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Abstract: A mathematical model for pulsatile flow of blood through a 
stenosed porous medium with periodic body acceleration under the 
influence of a uniform transverse magnetic field has been developed by 
considering the blood to be a Newtonian and incompressible fluid. 
Using finite Hankel and Laplace transforms, analytical expressions for 
velocity profile, volumetric flow rate and wall shear stress have been 
obtained and their natures are portrayed graphically for different 
parameters such as Hartmann number, phase angle, time etc. It  is 
observed that the velocity and maximum value of volumetric flow rate 
decreases with increase in Hartmann number and for a particular value 
of phase angle, the maximum value of wall shear stress increases with 
increase in Hartmann number but the effect is reverse for a fixed value 
of time. The present study seems to be useful in various field of 
biomedical engineering.    
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INTRODUCTION 
 

            Under normal conditions, blood flow in the human circulatory system 
depends upon the pumping action of the heart and this produces a pressure gradient 
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throughout the arterial and venous network. Also pressure gradient consists of two 
components, one of which is constant or non-fluctuating and the other is fluctuating 
or pulsatile. The investigations of blood flow through arteries are of considerable 
importance in many cardiovascular diseases particularly atherosclerosis. The normal 
pattern of blood flow is disturbed due to some abnormal growths like stenosis in the 
lumen of the artery. The actual reason for formation of stenosis is yet unknown, but 
its effect over the flow characteristics has been studied by many research workers. In 
some pathological situations, the distribution of fatty cholesterol and artery-clogging 
blood clod in the lumen of the coronary artery can be considered as equivalent to a 
fictitious porous medium (Dash et.al 1996). In daily life, humans often face some 
external body accelerations (or vibrations), such as traveling in high vehicles, 
aircrafts etc. Again in various sports it needs a high acceleration suddenly. These 
type of situations undoubtedly effects the normal flow of blood which may lead to 
many health problems like, headache, abdominal pain, vomiting tendency, loss of 
vision, abnormality in pulse rate etc. This could be due to dangerous combinations 
of body acceleration and pressure gradient of blood flow. It is, therefore, desirable to 
maintain such type of body accelerations to avoid these types of health hazards.  
 
            Many mathematical models have already been investigated by several 
research workers to explore the nature of blood flow under the influence of external 
acceleration. Flow under similar and other conditions has been analysed by 
Womersly [1]. Sometimes human being suffering from cardiogenic or anoxic shock 
may deliberately be subjected to whole body acceleration as a therapeutic measure 
as suggested by Arntzenius et.al [2] and Verdouw et.al [3]. Sud et.al [5] studied the 
characteristics of blood flow under body accelerations. Sud and Sekhon [6, 7, 8] 
considered various types of body accelerations and studied different characteristics 
of blood flow according to the nature of accelerations. Chaturani and Palanisamy [9, 
10, 11] discussed the flow characteristics of blood under external body acceleration 
assuming blood to be a Newtonian fluid, Casson fluid and power law fluid 
respectively. Again Chaturani and Upadhya [12] studied the gravity flow of fluid 
with couple stress along an inclined plane with application to blood flow. Assuming 
blood to be a couple stress fluid, Sanyal et.al [13] investigated the effect of magnetic 
field on pulsatile motion of blood through an inclined circular tube with periodic 
body acceleration. Dash et.al [14] considered Casson fluid flow in a pipe filled with 
a homogeneous porous medium. Recently Moustafa [15] and Bhardwaj et.al [16] 
extended this problem to consider the pulsatile flow of blood through a stenosed 
porous medium under periodic body acceleration without considering magnetic 
effect.  
 
