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Abstract

It is known that each quasi-antiorder on anti-ordered set X induces
coequality q on X such that X/q is an anti-ordered set. The converse of
this statement also holds: Each coequality q on a set X such that X/q
is anti-ordered set induces a quasi-antiorder on X. In this paper we give
proofs that the families of all coequality relations q on X and the family
of all quasi-antiorder relation on set X are complete lattices.
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1 Introduction and preliminary

This short investigation, in Bishop’s constructive mathematics in the sense of
well-known books [2], [4], [6] and [18] and Bogdanić, Romano and Vinčić’s paper
[3], Jojić and Romano’s paper [6], and Romano’s papers [7]-[16], is continuation
of forthcoming the second author’s papers [17]. Bishop’s constructive mathe-
matics is developed on Constructive Logic - logic without the Law of Excluded
Middle P ∨¬P . Let us note that in the Constructive Logic the ’Double Negation
Law’ ¬¬P =⇒ P does not hold, but the following implication P =⇒ ¬¬P does
even in the Minimal Logic. Since the Constructive Logic is a part of the Classi-
cal Logic, these results, in the Constructive mathematics, are compatible with
suitable results in the Classical mathematics. Let us recall that the following
deduction principle A ∨B,¬B ` A is acceptable in the Constructive Logic.

Let (X,=, 6=) be a set, where the relation 6= is a binary relation on X, called
diversity on X, which satisfies the following properties:

¬(x 6= x), x 6= y =⇒ y 6= x, x 6= y ∧ y = z =⇒ x 6= z.
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Following Heyting, if the following implication x 6= z =⇒ x 6= y ∨ y 6= z holds,
the diversity 6= is called apartness. Let x be an element of X and A a subset of
X. We write x ./ A if and only if (∀a ∈ A)(x 6= a), and AC = {x ∈ X : x ./ A}.
In X × X the equality and diversity are defined by (x, y) = (u, v) ⇐⇒ x =
u ∧ y = v, (x, y) 6= (u, v) ⇐⇒ x 6= u ∨ y 6= v, and equality and diversity
relations in power-set ℘(X ×X) of X ×X by

α =2 β ⇐⇒ (∀(x, y) ∈ X ×X)((x, y) ∈ α⇐⇒ (x, y) ∈ β),

α 6=2 β ⇐⇒
(∃x, y ∈ X)((x, y) ∈ α ∧ (x, y) ./ β) ∨ (∃x, y ∈ X)((x, y) ∈ β ∧ (x, y) ./ α).

Let us note that the diversity relation 6=2 is not an apartness relation in general
case.

Example I: (1) The relation ¬(=) is an apartness on the set Z of integers.

(2) The relation q, defined on the set QN by

(f, g) ∈ q ⇐⇒ (∃k ∈ N)(∃n ∈ N)(m ≥ n =⇒ |f(m)− g(m)| > k−1),

is an apartness relation. �

A relation q on X is a coequality relation ([7]-[9]) on X if and only if it is
consistent, symmetric and cotransitive:

q ⊆6=, q = q−1, q ⊆ q ∗ q,
where ”∗” is the operation of relations α ⊆ X×X and β ⊆ X×X, called filled
product ([8], [9], [12]-[15]) of relations α and β, are relation on X defined by

(a, c) ∈ β ∗ α⇐⇒ (∀b ∈ X)((a, b) ∈ α ∨ (b, c) ∈ β).

For further study of coequality relation we suggest to read articles [8], [11],
[13]-[16] (Specially, in articles [10], [12], [13] and [14], the author researches
coequality relations compatible with the algebraic operations.) In article [7] and
[8], problems of existence of compatible equality and coequality relations on set
with apartness are discussed. In article [9], the author has proved the following:
If e is an equivalence on set X, then there exists the maximal coequality relation
q on X compatible with e in the following sense:

e ◦ q ⊆ q and q ◦ e ⊆ q.
Opposite to the previous, if q is a coequality relation on set X, then the relation
qC = {(x, y) ∈ X × X : (x, y) ./ q} is an equivalence on X compatible with q
([8], [11]), and we can ([11]) construct the factor-set X/(qC , q) = {aqC : a ∈ X}
with:

