigroup with apartness such that α is closed for the semigroup operation. Then we can construct an anti-ordered group G that there exists a strongly extensional isotone and reverse isotone mapping from S into G.
Proof. Let $((S,=, \neq), \cdot, \alpha)$ be an anti-ordered commutative semigroup where the relation α is closed for the semigroup operation.
(I) The set $\left(S \times S,={ }_{2}, \neq 2\right)$, where equality ${ }^{\prime}={ }_{2}^{\prime}$ and coequality ${ }^{\prime} \neq{ }_{2}^{\prime}$ given by

$$
(a, b)=_{2}(x, y) \Longleftrightarrow a=x \wedge b=y, \quad(a, b) \not \neq 2(x, y) \Longleftrightarrow a \neq x \vee b \neq y
$$

with the multiplication 'o' on $S \times S$ defined by

$$
\circ:(S \times S) \times(S \times S) \ni((a, b),(c, d)) \longmapsto(a c, b d) \in S \times S
$$

is a semigroup. Indeed:
(1) The operation ' o ' is well defined:

$$
\begin{aligned}
& (a, b)=_{2}(x, y) \wedge(c, d)=_{2}(u, v) \Longleftrightarrow a=x \wedge b=y \wedge c=u \wedge d=v \\
& \Longrightarrow a c=x u \wedge b d=y v \\
& \Longrightarrow(a c, b d)=_{2}(x u, y v) \\
& \Longleftrightarrow(a, b) \circ(c, d)=_{2}(x, y) \circ(u, v) ; \\
& (a, b) \circ(c, d) \neq{ }_{2}(x, y) \circ(u, v) \Longleftrightarrow(a c, b d) \neq{ }_{2}(x u, y v) \\
& \Longleftrightarrow a c \neq x u \vee b d \neq y v \\
& \Longrightarrow a \neq x \vee c \neq u \vee b \neq y \vee d \neq v \\
& \Longleftrightarrow(a, b) \neq=_{2}(x, y) \vee(c, d) \neq F_{2}(u, v)
\end{aligned}
$$

(2) The operation ${ }^{\prime} o^{\prime}$ is associative:

$$
((a, b) \circ(x, y)) \circ(u, v)==_{2}(a x, b y) \circ(u, v)=_{2}(a x u, b y v)=_{2}(a, b) \circ((x, y) \circ(u, v)) .
$$

(3) Let us defined relation γ on $\left(\left(S \times S,={ }_{2}, \neq 2\right)\right.$, o) by

$$
((a, b),(c, d)) \in \gamma \Longleftrightarrow(a, c) \in \alpha \vee(d, b) \in \alpha
$$

Then
(3.1) $((a, b),(c, d)) \in \gamma \Longleftrightarrow(a, c) \in \alpha \vee(d, b) \in \alpha$
$\Longrightarrow a \neq c \vee d \neq b$
$\Longrightarrow(a, b) \neq 2(c, d)$;
$(3,2) a \neq c \vee d \neq b \Longrightarrow(a, c) \in \alpha \vee(c, a) \in \alpha \vee(d, b) \in \alpha \vee(b, d) \in \alpha$
$\Longrightarrow((a, b),(c, d)) \in \gamma \vee((c, d),(a, b)) \in \gamma ;$
(3.3) $((a, b),(c, d)) \in \gamma \Longleftrightarrow(a, c) \in \alpha \vee(d, b) \in \alpha$
$\Longrightarrow(a, x) \in \alpha \vee(x, c) \in \alpha \vee(d, y) \in \alpha \vee(y, b) \in \alpha$
$\Longrightarrow((a, b),(x, y)) \in \gamma \vee((x, y),(c, d)) \in \gamma$.
$(3.4)((a, b) \circ(u, v)),((c, d) \circ(u, v)) \in \gamma \Longleftrightarrow((a u, b v),(c u, d v)) \in \gamma$
$\Longleftrightarrow(a u, c u) \in \alpha \vee(d v, b v) \in \alpha$
$\Longrightarrow(a, c) \in \alpha \vee(d, b) \in \alpha$
$\Longleftrightarrow((a, b),(c, d)) \in \gamma$.
$(3.5)((u, v) \circ(a, b),(u, v) \circ(c, d)) \in \gamma \Longrightarrow((a, b),(c, d)) \in \gamma$
(Analogously to (3.4))
So, the relation γ is an anti-order on $\left(S \times S,={ }_{2}, \neq{ }_{2}\right)$.
(II) Let σ be the relation on $\left(\left(S \times S,={ }_{2}, \neq 2\right), \circ, \gamma\right)$ defined as follows