            Our object in the present paper is to study the effect of magnetic field on 
pulsatile flow of blood through a stenosed porous medium with periodic body 
acceleration. The analytical solutions for the velocity, volumetric flow rate and wall 
shear stress are obtained using finite Hankel and Laplace transforms and their 
natures are shown graphically for different values of involved parameters. 
Discussions drawn from the results may be important from medical points of view.  
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MATHEMATICAL FORMULATION 
 
            Let us consider the axially symmetric and fully developed pulsatile flow of 
blood through a stenosed porous circular artery with body acceleration under the 
influence of an external uniform transverse magnetic field. Blood is assumed to be 
Newtonian and incompressible fluid. Also for mathematical model, we take the 
artery to be a long cylindrical tube with the axis along the z-axis. The pressure 
gradient and body acceleration are respectively given by 
 

                         ( )0 1 cos P
P A A t
z

∂
− = + ω

∂
                                      (1) 

 
                                        ( )0 cos bG a t= ω + φ                                            (2) 
 
where 0A and 1A are pressure gradient of steady flow and amplitude of oscillatory 
part respectively, 0a is the amplitude of body acceleration, 

2 ,   2P P b bf fω = π ω = π with  Pf is the pulse frequency and bf is body acceleration 
frequency, φ is the phase angle of body acceleration G  with respect to the pressure 
gradient and t  is time.  
 
           The governing equation of motion for flow in cylindrical polar coordinates is 
given by 
 

                           2
0

u P G u u B u
t z k

∂ ∂ μ
ρ = − + ρ + μ∇ − − σ

∂ ∂
                        (3) 

where u is the axial velocity of blood; P , blood pressure; 
P
z

∂
∂

, pressure gradient; 

ρ , density of blood; μ , the viscosity of blood; k , the permeability of the isotropic 
porous medium; 0B , the external magnetic field along the radial direction and σ  is 
the conductivity of the blood. 
 
           The geometry of the stenosis is shown in figure- 1. 
 

( ) 0 0
0

1 cos ,  2 2
2

,  otherwise,

za z z z
R z z

a

⎧ ⎛ ⎞π
− δ + − ≤ ≤⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪
⎩

 

 
where ( )R z is the radius of stenosed artery, a is the radius of artery, 04z is the 
length of stenosis and 2δ  is the maximum protuberance of the stenotic from of the 
artery wall.  
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                      Fig. 1. Geometry of artery with stenosis. 
 

 
            Let us introduce a radial coordinate transformation by  

   
( )
r

R z
ξ = ,  

where ( )R z  depends on δ . 
 

Then equation (3) becomes 
     

( ) ( )
2

2
0 1 0 2 2

1cos cosP b
u u uA A t a t C u
t R

⎡ ⎤∂ μ ∂ ∂
ρ = + ω + ρ ω + φ + + −μ⎢ ⎥∂ ∂ξ ξ ∂ξ⎣ ⎦

         (4) 

where 
2

2

1 MC
k R

= + , 0.M RBσ
=

μ
 (Hartmann number). 

 
           We assumed that at 0t <  only the pumping action of the heart is present and 
at 0t =  the flow in the artery corresponds to the instantaneous pressure gradient 
i.e., 

 0 1
P A A
z

∂
− = +

∂
 

As a result, the flow velocity at 0t = is given by 
 

                                  ( ) ( )
( )

00 1
2

0

, 0 1
I CRA Au

C I CR
⎡ ⎤ξ+

ξ = −⎢ ⎥μ ⎣ ⎦
                          (5) 

 
where 0I  is  modified Bessel function of first kind of order zero.  

  
The initial and boundary conditions for the problem are  
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      ( ) ( )
( )

00 1

0

, 0 1
I CRA Au

C I CR2

⎡ ⎤ξ+
ξ = −⎢ ⎥μ ⎣ ⎦

 

       0  1u at= ξ =                                                            (6) 
                                                                                          
                          is finite at 0u ξ =  
 
 
 

SOLUTIONS 
 
 
          Applying Laplace transform to equation (4) and first boundary condition of 
(6), we get 

( ) ( )
( ) ( )

( )
( )