aqC =1 bq
C ⇐⇒ (a, b) ./ q, aqC 6=1 bq

C ⇐⇒ (a, b) ∈ q.
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Also, we can ([8],[11]) construct the factor-set X/q = {aq : a ∈ X}: If q is a
coequality relation on a set X, then X/q is a set with:

aq =1 bq ⇐⇒ (a, b) ./ q, aq 6=1 bq ⇐⇒ (a, b) ∈ q.
It is easily to check that X/q ∼= X/(qC , q). besides, it is clear that the mapping
π : X −→ X/q, defined by π(x) = xq, is a strongly extensional surjective
function.

Subset C(x) = {y ∈ X : y 6= x} satisfies the following implication:

y ∈ C(x) ∧ z ∈ X =⇒ y 6= z ∨ z ∈ C(x).

It is called a principal strongly extensional subset of X such that x ./ C(x).
Following this special case, for a subset A of X, we say that it is a strongly
extensional subset of X if and only if the following implication

x ∈ A ∧ y ∈ X =⇒ x 6= y ∨ y ∈ A
holds.

Examples II: (1) ([7]) Let T be a set and J be a subfamily of ℘(T ) such
that

∅ ∈ J , A ⊆ B ∧ B ∈ J =⇒ A ∈ J , A ∩B ∈ J =⇒ A ∈ J ∨ B ∈ J .

If (Xt)t∈T is a family of sets, then the relation q on
∏
t∈T Xt(6= ∅), defined by

(f, g) ∈ q ⇐⇒ {s ∈ T : (f(s) = g(s)} ∈ J , is a coequality relation on the
Cartesian product

∏
tXt.

(2) A ring R is a local ring if for each r ∈ R, either r or 1 − r is a unit, and
let M be a module over R. The relation q on M , defined by (x, y) ∈ q if there
exists a homomorphism f : M −→ R such that f(x−y) is a unit, is a coequality
relation on M .

(3) ([11]) Let T be a strongly extensional consistent subset of semigroup S, i.e.
let (∀x, y ∈ S)(xy ∈ T =⇒ x ∈ T ∧ y ∈ T ) holds. Then, relation q on semigroup
S, defined by (a, b) ∈ q if and only if a 6= b ∧ (a ∈ T ∨ b ∈ T ), is a coequality
relation on S and compatible with semigroup operation in the following sense
(∀x, y, a, b ∈ S)((xay, xby) ∈ q =⇒ (a, b) ∈ q).
(4)Let (R,=, 6=,+, 0, ·, 1) be a commutative ring. A subset Q of R is a coideal
of R if and only if

0 ./ Q, −x ∈ Q =⇒ x ∈ Q, x+ y ∈ Q =⇒ x ∈ Q ∨ y ∈ Q,

xy ∈ Q =⇒ x ∈ Q ∧ y ∈ Q.

Coideals of commutative ring with apartness were first defined and studied by
Ruitenburg 1982 in his dissertation. After that, coideals (anti-ideals) are stud-
ied by A.S. Troelstra and D. van Dalen in their monograph [18]. This author
proved, in 1988], if Q is a coideal of a ring R, then the relation q on R, defined
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by (x, y) ∈ q ⇐⇒ x− y ∈ Q, satisfies the following properties:

(a) q is a coequality relation on R;

(b) (∀x, y, u, v ∈ R)((x+ u, y + v) ∈ q =⇒ (x, y) ∈ q ∨ (u, v) ∈ q);
(c) (∀x, y, u, v ∈ R)((xu, yv) ∈ q =⇒ (x, y) ∈ q ∨ (u, v) ∈ q).
A relation q on R, which satisfies the property (a)-(c), is called anticongruence
on R ([4]) or coequality relation compatible with ring operations. If q is an anti-
congruence on a ring R, then the set Q = {x ∈ R : (x, 0) ∈ q} is a coideal of R. �

As in [12],[13], [14] and [15] a relation α on X is antiorder on X if and only
if

α ⊆ 6=, α ⊆ α ∗ α, 6=⊆ α ∪ α−1 (linearity).

