# SOME NOTES ON QUASI-ANTIORDERS AND COEQUALITY RELATIONS ${ }^{11}$ 

Daniel A. Romand ${ }^{\text {² }}$ and Milovan Vinčic ${ }^{3}$


#### Abstract

It is known that each quasi-antiorder on anti-ordered set X induces coequality q on X such that $\mathrm{X} / \mathrm{q}$ is an anti-ordered set. The converse of this statement also holds: Each coequality q on a set $X$ such that $X / q$ is anti-ordered set induces a quasi-antiorder on X . In this paper we give proofs that the families of all coequality relations $q$ on $X$ and the family of all quasi-antiorder relation on set X are complete lattices.


AMS Mathematics Subject Classification (2010): Primary 03F65, Secondary: 03E04
Key words and phrases: Constructive mathematics, set with apartness, coequality, anti-order and quasi-antiorder relations

## 1 Introduction and preliminary

This short investigation, in Bishop's constructive mathematics in the sense of well-known books [2], [4], [6] and [18] and Bogdanić, Romano and Vinčić's paper [3], Jojić and Romano's paper [6], and Romano's papers [7]-[16], is continuation of forthcoming the second author's papers [17]. Bishop's constructive mathematics is developed on Constructive Logic - logic without the Law of Excluded Middle $P \vee \neg P$. Let us note that in the Constructive Logic the 'Double Negation Law' $\neg \neg P \Longrightarrow P$ does not hold, but the following implication $P \Longrightarrow \neg \neg P$ does even in the Minimal Logic. Since the Constructive Logic is a part of the Classical Logic, these results, in the Constructive mathematics, are compatible with suitable results in the Classical mathematics. Let us recall that the following deduction principle $A \vee B, \neg B \vdash A$ is acceptable in the Constructive Logic.

Let $(X,=, \neq)$ be a set, where the relation $\neq$ is a binary relation on $X$, called diversity on $X$, which satisfies the following properties:

$$
\neg(x \neq x), \quad x \neq y \Longrightarrow y \neq x, \quad x \neq y \wedge y=z \Longrightarrow x \neq z .
$$

[^0]Following Heyting, if the following implication $x \neq z \Longrightarrow x \neq y \vee y \neq z$ holds, the diversity $\neq$ is called apartness. Let $x$ be an element of $X$ and $A$ a subset of $X$. We write $x \bowtie A$ if and only if $(\forall a \in A)(x \neq a)$, and $A^{C}=\{x \in X: x \bowtie A\}$. In $X \times X$ the equality and diversity are defined by $(x, y)=(u, v) \Longleftrightarrow x=$ $u \wedge y=v,(x, y) \neq(u, v) \Longleftrightarrow x \neq u \vee y \neq v$, and equality and diversity relations in power-set $\wp(X \times X)$ of $X \times X$ by

$$
\begin{gathered}
\alpha=_{2} \beta \Longleftrightarrow(\forall(x, y) \in X \times X)((x, y) \in \alpha \Longleftrightarrow(x, y) \in \beta), \\
\alpha \neq{ }_{2} \beta \Longleftrightarrow \\
(\exists x, y \in X)((x, y) \in \alpha \wedge(x, y) \bowtie \beta) \vee(\exists x, y \in X)((x, y) \in \beta \wedge(x, y) \bowtie \alpha) .
\end{gathered}
$$

Let us note that the diversity relation $\neq 2^{2}$ is not an apartness relation in general case.

Example I: (1) The relation $\neg(=)$ is an apartness on the set $\mathbf{Z}$ of integers. (2) The relation $q$, defined on the set $\mathbf{Q}^{\mathbf{N}}$ by

$$
(f, g) \in q \Longleftrightarrow(\exists k \in \mathbf{N})(\exists n \in \mathbf{N})\left(m \geq n \Longrightarrow|f(m)-g(m)|>k^{-1}\right)
$$

is an apartness relation.