2
1 0 0 20 1

2 2 22 2 2 2
0

 sin 11 b

P b

A A I CR a scosA As u usu C u
C I CR s Rs s

0 ⎡ ⎤ρ + ξ ρ φ−ω φ ⎡ ⎤μ ∂ ∂
ρ − − = + + + + −μ⎢ ⎥ ⎢ ⎥μ ∂ξ ξ∂ξ+ω +ω ⎣ ⎦⎣ ⎦

  

where ( ) ( ) ( )
0

, ,   0stu s e u t dt s
∞

−ξ = ξ >∫                                                  (7) 

 
Then applying the finite Hankel transform to equation (7), we obtain 
  

( ) ( )
( ) ( )

( )
( )

( )
( )

2 2
* 1 0 10 1

2 2 2 2 2 2 22 2 2 2

 sin
, .n b

n
P b nn n

J R a scos A A RA Asu s
s s s CRsR CR

0
⎡ ⎤λ ρ φ−ω φ ρ +

λ = + +⎢ ⎥
⎡ ⎤ +ω +ω μ +λλ ρ +μ +λ ⎢ ⎥⎣ ⎦⎣ ⎦

      (8) 

where ( ) ( ) ( )
1

*

0
0

,  ,  J  n nu s r u r s r drλ = λ∫  and nλ  are zeros of 0J , Bessel 

function of first kind and 
μ

ν =
ρ

. 

          
           The Laplace and Hankel inversions of equation (8) give the final solution for 
blood velocity as 



Bull.Soc.Math. Banja Luka, Vol. 16 (2009)                                          K. Das and G. C. Saha 
 

 26
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2

2
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− ω⎪

⎨
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     (9) 

which can be written in the form 
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ρ ⎤⎧ ⎫λ + φ+β φ ⎥⎪ ⎪⎪ ⎪⎥+⎨ ⎬
⎡ ⎤ ⎥λ + +β+ λ +⎪ ⎪⎢ ⎥⎣ ⎦ ⎥⎪ ⎪⎩ ⎭⎦

 (10) 

where 
22

2 2

0

Re ,  Re ,   bP
P b

RR
A

1ωω Α
α = = β = = ε =

ν ν
 

           The analytical expression of u consists of four parts. The first and second 
parts correspond to steady and oscillatory parts of pressure gradient, the third term 
indicates body acceleration and the last term is the transient term. As t → ∞ , the 
transient term approaches to zero. Then from equation (10), we get 
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∑
(11)                            

           The volumetric flow rate Q  is given by 
 

                                 ( ), 2  
R

Q t ru dr
0

ξ = π∫  
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            The fluid acceleration F is given by 
 

                               ( ), uF t
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∑
       (13) 

 
           The expression for the wall shear stress wτ  can be obtained from 
 

w
r R

u
r =

∂⎛ ⎞τ = μ ⎜ ⎟∂⎝ ⎠
 

as 
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NUMERICAL RESULTS  

 
           For a fixed steady state pressure gradient 0A , fixed values of k and non-zero 
values of 0a , the variations of the physiologically important fluid dynamic 
quantities, viz. velocity, volumetric flow rate, wall shear stress etc. are shown 
graphically in figures 2(a) to 9(c) for different values of Hartmann number ( )M , 

phase angle ( )φ , time ( )t  etc. For numerical calculations, we choose  

                                      1 01.2,  1.2,  0.2 ,  2.4P b Pf f A A= = = ω = π  
and the radius of different arteries are given below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
 
   The expression for velocity profile computed in equation (10) has been depicted in 

figures 2(a) to 5(c) by plotting 
r
R

 versus u  in presence/absence of Hartmann 

number ( )M , for different values of phase angle ( φ ) and time t . It is observed that 

velocity decreases with increasing Hartmann number ( )M and is blunted near the 

axis of the artery and decreases rapidly with respect to 
r
R

 i.e. with respect to r .  

Blood vessels       Radius(cm) 
Aorta                         1.0 
 
Femorat                     0.5 
 
Carotid                      0.4 
 
Coronary                   0.15 
 
Arteriole                   0.008
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Again the position of maximum of axial velocity is dependent on tube diameter, i.e. 
the velocity increases as tube diameter increases from arteriole to aorta. Also it is 
seen that velocity of blood decreases with increase in phase angle ( φ ) for different 
arteries. 
 