Let g be a strongly extensional mapping of anti-ordered set from (X,=, 6=, α)
into (Y,=, 6=, β). For g we say that it is:

(i) isotone if (∀a, b ∈ X)((a, b) ∈ α =⇒ (g(a), g(b)) ∈ β) holds;

(ii) reverse isotone if (∀a, b ∈ X)((g(a), g(b)) ∈ β =⇒ (a, b) ∈ α) holds.

A relation σ on X is a quasi-antiorder ([11]-[16]) on X if

σ ⊆ (α ⊆ ) 6=, σ ⊆ σ ∗ σ.

It is clear that each coequality relation q on set X is a quasi-antiorder relation
on X, and the apartness is a trivial anti-order relation on X. It is easy to check
that if σ is a quasi-antiorder on X, then ([10]) the relation q = σ ∪ σ−1 is a
coequality relation on X. The notion of quasi-antiorder is defined for first time
in article [8], and the notion of anti-order relation is defined for the first time in
article [10]. Those relations and their properties are investigated by Baroni in
[1], Bogdanić, Jojić and Romano in [3], Jojić and Romano in [6], and van Plato
in [19] also.

Examples III: Let a and b be elements of semigroup (S,=, 6=, ·). Then
([11]), the set C(a) = {x ∈ S : x ./ SaS} is a consistent subset of S such that :
- a ./ C(a);

- C(a) 6= ∅ =⇒ 1 ∈ C(a);

- Let a be an invertible element of S. Then C(a) = ∅;
- (∀x, y ∈ S)(C(a) ⊆ C(xay));

- C(a) ∪ C(b) ⊆ C(ab) .

Let a be an arbitrary element of a semigroup S with apartness. The consistent
subset C(a) is called a principal consistent subset of S generated by a. We in-
troduce relation f , defined by (a, b) ∈ f ⇐⇒ b ∈ C(a). The relation f has the
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following properties ([11, Theorem 7]):

- f is a consistent relation ;

- (a, b) ∈ f =⇒ (∀x, y ∈ S)((xay, b) ∈ f);

- (a, b) ∈ f =⇒ (∀n ∈ N)((an, b) ∈ f);

- (∀x, y ∈ S)((a, xby) ∈ f =⇒ (a, b) ∈ f) ;

- (∀x, y ∈ S)((a, xay) ∈ f).

We can construct the cotransitive relation c(f) =
⋂

nf as cotransitive fulfill-
ment of the relation f ([8]-[11],[15]). As consequences of these assertions we
have the following results. The relation c(f) satisfies the following properties:

- c(f) is a quasi-antiorder on S ;

- (∀x, y ∈ S)((a, xay) ./ c(f));

- (∀n ∈ N)((a, an) ./ c(f)) ;

- (∀x, y ∈ S)((a, b) ∈ c(f) =⇒ (xay, b) ∈ c(f)) ;

- (∀n ∈ N)((a, b) ∈ c(f) =⇒ (an, b) ∈ c(f)) ;

- (∀x, y ∈ S)((a, xby) ∈ c(f) =⇒ (a, b) ∈ c(f)). �
For a given anti-ordered set (X,=, 6=, α) is essential to know if there exists