A relation $q$ on $X$ is a coequality relation ([7]-[9]) on $X$ if and only if it is consistent, symmetric and cotransitive:

$$
q \subseteq \neq, q=q^{-1}, q \subseteq q * q
$$

where " $*$ " is the operation of relations $\alpha \subseteq X \times X$ and $\beta \subseteq X \times X$, called filled product ([8], [9], [12]-[15]) of relations $\alpha$ and $\beta$, are relation on $X$ defined by

$$
(a, c) \in \beta * \alpha \Longleftrightarrow(\forall b \in X)((a, b) \in \alpha \vee(b, c) \in \beta)
$$

For further study of coequality relation we suggest to read articles [8], [11], [13]-[16] (Specially, in articles [10], [12], [13] and [14], the author researches coequality relations compatible with the algebraic operations.) In article [7] and [8], problems of existence of compatible equality and coequality relations on set with apartness are discussed. In article [9], the author has proved the following: If $e$ is an equivalence on set $X$, then there exists the maximal coequality relation $q$ on $X$ compatible with $e$ in the following sense:

$$
e \circ q \subseteq q \text { and } q \circ e \subseteq q
$$

Opposite to the previous, if $q$ is a coequality relation on set $X$, then the relation $q^{C}=\{(x, y) \in X \times X:(x, y) \bowtie q\}$ is an equivalence on $X$ compatible with $q$ ([8], [11]), and we can ([11]) construct the factor-set $X /\left(q^{C}, q\right)=\{a q C: a \in X\}$ with:

$$
a q^{C}={ }_{1} b q^{C} \Longleftrightarrow(a, b) \bowtie q, \quad a q^{C} \neq 1 b q^{C} \Longleftrightarrow(a, b) \in q .
$$

Also, we can $([8],[11])$ construct the factor-set $X / q=\{a q: a \in X\}$ : If $q$ is a coequality relation on a set $X$, then $X / q$ is a set with:

$$
a q={ }_{1} b q \Longleftrightarrow(a, b) \bowtie q, \quad a q \neq 1 \quad b q \Longleftrightarrow(a, b) \in q .
$$

It is easily to check that $X / q \cong X /\left(q^{C}, q\right)$. besides, it is clear that the mapping $\pi: X \longrightarrow X / q$, defined by $\pi(x)=x q$, is a strongly extensional surjective function.

Subset $C(x)=\{y \in X: y \neq x\}$ satisfies the following implication:

$$
y \in C(x) \wedge z \in X \Longrightarrow y \neq z \vee z \in C(x)
$$

It is called a principal strongly extensional subset of $X$ such that $x \bowtie C(x)$. Following this special case, for a subset $A$ of $X$, we say that it is a strongly extensional subset of $X$ if and only if the following implication

$$
x \in A \wedge y \in X \Longrightarrow x \neq y \vee y \in A
$$

holds.

Examples II: (1) ([7]) Let $T$ be a set and $J$ be a subfamily of $\wp(T)$ such that

$$
\emptyset \in J, A \subseteq B \wedge B \in J \Longrightarrow A \in J, A \cap B \in J \Longrightarrow A \in J \vee B \in J
$$

If $\left(X_{t}\right)_{t \in T}$ is a family of sets, then the relation $q$ on $\prod_{t \in T} X_{t}(\neq \emptyset)$, defined by $(f, g) \in q \Longleftrightarrow\{s \in T:(f(s)=g(s)\} \in J$, is a coequality relation on the Cartesian product $\prod_{t} X_{t}$.
(2) A ring $R$ is a local ring if for each $r \in R$, either $r$ or $1-r$ is a unit, and let $M$ be a module over $R$. The relation $q$ on $M$, defined by $(x, y) \in q$ if there exists a homomorphism $f: M \longrightarrow R$ such that $f(x-y)$ is a unit, is a coequality relation on $M$.
(3) ([11]) Let $T$ be a strongly extensional consistent subset of semigroup $S$, i.e. let $(\forall x, y \in S)(x y \in T \Longrightarrow x \in T \wedge y \in T)$ holds. Then, relation $q$ on semigroup $S$, defined by $(a, b) \in q$ if and only if $a \neq b \wedge(a \in T \vee b \in T)$, is a coequality relation on $S$ and compatible with semigroup operation in the following sense $(\forall x, y, a, b \in S)((x a y, x b y) \in q \Longrightarrow(a, b) \in q)$.
(4)Let $(R,=, \neq,+, 0, \cdot, 1)$ be a commutative ring. A subset $Q$ of $R$ is a coideal of $R$ if and only if

$$
\begin{gathered}
0 \bowtie Q,-x \in Q \Longrightarrow x \in Q, x+y \in Q \Longrightarrow x \in Q \vee y \in Q, \\
x y \in Q \Longrightarrow x \in Q \wedge y \in Q
\end{gathered}
$$