 
 

 
 
             
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2(a). Variation of velocity profiles for aorta 
artery against r/R with �=0.0, t=0.0.
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Fig. 2(c). Variation of velocity profiles for 
coronary artery against r/R with φ=0.0, t=0.0.
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Fig. 3(a). Variation of velocity profiles for aorta 
artery against r/R with φ=0.0, t=45.
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Fig. 3(b). Variation of velocity profiles for 
femorat artery against r/R with φ=0, t=45.
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Fig. 3(c). Variation of velocity profiles for 
coronary artery against r/R with φ=0, t=45.
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Fig. 4(a). Variation of velocity profiles for 
aorta artery against r/R with φ=45, t=0.0.
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Fig. 4(b). Variation of velocity profiles for 
femorat artery against r/R with φ=45, t=0.0
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Fig. 4(c). Variation of velocity profiles for 
coronary artery against r/R with φ=45, t=0.0.
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Variation 

Fig. 5(b). Variation of velocity profiles for 
femorat artery against r/R with φ=90, t=45.
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of volumetric flow rate Q  has been studied and shown in figures 6(a) to 6(c) for 
different values of Hartmann number ( )M . For fixed value of φ , it is observed that 

increase in M  decreases the maximum value of the flow rate Q  and the oscillatory 
nature of the curves with time is nearly same for different values of M . Figures 7(a) 
to 7(c) show that flow rate Q  decreases with increase in the Hartmann number 

( )M  at the 
particular time for different values of phase angle and it decreases more rapidly with 
decreasing the radius of the artery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6(a). Variation of flow rate for aorta artery 
against t when φ=45.
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Fig. 6(b). Variation of flow rate for femorat 
artery against t when φ=45.
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Fig. 6(c). Variation of flow rate for coronary artery against t 
when φ=45.
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         Figures 8(a) to 9(c) indicates the effect of Hartmann number on wall shear 
stress wτ . For fixed value of φ , it is found from figures 8(a) to 8(c) that the 

Fig. 7(b). Variation of flow rate for femorat 
artery against φ  when t=45.
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maximum value of the wall shear stress decreases with increase in M  whereas from 
9(a) to 9(c), it is observed that for fixed value of t , the maximum value of wτ  
increases with increase in M . In both cases, wall shear stress decreases with 
increasing the radius of the artery. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8(a). Variation of wall shear stress for 
aorta artery against t when φ=45.
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Fig. 8(b). Variation of wall shear stress for 
femorat artery against t when φ=45.
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Fig. 8(c). Variation of wall shear stress for coronary 
artery against t when φ=45.
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Fig. 9(a). variation of wall shear stress for 
aorta artery against φ  when t=45.
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DIS

CUSSIONS 
 
           In the present study, we considered the effect of transverse uniform magnetic 
field on pulsatile flow of blood through a stenosed porous medium with body 
acceleration. Using physiological data, the following observations have been made. 

Fig. 9(b). Variation of wall shear stress for 
femorat artery against φ when t=45.
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Fig. 9(c). Variation of wall shear stress for coronary 
artery against φ when t=45.
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The velocity and maximum value of volumetric flow rate decreases with increase in 
Hartmann number ( )M  and for a particular value of phase angle ( φ ), the maximum 

value of wall shear stress ( wτ ) increases with increase in M  but the effect is 
reverse for a fixed value of t . A comparison of the present investigation with 
Bhardwaj and  Kanodia[16] and previous   investigations show that our results are 
more interesting due to the presence of magnetic field. Most of them neglect this 
magnetic effect on the flow variables like instantaneous volume flow rate, wall shear 
etc but due to presence of magnetic field  these variables changes sharply in smaller 
arteries. It is clear from the previous numerical results that the transverse magnetic 
field effects largely on the axial flow velocity of blood. So, by taking appropriate 
values of magnetic field parameter (M) we may regulate the axial flow 
velocity.Thus, in  case of magnetotherapy, by maintaining a proper magnetic field, 
the influence of magnetic instruments on blood flow velocity may be regulated.  
 