a coequality relation q on X such that X/q is an anti-ordered set. This plays
an important role for studying the structure of anti-ordered sets. The following
question is natural: If (X,=, 6=, α) is an anti-ordered set and q a coequality
relation on X, is the factor-set X/q anti-ordered set? Naturally, anti-order on
X/q should be the relation Θ on X/q defined by means of the anti-order α on X
such that Θ = {(xq, yq) ∈ X/q : (x, y) ∈ α}, but it is not held in general case.
The following question appears: Is there coequality relation q on X for which
X/q is an anti-ordered set such that the natural mapping π : X −→ X/q is
reverse isotone? The concept of quasi-antiorder relation was introduced by this
author in his papers [8] and [9]-[16] (Particularly, in articles [10] and [14], the
author investigated anti-ordered algebraic systems with apartness.). According
to Lemma 0 in [12], if (X,=, 6=) is a set and σ is a quasi-antiorder on X, then
([12, Lemma 1]) the relation q on X, defined by q = σ ∪ σ−1 , is a coequality
relation on X, and the set X/q is an anti-ordered set under anti-order Θ defined
by (xq, yq) ∈ Θ ⇐⇒ (x, y) ∈ σ. So, according to results in [12] and [13], each
quasi-antiorder σ on an ordered set X under anti-order α induces an coequality
relation q =2 σ ∪σ−1 on X such that X/q is an anti-ordered set under Θ . (For
a further study of quasi-antiorders on anti-ordered set we refer to papers [12],
[13] and forthcoming the author’s paper [17].) In paper [14] we proved that the
converse of this statement also holds. If (X,=, 6=, α) is an anti-ordered set and
q coequality relation on X, and if there exists an order relation Θ1 on X/q such
that the (X/q,=1, 6=1,Θ1) is an anti-ordered and the mapping π : X −→ X/q is
reverse isotone (so-called regular coequality), then there exists a quasi-antiorder
σ on X such that q =2 σ∪σ−1. So, each regular coequality q on a set (X,=, 6=, α)
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induces a quasi-antiorder on X. Besides, connections between the family of all
quasi-antiorders on X, the family of coequality relations on X, and the family
of all regular coequality relations q on X are given.

Lemma 1.1 Let τ be a quasi-antiorder on set X. Then xτ (τx) is a strongly
extensional subset of X, such that x ./ xτ (x ./ τx), for each x ∈ X. Besides,
the following implication (x, z) ∈ τ =⇒ xτ ∪ τz = X holds for each x, z of X.

Proof : From τ ⊆ 6= it follows x ./ xτ . Let yx ∈ τholds, and let z be an
arbitrary element of X. Thus, (x, y) ∈ τ and (x, z) ∈ τ ∨ (z, y) ∈ τ . So, we
have z ∈ xτ ∨ y 6= z. Therefore, xτ is a strongly extensional subset of X such
that x ./ xτ .
The proof that τx is a strongly extensional subset of X such that x ./ τx is
analogous. Besides, the following implication (x, z) ∈ τ =⇒ xτ ∪ τz = X holds
for each x, y of X. Indeed, if (x, z) ∈ τ and y is an arbitrary element of X, then
(∀y ∈ X)((x, y) ∈ τ ∨ (y, z) ∈ τ). Thus, X = xτ ∪ τz. 2

Let τ be a quasi-antiorder on set X. Then for every pair (x, z) of τ there ex-
ists a pair (Ax, Bz) of strongly extensional subsets of X such that x ./ Ax ∧ z ./
Bz and X = Ax ∪Bz and x ∈ Bz ∧ z ∈ Ax.

Example IV: If A is a strongly extensional subset of X, then the relation
σ on X, defined by (x, y) ∈ σ ⇐⇒ x ∈ A ∧ x 6= y, is a quasi-antiorder relation
on X.

Proof: It is clear that σ is a consistent relation on X. Assume (x, z) ∈ σ and
let y be an arbitrary element of X. Then, x ∈ A ∧ x 6= z. Thus, x 6= y ∨ y 6= z.
If x 6= y and x ∈ A, then (x, y) ∈ σ. If y 6= z and x ∈ A, by strongly
extensionality of A, we have y 6= z and x ∈ A and x 6= y ∨ y ∈ A. In the case
of y 6= z ∧ x ∈ A ∧ x 6= y we have again (x, y) ∈ σ; in the case of y 6= z and
x ∈ A and y ∈ A we have (y, z) ∈ σ. So, the relation σ is a cotransitive relation.
Therefore, relation σ is a quasi-antiorder relation on X. Further on, we have:

x ∈ A =⇒ xσ = C(x), ¬(x ∈ A) =⇒ xσ = ∅;
y ∈ A =⇒ σy = C(y) ∩A, y ./ A =⇒ σy = A. �

2 Main Results

In the following proposition we give a connection between the family =(X) of
all quasi-antiorders on set X and the family q(X) of all coequality relation on
X

For a set (X,=, 6=, α) by <(X,α) we denote the family of all regular coequal-
ity relations q on X with respect to α, and by =(X,α) denotes the family of all
quasi-antiorder relation on X included in α .