Coideals of commutative ring with apartness were first defined and studied by Ruitenburg 1982 in his dissertation. After that, coideals (anti-ideals) are studied by A.S. Troelstra and D. van Dalen in their monograph [18]. This author proved, in 1988], if $Q$ is a coideal of a ring $R$, then the relation $q$ on $R$, defined
by $(x, y) \in q \Longleftrightarrow x-y \in Q$, satisfies the following properties:
(a) $q$ is a coequality relation on $R$;
(b) $(\forall x, y, u, v \in R)((x+u, y+v) \in q \Longrightarrow(x, y) \in q \vee(u, v) \in q)$;
(c) $(\forall x, y, u, v \in R)((x u, y v) \in q \Longrightarrow(x, y) \in q \vee(u, v) \in q)$.

A relation $q$ on $R$, which satisfies the property (a)-(c), is called anticongruence on $R([4])$ or coequality relation compatible with ring operations. If $q$ is an anticongruence on a ring $R$, then the set $Q=\{x \in R:(x, 0) \in q\}$ is a coideal of $R$.

As in [12],[13], [14] and [15] a relation $\alpha$ on $X$ is antiorder on $X$ if and only if

$$
\alpha \subseteq \neq, \alpha \subseteq \alpha * \alpha, \quad \neq \subseteq \alpha \cup \alpha^{-1} \text { (linearity) }
$$

Let $g$ be a strongly extensional mapping of anti-ordered set from $(X,=, \neq, \alpha)$ into $(Y,=, \neq, \beta)$. For $g$ we say that it is:
(i) isotone if $(\forall a, b \in X)((a, b) \in \alpha \Longrightarrow(g(a), g(b)) \in \beta)$ holds;
(ii) reverse isotone if $(\forall a, b \in X)((g(a), g(b)) \in \beta \Longrightarrow(a, b) \in \alpha)$ holds.

A relation $\sigma$ on $X$ is a quasi-antiorder ([11]-[16]) on $X$ if

$$
\sigma \subseteq(\alpha \subseteq) \neq, \sigma \subseteq \sigma * \sigma
$$

It is clear that each coequality relation $q$ on set $X$ is a quasi-antiorder relation on $X$, and the apartness is a trivial anti-order relation on $X$. It is easy to check that if $\sigma$ is a quasi-antiorder on $X$, then ([10]) the relation $q=\sigma \cup \sigma^{-1}$ is a coequality relation on $X$. The notion of quasi-antiorder is defined for first time in article [8], and the notion of anti-order relation is defined for the first time in article [10]. Those relations and their properties are investigated by Baroni in [1], Bogdanić, Jojić and Romano in [3], Jojić and Romano in [6], and van Plato in [19] also.

Examples III: Let $a$ and $b$ be elements of semigroup $(S,=, \neq \cdot)$. Then ([11]), the set $C_{(a)}=\{x \in S: x \bowtie S a S\}$ is a consistent subset of $S$ such that : - $a \bowtie C_{(a)}$;

- $C_{(a)} \neq \emptyset \Longrightarrow 1 \in C_{(a)}$;
- Let $a$ be an invertible element of $S$. Then $C_{(a)}=\emptyset$;
- $(\forall x, y \in S)\left(C_{(a)} \subseteq C_{(x a y)}\right)$;
- $C_{(a)} \cup C_{(b)} \subseteq C_{(a b)}$.