$$
((a, b),(c, d)) \in \sigma \Longleftrightarrow(a d, b c) \in \alpha .
$$

σ is a quasi-anriorder relation on $\left(\left(S \times S,==_{2}, \neq 2\right), \circ, \gamma\right)$. In fact:
(1) $((a, b),(c, d)) \in \sigma \Longleftrightarrow(a d, b c) \in \alpha$
$\Longrightarrow(a d, c d) \in \alpha \vee(c d, b c) \in \alpha$
$\Longrightarrow(a, c) \in \alpha \vee(d, b) \in \alpha$
$\Longrightarrow((a, b),(c, d)) \in \gamma$;
(2) $((a, b),(e, f)) \in \sigma \Longleftrightarrow(a f, b e) \in \alpha$
$\Longrightarrow(a f d c, b e d c) \in \alpha$ (because α is closed for the semigroup operation)
$\Longrightarrow(a f d c, f c b c) \in \alpha \vee(f c b c, b e d c) \in \alpha$
$\Longrightarrow(a d, b c) \in \alpha \vee(c f, d e) \in \alpha$
$\Longrightarrow((a, b),(c, d)) \in \sigma \vee((c, d),(e, f)) \in \sigma$;
(3) $((a, b) \circ(e, f),(c, d) \circ(e, f)) \in \sigma \Longleftrightarrow((a e, b f),(c e, d f)) \in \sigma$
$\Longleftrightarrow($ aedf,$b f c e) \in \alpha$
$\Longrightarrow(a d, b c) \in \alpha$
$\Longleftrightarrow((a, b),(c, d)) \in \sigma$;
$(4)((e, f) \circ(a, b),(e, f) \circ(c, d)) \in \sigma \Longrightarrow((a, b),(c, d)) \in \sigma$ (Analogously to (3))
Finally, $\left(\left(S \times S,=_{2}, \neq 2\right)\right.$, o is anti-ordered semigroup under the anti-order γ and the relation σ is an quasi-antiorder on $\left(\left(S \times S,={ }_{2}, \neq 2\right)\right.$, ० $)$.
(III) By the Lemma 1 in the paper [7, and by Theorem 3 in the paper [5, the relation $q=\sigma \cup \sigma^{-1}$ is an anticongruence on $\left(\left(S \times S,=_{2}, \neq 2\right), \circ\right)$ and the factor-set $(S \times S) / q$ with multiplication ' \otimes ' and the anti-order ${ }^{\prime} \Theta^{\prime}$ given below

$$
\begin{gathered}
((a, b)) q \otimes((c, d)) q={ }_{1}((a, b) \circ(c, d)) q={ }_{1}((a c, b d)) q, \\
(((a, b)) q,((c, d)) q) \in \Theta \Longleftrightarrow((a, b),(c, d)) \in \sigma .
\end{gathered}
$$

is an anti-ordered semigroup. Further, we have that $\left(\left((S \times S) / q,={ }_{1}, \neq 1\right), \otimes\right)$ is a commutative anti-ordered group. Indeed:
(1)The first, we have

$$
((a, b)) q \otimes((c, d)) q={ }_{1}((a c, b d)) q={ }_{1}((c a, d b)) q==_{1}((c, d)) q \otimes((a, b)) q
$$

(2) We will prove that $((a, a)) q={ }_{1}((b, b)) q$ for any $a, b \in S$. let $a, b \in S$ be arbitrary elements of S. Since $a b=b a$, we have $(a b, b a) \bowtie \alpha$, i.e. $((a, a),(n, b)) \bowtie \sigma$ and $((b, b),(a, a)) \bowtie \sigma$. Thus, $((a, a)) q=,{ }_{1}((b, b)) q$
(3) Let $((c, d)) q$ be an arbitrary element of $(S \times S) / q$ and a be an arbitrary element of S. Then, $((a, a)) q \otimes((c, d)) q={ }_{1}((a c, a d)) q={ }_{1}((c, d)) q$. We prove that $((a c, a d),(c, d)) \bowtie q$ Since $((a d) c, c(a d)) \bowtie q$ and $(c(a d), d(a c)) \bowtie q$ because the semigroup S is a commutative semigroup, we have $((c, d),(a c, a d)) \bowtie \sigma$ and $((a c, a d),(c, d)) \bowtie \sigma$. Thus, $((a c, a d),(c, d)) \bowtie q$
(4) Let $((c, d)) q$ be an arbitrary element of $(S \times S) / q$. then, $(((c, d)) q)^{-1}={ }_{1}$ $((d, c)) q$. Indeed, we have

$$
\left((c, d) q \otimes((d, c)) q==_{1}((c d, d c)) q==_{1}((a, a)) q\right.
$$