 

ACKNOWLEDGEMENT  
 
The authors are thankful to the referee for useful technical comments and valuable 
suggestions, which led to a significant improvement of the paper. 
 

REFERENCES 
 

[1]     J. R. Womersley, Method for the calculation of velocity, rate of flow and 
viscous drag in arteries when the pressure gradient is known, J. physiol., 127 
(1955) 553. 

 
[2]     A. C. Arntzenius, J. Koops, F. A. Rodrigo, H. Elsbach and A. G. W. Van 

Brummelen, Circulatory effect of body acceleration given synchronously with 
the heart beat  (BASH), Biolphys. Cardiol, 26 (1972) 180. 

 
[3]     P. D. Verdouw, A. Noordergraaf, A. C. Arntzenius and P. H. Huisman, 

Relative movement between subject and support in body acceleration applied 
synchronously with heart beat (BASH), Biblphy. Cardiol, 31 (1973) 57. 

 
[4]    V. K. Sud, H. E. Vongierke, I. Kalpes and H. L. Oestreicher, Blood flow under 

the influence of externally applied periodic accelerations in large and small 
arteries, Med. and Biol. Eng. and comput, 21 (1983) 446-452.  

 
[5]    V. K. Sud, H. E. Vongierke, I. Kalpes and H. L. Oestreicher, Analysis of blood 

flow under time dependent acceleration, Med. and Biol. Eng. and comput., 23 
(1985) 69-73. 

 
[6]     V. K. Sud and G. S. Sekhon, Blood flow subject to a single cycle of body       

acceleration, Bull. Math. Biol., 46 (1984) 937-949. 
 



Bull.Soc.Math. Banja Luka, Vol. 16 (2009)                                          K. Das and G. C. Saha 
 

 42

[7]    V. K. Sud and G. S. Sekhon, Analysis of blood flow through a model of human       
arterial system under periodic body acceleration, J. Biomech., 19 (1986) 929-
941. 

 
[8]     V. K. Sud and G. S. Sekhon, Arterial flow under periodic body acceleration, 

Bull. Math. Biol., 47 (1985) 35-52. 
 
[9]    P. Chaturani and V. Palanisamy, Casson fluid model for pulsatile flow of blood  
        under periodic body acceleration, Biorhelogy, 27 (1990) 619-630. 
 
 
[10]  P. Chaturani and V. Palanisamy, Pulsatile flow of power law fluid model for 

blood flow under periodic body acceleration, Biorheology, 27 (1990) 747-
758. 

 
[11] P. Chaturani and V. Palanisamy, Pulsatile flow of blood with periodic body       

acceleration, Int. J. Engg. Sci., 29 (1991) 113-121. 
 
[12] P. Chaturani and V. S. Upadhya, Gravity flow of fluid with couple stress along 

an inclined plane with application to blood flow, Biorheology, 14 (1977) 237-
246. 

 
[13] D. C. Sanyal, K. Das and S. Debnath, Effect of magnetic field on pulsatile blood 

flow through an inclined circular tube with periodic body acceleration, J. of 
phys. Sci, 11 (2007) 43-56. 

 
[14] R. K. Dash, K. N. Mehta and G. Jayarman, Casson fluid flow in a pipe filled 

with a homogeneous porous medium, Int. J. Eng. Sci., 34 (1996) 1145. 
 
[15] Moustafa El-Shahed, Pulsatile flow of blood through a stenosed porous medium  
        under periodic body acceleration, Applied Mathematics and computation, 138  
        (2003) 479. 
 
[16] K. Bhardwaj and K. K. Kanodia, Pulsatile flow of blood through a stenosed 

porous medium under periodic body acceleration, Acta Ciencia Indica, vol. 
XXXIII M No.  1, (2007) 31-42. 