Let $a$ be an arbitrary element of a semigroup $S$ with apartness. The consistent subset $C_{(a)}$ is called a principal consistent subset of $S$ generated by $a$. We introduce relation $f$, defined by $(a, b) \in f \Longleftrightarrow b \in C_{(a)}$. The relation $f$ has the
following properties ([11, Theorem 7]):

- $f$ is a consistent relation;
$-(a, b) \in f \Longrightarrow(\forall x, y \in S)((x a y, b) \in f) ;$
$-(a, b) \in f \Longrightarrow(\forall n \in \mathbf{N})\left(\left(a^{n}, b\right) \in f\right)$;
- $(\forall x, y \in S)((a, x b y) \in f \Longrightarrow(a, b) \in f)$;
- $(\forall x, y \in S)((a, x a y) \in f)$.

We can construct the cotransitive relation $c(f)=\bigcap^{n} f$ as cotransitive fulfillment of the relation $f([8]-[11],[15])$. As consequences of these assertions we have the following results. The relation $c(f)$ satisfies the following properties:

- $c(f)$ is a quasi-antiorder on $S$;
- $(\forall x, y \in S)((a, x a y) \bowtie c(f))$;
- $(\forall n \in \mathbf{N})\left(\left(a, a^{n}\right) \bowtie c(f)\right)$;
- $(\forall x, y \in S)((a, b) \in c(f) \Longrightarrow(x a y, b) \in c(f))$;
- $(\forall n \in \mathbf{N})((a, b) \in c(f) \Longrightarrow(a n, b) \in c(f)) ;$
- $(\forall x, y \in S)((a, x b y) \in c(f) \Longrightarrow(a, b) \in c(f))$.

For a given anti-ordered set $(X,=, \neq \alpha)$ is essential to know if there exists a coequality relation $q$ on $X$ such that $X / q$ is an anti-ordered set. This plays an important role for studying the structure of anti-ordered sets. The following question is natural: If $(X,=, \neq, \alpha)$ is an anti-ordered set and $q$ a coequality relation on $X$, is the factor-set $X / q$ anti-ordered set? Naturally, anti-order on $X / q$ should be the relation $\Theta$ on $X / q$ defined by means of the anti-order $\alpha$ on $X$ such that $\Theta=\{(x q, y q) \in X / q:(x, y) \in \alpha\}$, but it is not held in general case. The following question appears: Is there coequality relation $q$ on $X$ for which $X / q$ is an anti-ordered set such that the natural mapping $\pi: X \longrightarrow X / q$ is reverse isotone? The concept of quasi-antiorder relation was introduced by this author in his papers [8] and [9]-[16] (Particularly, in articles [10] and [14], the author investigated anti-ordered algebraic systems with apartness.). According to Lemma 0 in [12], if $(X,=, \neq)$ is a set and $\sigma$ is a quasi-antiorder on $X$, then ([12, Lemma 1]) the relation $q$ on $X$, defined by $q=\sigma \cup \sigma^{-1}$, is a coequality relation on $X$, and the set $X / q$ is an anti-ordered set under anti-order $\Theta$ defined by $(x q, y q) \in \Theta \Longleftrightarrow(x, y) \in \sigma$. So, according to results in [12] and [13], each quasi-antiorder $\sigma$ on an ordered set $X$ under anti-order $\alpha$ induces an coequality relation $q={ }_{2} \sigma \cup \sigma^{-1}$ on $X$ such that $X / q$ is an anti-ordered set under $\Theta$. (For a further study of quasi-antiorders on anti-ordered set we refer to papers [12], [13] and forthcoming the author's paper [17].) In paper [14] we proved that the converse of this statement also holds. If $(X,=, \neq, \alpha)$ is an anti-ordered set and $q$ coequality relation on $X$, and if there exists an order relation $\Theta_{1}$ on $X / q$ such that the $\left(X / q,=_{1}, F_{1}, \Theta_{1}\right)$ is an anti-ordered and the mapping $\pi: X \longrightarrow X / q$ is reverse isotone (so-called regular coequality), then there exists a quasi-antiorder $\sigma$ on $X$ such that $q={ }_{2} \sigma \cup \sigma^{-1}$. So, each regular coequality $q$ on a set $(X,=, \neq, \alpha)$
induces a quasi-antiorder on $X$. Besides, connections between the family of all quasi-antiorders on $X$, the family of coequality relations on $X$, and the family of all regular coequality relations $q$ on $X$ are given.

