SOME NOTES ON QUASI-ANTIORDERS AND COEQUALITY RELATIONS

Daniel A. Romano and Milovan Vinčić

Abstract

It is known that each quasi-antiorder on anti-ordered set X induces coequality q on X such that X/q is an anti-ordered set. The converse of this statement also holds: Each coequality q on a set X such that X/q is anti-ordered set induces a quasi-antiorder on X. In this paper we give proofs that the families of all coequality relations q on X and the family of all quasi-antiorder relation on set X are complete lattices.

AMS Mathematics Subject Classification (2010): Primary 03F65, Secondary: 03E04

Key words and phrases: Constructive mathematics, set with apartness, coequality, anti-order and quasi-antiorder relations

1 Introduction and preliminary

This short investigation, in Bishop’s constructive mathematics in the sense of well-known books [2], [4], [6] and [18] and Bogdanić, Romano and Vinčić’s paper [3], Jojić and Romano’s paper [6], and Romano’s papers [7]-[16], is continuation of forthcoming the second author’s papers [17]. Bishop’s constructive mathematics is developed on Constructive Logic - logic without the Law of Excluded Middle \(P \lor \neg P \). Let us note that in the Constructive Logic the ‘Double Negation Law’ \(\neg\neg P \Rightarrow P \) does not hold, but the following implication \(P \Rightarrow \neg\neg P \) does even in the Minimal Logic. Since the Constructive Logic is a part of the Classical Logic, these results, in the Constructive mathematics, are compatible with suitable results in the Classical mathematics. Let us recall that the following deduction principle \(A \lor B, \neg B \vdash A \) is acceptable in the Constructive Logic.

Let \((X, =, \neq) \) be a set, where the relation \(\neq \) is a binary relation on \(X \), called diversity on \(X \), which satisfies the following properties:

\[
\neg(x \neq x), \ x \neq y \Rightarrow y \neq x, \ x \neq y \land y = z \Rightarrow x \neq z.
\]

1This paper is partially supported by the Ministry of Science and Technology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina

2Faculty of Education, 76300 Bijeljina, 24 Sveti Sava Street, Bosnia and Herzegovina

3Faculty of Mechanical Engineering, 78000 Banja Luka, 75, Vojvoda Stepa Stepanović Street, Bosnia and Herzegovina
Following Heyting, if the following implication $x \neq z \implies x \neq y \lor y \neq z$ holds, the diversity \neq is called apartness. Let x be an element of X and A a subset of X. We write $x \ll A$ if and only if $(\forall a \in A)(x \neq a)$, and $A^C = \{x \in X : x \ll A\}$.

In $X \times X$ the equality and diversity are defined by $(x, y) = (u, v) \iff x = u \land y = v$, $(x, y) \neq (u, v) \iff x \neq u \lor y \neq v$, and equality and diversity relations in power-set $\wp(X \times X)$ of $X \times X$ by

$$\alpha =_2 \beta \iff (\forall (x, y) \in X \times X)((x, y) \in \alpha \iff (x, y) \in \beta),$$

$$\alpha \neq_2 \beta \iff (\exists x, y \in X)((x, y) \in \alpha \land (x, y) \ll \beta) \lor (\exists x, y \in X)((x, y) \in \beta \land (x, y) \ll \alpha).$$

Let us note that the diversity relation \neq_2 is not an apartness relation in general case.

Example I: (1) The relation $\neg(=)$ is an apartness on the set \mathbb{Z} of integers.

(2) The relation q, defined on the set $\mathbb{Q} \cap \mathbb{N}$ by

$$(f, g) \in q \iff (\exists k \in \mathbb{N})(\exists n \in \mathbb{N})(m \geq n \implies |f(m) - g(m)| > k^{-1}),$$

is an apartness relation. ♦

A relation q on X is a coequality relation ([7]-[9]) on X if and only if it is consistent, symmetric and cotransitive:

$$q \subseteq \neq, \quad q = q^{-1}, \quad q \subseteq q \ast q,$$

where ”\ast” is the operation of relations $\alpha \subseteq X \times X$ and $\beta \subseteq X \times X$, called filled product ([8], [9], [12]-[14]) of relations α and β, are relation on X defined by

$$(a, c) \in \beta \ast \alpha \iff (\forall b \in X)((a, b) \in \alpha \lor (b, c) \in \beta).$$

For further study of coequality relation we suggest to read articles [8], [11], [13]-[16] (Specially, in articles [10], [12], [13] and [14], the author researches coequality relations compatible with the algebraic operations.) In article [7] and [8], problems of the existence of compatible equality and coequality relations on set with apartness are discussed. In article [9], the author has proved the following: If e is an equivalence on set X, then there exists the maximal coequality relation q on X compatible with e in the following sense:

$$e \circ q \subseteq q \text{ and } q \circ e \subseteq q.$$
Also, we can ([8],[11]) construct the factor-set \(X/q = \{aq : a \in X\} \): If \(q \) is a coequality relation on a set \(X \), then \(X/q \) is a set with:

\[
aq = _1 bq \iff (a,b) \trianglerighteq q, \quad aq \neq _1 bq \iff (a,b) \in q.
\]

It is easily to check that \(X/q \cong X/(q^C,q) \), besides, it is clear that the mapping \(\pi : X \longrightarrow X/q \), defined by \(\pi(x) = xq \), is a strongly extensional surjective function.