Let us note that families =(X), =(X,α) and q(X) are complete lattices.
Indeed, in the following two theorems we give proofs for those facts:
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Theorem 2.1 If {τk}k∈J is a family of quasi-antiorders on a set (X,=, 6=),
then

⋃
k∈J τk and c(

⋂
k∈J τk) are quasi-antiorders in X. So, the families =(X)

and =(X,α) are complete lattices.

Proof : (1) Let {τk}k∈J is a family of quasi-antiorders on a set (X,=, 6=) and
let x, z be an arbitrary elements of X such that (x, z) ∈ ⋃k∈J τk. Then, there
exists k in J such that (x, z) ∈ τk. Hence, for every y ∈ X we have (x, y) ∈
τk ∨ (y, z) ∈ τk. So, (x, y) ∈ ⋃k∈J τk ∨ (y, z) ∈ ⋃k∈J τk. On the other hand,
for every k in J holds τk ⊆ 6=. From this we have

⋃
k∈J τk ⊆ 6=. So, we can put

sup{τk : k ∈ J} =
⋃
k∈J τk.

(2) Let R (⊆ 6=) be a relation on a set (X,=, 6=). Then for an inhabited family of
quasi-antiorders under R there exists the biggest quasi-antiorder relation under
R. That relation is exactly the relation c(R). In fact:
By (1), there exists the biggest quasi-antiorder relation on X under R. Let QR
be the inhabited family of all quasi-antiorder relation on X under R. With (R)
we denote the biggest quasi-antiorder relation

⋃
QR on X under R. On the

other hand, the fulfillment c(R) =
⋂
n∈N

nR of the relation R is a cotransitive
relation on set X under R. Therefore, c(R) ⊆ (R) holds.
We need to show that (R) ⊆ c(R). Let τ (⊆ (R) =

⋃
QR) be a quasi-antiorder

relation in X under R. Firstly, we have τ ⊆ R = 1R. Assume (x, z) ∈ τ .
Then, out of (∀y ∈ X)((x, y) ∈ τ ∨ (y, z) ∈ τ) we conclude that for every y
in X holds (x, y) ∈ R ∨ (y, z) ∈ R, i.e. holds (x, z) ∈ R ∗ R = 2R. So, we
have τ ⊆ 2R. Now, we will suppose that τ ⊆ nR, and suppose that (x, z) ∈ τ .
Then, (∀y ∈ X)((x, y) ∈ τ ∨ (y, z) ∈ τ) implies that (x, y) ∈ R ∨ (y, z) ∈ nR
holds for every y ∈ X. Therefore, (x, z) ∈ n+1R. So, we have τ ⊆ n+1R.
Thus, by induction, we have τ ⊆ ⋂ nR. let us remember that τ is an arbitrary
quasi-antiorder on X under R. Hence, we proved that (R) =

⋃
QR ⊆ c(R). If

{τk}k∈J is a family of quasi-antiorders on a set (X,=, 6=), then c(
⋂
k∈J τk) is a

quasi-antiorder in X, and we can set inf{τk : k ∈ J} = c(
⋂
k∈J τk). 2

Theorem 2.2 Let (X,=, 6=) be a set with apartness. The family q(X) is a
complete lattice.

Proof : If {qk : k ∈ Λ} is a family of coequality relations on X, then
⋃
qk

and c(
⋂
qk) are coequality relations on X such that (∀k ∈ Λ)(qk ⊆

⋃
qk) and

(∀k ∈ Λ)(c(
⋂
qk) ⊆ qk). Since

⋃
qk is the minimal extension of every qk we

can put sup{qk : k ∈ Λ} =
⋃
qk, and since c(

⋂
qk) is the maximal coequality

relation under
⋂
qk(⊆ qk) we can set inf{qk : k ∈ Λ} = c(

⋂
qk). 2
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