Lemma 1.1 Let $\tau$ be a quasi-antiorder on set $X$. Then $x \tau(\tau x)$ is a strongly extensional subset of $X$, such that $x \bowtie x \tau(x \bowtie \tau x)$, for each $x \in X$. Besides, the following implication $(x, z) \in \tau \Longrightarrow x \tau \cup \tau z=X$ holds for each $x, z$ of $X$.

Proof: From $\tau \subseteq \neq$ it follows $x \bowtie x \tau$. Let $y x \in \tau h o l d s$, and let $z$ be an arbitrary element of $X$. Thus, $(x, y) \in \tau$ and $(x, z) \in \tau \vee(z, y) \in \tau$. So, we have $z \in x \tau \vee y \neq z$. Therefore, $x \tau$ is a strongly extensional subset of $X$ such that $x \bowtie x \tau$.
The proof that $\tau x$ is a strongly extensional subset of $X$ such that $x \bowtie \tau x$ is analogous. Besides, the following implication $(x, z) \in \tau \Longrightarrow x \tau \cup \tau z=X$ holds for each $x, y$ of $X$. Indeed, if $(x, z) \in \tau$ and $y$ is an arbitrary element of $X$, then $(\forall y \in X)((x, y) \in \tau \vee(y, z) \in \tau)$. Thus, $X=x \tau \cup \tau z$.

Let $\tau$ be a quasi-antiorder on set $X$. Then for every pair $(x, z)$ of $\tau$ there exists a pair $\left(A_{x}, B_{z}\right)$ of strongly extensional subsets of $X$ such that $x \bowtie A_{x} \wedge z \bowtie$ $B_{z}$ and $X=A_{x} \cup B_{z}$ and $x \in B_{z} \wedge z \in A_{x}$.

Example IV: If $A$ is a strongly extensional subset of $X$, then the relation $\sigma$ on $X$, defined by $(x, y) \in \sigma \Longleftrightarrow x \in A \wedge x \neq y$, is a quasi-antiorder relation on $X$.

Proof: It is clear that $\sigma$ is a consistent relation on $X$. Assume $(x, z) \in \sigma$ and let $y$ be an arbitrary element of $X$. Then, $x \in A \wedge x \neq z$. Thus, $x \neq y \vee y \neq z$. If $x \neq y$ and $x \in A$, then $(x, y) \in \sigma$. If $y \neq z$ and $x \in A$, by strongly extensionality of $A$, we have $y \neq z$ and $x \in A$ and $x \neq y \vee y \in A$. In the case of $y \neq z \wedge x \in A \wedge x \neq y$ we have again $(x, y) \in \sigma$; in the case of $y \neq z$ and $x \in A$ and $y \in A$ we have $(y, z) \in \sigma$. So, the relation $\sigma$ is a cotransitive relation. Therefore, relation $\sigma$ is a quasi-antiorder relation on $X$. Further on, we have:

$$
\begin{gathered}
x \in A \Longrightarrow x \sigma=C(x), \neg(x \in A) \Longrightarrow x \sigma=\emptyset \\
y \in A \Longrightarrow \sigma y=C(y) \cap A, y \bowtie A \Longrightarrow \sigma y=A .
\end{gathered}
$$

## 2 Main Results

In the following proposition we give a connection between the family $\Im(X)$ of all quasi-antiorders on set $X$ and the family $\mathbf{q}(X)$ of all coequality relation on X

For a set $(X,=, \neq, \alpha)$ by $\Re(X, \alpha)$ we denote the family of all regular coequality relations $q$ on $X$ with respect to $\alpha$, and by $\Im(X, \alpha)$ denotes the family of all quasi-antiorder relation on $X$ included in $\alpha$.

Let us note that families $\Im(X), \Im(X, \alpha)$ and $\mathbf{q}(X)$ are complete lattices. Indeed, in the following two theorems we give proofs for those facts:

Theorem 2.1 If $\left\{\tau_{k}\right\}_{k \in J}$ is a family of quasi-antiorders on a set $(X,=, \neq)$, then $\bigcup_{k \in J} \tau_{k}$ and $c\left(\bigcap_{k \in J} \tau_{k}\right)$ are quasi-antiorders in $X$. So, the families $\Im(X)$ and $\Im(X, \alpha)$ are complete lattices.