(IV) At he end, we prove that S is embeddable in $\left(\left((S \times S) / q,=_{1}, \neq{ }_{1}\right), \otimes\right)$. We consider the mapping

$$
\varphi: S \ni a \longmapsto\left(\left(a^{2}, a\right)\right) q \in(S \times S) / q
$$

Then:
(1) The first, from the equality

$$
\varphi(a b)={ }_{1}((a b a b, a b)) q==_{1}\left(\left((a b)^{2}, a b\right)\right) q={ }_{1}\left(\left(a^{2}, a\right)\right) q \otimes\left(\left(b^{2}, b\right)\right) q==_{1} \varphi(a) \otimes \varphi(b)
$$

we conclude that the mapping φ is well defined. the second, let $\varphi(a)={ }_{1}$ $\varphi(b)$ for some $a, b \in S$. This means $\left(\left(a^{2}, a\right)\right) q \neq 1 \quad\left(\left(b^{2}, b\right)\right) q$. Thus, we have $\left(\left(a^{2}, a\right),\left(b^{2}, b\right)\right) \in q$ and $\left(a^{2} b, a b^{2}\right) \in \alpha$ or $\left(b^{2} a, b a^{2}\right) \in \alpha$. Therefore, we conclude that φ is a ctrongly extensional mapping because we have $a \neq b$ from the both cases.
(2)Let $a, b \in S$ such that $(a, b) \in \alpha$. Then, $\left(a^{2} b, a b^{2}\right) \in \alpha$ because the relation α is closed for the semigroup operation. Thus, $\left(\left(a^{2}, a\right),\left(b^{2}, b\right)\right) \in \sigma$ and $\left(\left(\left(a^{2}, a\right)\right) q,\left(\left(b^{2}, b\right)\right) q\right) \in \Theta$. Opposite, we have $\left(\left(\left(a^{2}, a\right)\right) q,\left(\left(b^{2}, b\right)\right) q\right) \in \Theta \Longleftrightarrow\left(\left(a^{2}, a\right),\left(b^{2}, b\right)\right) \in \sigma$
$\Longleftrightarrow\left(a^{2} b, a b^{2}\right) \in \alpha$
$\Longrightarrow(a, b) \in \alpha$
because α is compatible with the semigroup operation. Therefore, the mapping φ is isotone and reverse isotone homomorphism.

References

[1] E. Bishop: Foundations of constructive analysis; McGraw-Hill, New York 1967.
[2] D. S. Bridges and F. Richman, Varieties of constructive mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987
[3] D. S. Bridges and L.S.Vita, Techniques of constructive analysis, Springer, New York 2006
[4] R. Mines, F. Richman and W. Ruitenburg: A Course of Constructive Algebra; Springer-Verlag, New York 1988.
[5] D.A.Romano: Some Relations and Subsets of Semigroup with Apartness Generated by the Principal Consistent Subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13(2002), 7-25
[6] D.A.Romano: The Second Isomorphism Theorem on Ordered Set under Antiorders; Kragujevac J. Math., 30(2007), 235-242
[7] D.A.Romano: A Note on Quasi-antiorder in Semigroup; Novi Sad J. Math., 37(1)(2007), 3-8
[8] D.A.Romano: On Regular Anticongruence in Anti-ordered Semigroups; Publications de l'Institut Math?matique, 81(95)(2007), 95-102
[9] D.A.Romano: An Isomorphism Theorem for Anti-ordered Sets; Filomat, 22(1)(2008), 145-160
[10] A. S. Troelstra and D. van Dalen: Constructivism in Mathematics, An Introduction, Volume II; North - Holland, Amsterdam 1988.

Received by the editors on July 7, 2009

[^0]: ${ }^{1}$ Partially supported by the Ministry of science and technology of the Republic of Srpska, BiH
 ${ }^{2}$ Department of Mathematics and Informatics, Banja Luka University, 2, Mladen Stojanović Street, 78000 Banja Luka, BiH; e-mail: bato49@hotmail.com