Proof: (1) Let $\left\{\tau_{k}\right\}_{k \in J}$ is a family of quasi-antiorders on a set $(X,=, \neq)$ and let $x, z$ be an arbitrary elements of $X$ such that $(x, z) \in \bigcup_{k \in J} \tau_{k}$. Then, there exists $k$ in $J$ such that $(x, z) \in \tau_{k}$. Hence, for every $y \in X$ we have $(x, y) \in$ $\tau_{k} \vee(y, z) \in \tau_{k}$. So, $(x, y) \in \bigcup_{k \in J} \tau_{k} \vee(y, z) \in \bigcup_{k \in J} \tau_{k}$. On the other hand, for every $k$ in $J$ holds $\tau_{k} \subseteq \neq$. From this we have $\bigcup_{k \in J} \tau_{k} \subseteq \neq$. So, we can put $\sup \left\{\tau_{k}: k \in J\right\}=\bigcup_{k \in J} \tau_{k}$.
(2) Let $R(\subseteq \neq)$ be a relation on a set $(X,=, \neq)$. Then for an inhabited family of quasi-antiorders under $R$ there exists the biggest quasi-antiorder relation under $R$. That relation is exactly the relation $c(R)$. In fact:
By (1), there exists the biggest quasi-antiorder relation on $X$ under $R$. Let $Q_{R}$ be the inhabited family of all quasi-antiorder relation on $X$ under $R$. With ( $R$ ) we denote the biggest quasi-antiorder relation $\bigcup Q_{R}$ on $X$ under $R$. On the other hand, the fulfillment $c(R)=\bigcap_{n \in N}{ }^{n} R$ of the relation $R$ is a cotransitive relation on set $X$ under $R$. Therefore, $c(R) \subseteq(R)$ holds.
We need to show that $(R) \subseteq c(R)$. Let $\tau\left(\subseteq(R)=\bigcup Q_{R}\right)$ be a quasi-antiorder relation in $X$ under $R$. Firstly, we have $\tau \subseteq R={ }^{1} R$. Assume $(x, z) \in \tau$. Then, out of $(\forall y \in X)((x, y) \in \tau \vee(y, z) \in \tau)$ we conclude that for every $y$ in $X$ holds $(x, y) \in R \vee(y, z) \in R$, i.e. holds $(x, z) \in R * R={ }^{2} R$. So, we have $\tau \subseteq{ }^{2} R$. Now, we will suppose that $\tau \subseteq{ }^{n} R$, and suppose that $(x, z) \in \tau$. Then, $(\forall y \in X)((x, y) \in \tau \vee(y, z) \in \tau)$ implies that $(x, y) \in R \vee(y, z) \in{ }^{n} R$ holds for every $y \in X$. Therefore, $(x, z) \in{ }^{n+1} R$. So, we have $\tau \subseteq{ }^{n+1} R$. Thus, by induction, we have $\tau \subseteq \bigcap{ }^{n} R$. let us remember that $\tau$ is an arbitrary quasi-antiorder on $X$ under $R$. Hence, we proved that $(R)=\bigcup Q_{R} \subseteq c(R)$. If $\left\{\tau_{k}\right\}_{k \in J}$ is a family of quasi-antiorders on a set $(X,=, \neq)$, then $c\left(\bigcap_{k \in J} \tau_{k}\right)$ is a quasi-antiorder in $X$, and we can set $\inf \left\{\tau_{k}: k \in J\right\}=c\left(\bigcap_{k \in J} \tau_{k}\right)$.

Theorem 2.2 Let $(X,=, \neq)$ be a set with apartness. The family $\boldsymbol{q}(X)$ is a complete lattice.

Proof: If $\left\{q_{k}: k \in \Lambda\right\}$ is a family of coequality relations on $X$, then $\bigcup q_{k}$ and $c\left(\bigcap q_{k}\right)$ are coequality relations on $X$ such that $(\forall k \in \Lambda)\left(q_{k} \subseteq \bigcup q_{k}\right)$ and $(\forall k \in \Lambda)\left(c\left(\bigcap q_{k}\right) \subseteq q_{k}\right)$. Since $\bigcup q_{k}$ is the minimal extension of every $q_{k}$ we can put $\sup \left\{q_{k}: k \in \Lambda\right\}=\bigcup q_{k}$, and since $c\left(\bigcap q_{k}\right)$ is the maximal coequality relation under $\bigcap q_{k}\left(\subseteq q_{k}\right)$ we can set $\inf \left\{q_{k}: k \in \Lambda\right\}=c\left(\bigcap q_{k}\right)$.

## References

[1] M.A.Baroni: Constructive Order Completeness; Report UCDMS 2004/12, University of Canterbury, Christchurch, New Zealand.
[2] E. Bishop: Foundations of Constructive Analysis; McGraw-Hill, New York 1967
[3] D.Bogdanić, D.A.Romano and M.Vinčić: A Connection between Quasiantiorders and Pairs of Coequalities; Bull. Soc. Math. Banja Luka, 15(2008), 9-15
[4] D. S. Bridges and F. Richman, Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987
[5] D. S. Bridges and L.S.Vita, Techniques of constructive analysis, Springer, New York 2006
[6] D.Jojić and D.A.Romano: Quasi-antiorder Relational Systems; International Journal of Contemporary Mathematical Sciences, 3(27)(2008), 13071315
[7] D.A.Romano: Equality and Coequality Relations on the Cartesian Product of Sets; MLQ (Formerly: Z.Math.Logik Grundl. Math.), 34(5)(1988), 471480
[8] D.A.Romano: Coequality Relation; Bull. Soc. Math. Banja Luka, 3(1996), 1-36
[9] D.A.Romano: On Construction of Maximal Coequality Relation and its Applications; In: Proceedings of 8th international conference on Logic and Computers Sciences "LIRA '97", Novi Sad, September 1-4, 1997, (Editors: R.Tošić and Z.Budimac) Institute of Mathematics, Novi Sad 1997, 225-230
[10] D.A.Romano: Semivaluation on Heyting Field; Kragujevac J. Math., 20(1998), 24-40
[11] D.A.Romano: Some Relations and Subsets of Semigroup with Apartness Generated by the Principal Consistent Subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13(2002), 7-25
[12] D.A.Romano: The Second Isomorphism Theorem on Ordered Set Under Antiorders; Kragujevac J. Math., 30(2007), 235-242
[13] D.A.Romano: A Note on Quasi-antiorder in Semigroup; Novi Sad J.Math., 37(1)(2007), 3-8
[14] D.A.Romano: On Regular Anticongruence in Anti-ordered Semigroups; Publications de l'Institut Mathematique, 81(95)(2007), 95-102
[15] D.A.Romano: An Isomorphism Theorem for Anti-ordered Sets; Filomat, 22(1)(2008), 145-160
[16] D.A.Romano: A Remark on Coequality Relation on Anti-ordered Set; International Journal of Contemporary Mathematical Sciences, 3(1)(2008), 43-48
[17] D.A.Romano: On Quasi-antiorders and Coequality Relations; 1-12 pp. (To appear)
[18] A.S. Troelstra and D. van Dalen: Constructivism in Mathematics, An Introduction; North-Holland, Amsterdam 1988
[19] J. von Plato: Positive lattices, Reuniting the Antipodes-Constructive and Nonstandard Views of the Continuum (Schuster, P., Berger, U.,Osswald H. eds.), Kluwer Academic Publishers, Dordrecht, 2001, 185-197.

Received by the editors on October 13, 2009, and revised version on December 21, 2009


[^0]:    ${ }^{1}$ This paper is partially supported by the Ministry of Science and Technology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
    ${ }^{2}$ Faculty of Education, 76300 Bijeljina, 24 Sveti Sava Street, Bosnia and Herzegovina
    ${ }^{3}$ Faculty of Mechanical Engineering, 78000 Banja Luka, 75, Vojvoda Stepa Stepanović Street, Bosnia and Herzegovina