Subset \(C(x) = \{y \in X : y \neq x\} \) satisfies the following implication:

\[
y \in C(x) \land z \in X \implies y \neq z \lor z \in C(x).
\]

It is called a principal strongly extensional subset of \(X \) such that \(x \bowtie C(x) \). Following this special case, for a subset \(A \) of \(X \), we say that it is a strongly extensional subset of \(X \) if and only if the following implication

\[
x \in A \land y \in X \implies x \neq y \lor y \in A
\]

holds.

Examples II: (1) ([7]) Let \(T \) be a set and \(J \) be a subfamily of \(\wp(T) \) such that

\[
\emptyset \in J, \quad A \subseteq B \land B \in J \implies A \in J, \quad A \cap B \in J \implies A \in J \lor B \in J.
\]

If \((X_t)_{t \in T} \) is a family of sets, then the relation \(q \) on \(\prod_{t \in T} X_t(\neq \emptyset) \), defined by \((f,g) \in q \iff \{s \in T : (f(s) = g(s)) \in J \} \), is a coequality relation on the Cartesian product \(\prod X_t \).

(2) A ring \(R \) is a local ring if for each \(r \in R \), either \(r \) or \(1 - r \) is a unit, and let \(M \) be a module over \(R \). The relation \(q \) on \(M \), defined by \((x,y) \in q \) if there exists a homomorphism \(f : M \longrightarrow R \) such that \(f(x-y) \) is a unit, is a coequality relation on \(M \).

(3) ([11]) Let \(T \) be a strongly extensional consistent subset of semigroup \(S \), i.e. let \((\forall x,y \in S)(xy \in T \implies x \in T \land y \in T) \) holds. Then, relation \(q \) on semigroup \(S \), defined by \((a,b) \in q \) if and only if \(a \neq b \land (a \in T \lor b \in T) \), is a coequality relation on \(S \) and compatible with semigroup operation in the following sense \((\forall x,y,a,b \in S)((xay,xbg) \in q \implies (a,b) \in q) \).

(4) Let \((R,.,\neq,+,0,.,1) \) be a commutative ring. A subset \(Q \) of \(R \) is a coideal of \(R \) if and only if

\[
0 \bowtie Q, \quad -x \in Q \implies x \in Q, \quad x + y \in Q \implies x \in Q \land y \in Q, \quad xy \in Q \implies x \in Q \land y \in Q.
\]

Coideals of commutative ring with apartness were first defined and studied by Ruitenburg 1982 in his dissertation. After that, coideals (anti-ideals) are studied by A.S. Troelstra and D. van Dalen in their monograph [18]. This author proved, in 1988, if \(Q \) is a coideal of a ring \(R \), then the relation \(q \) on \(R \), defined
by \((x, y) \in q \iff x - y \in Q\), satisfies the following properties:

(a) \(q\) is a coequality relation on \(R\);

(b) \((\forall x, y, u, v \in R)((x + u, y + v) \in q \implies (x, y) \in q \lor (u, v) \in q)\);

(c) \((\forall x, y, u, v \in R)((xu, yv) \in q \implies (x, y) \in q \lor (u, v) \in q)\).

A relation \(q\) on \(R\), which satisfies the property (a)-(c), is called anticongruence on \(R\) ([4]) or coequality relation compatible with ring operations. If \(q\) is an anti-congruence on a ring \(R\), then the set \(Q = \{x \in R : (x, 0) \in q\}\) is a coideal of \(R\).

As in [12],[13], [14] and [15] a relation \(\alpha\) on \(X\) is antiorder on \(X\) if and only if
\[
\alpha \not\subseteq \neq, \alpha \subseteq \alpha \ast \alpha, \neq \not\subseteq \alpha \cup \alpha^{-1} \text{ (linearity)}.
\]

Let \(g\) be a strongly extensional mapping of anti-ordered set from \((X, =, \neq, \alpha)\) into \((Y, =, \neq, \beta)\). For \(g\) we say that it is:

(i) isotone if \((\forall a, b \in X)((a, b) \in \alpha \implies (g(a), g(b)) \in \beta)\) holds;

(ii) reverse isotone if \((\forall a, b \in X)((g(a), g(b)) \in \beta \implies (a, b) \in \alpha)\) holds.

A relation \(\sigma\) on \(X\) is a quasi-antiorder ([11]-[16]) on \(X\) if
\[
\sigma \subseteq (\alpha \subseteq) \neq, \sigma \subseteq \sigma \ast \sigma.
\]

It is clear that each coequality relation \(q\) on set \(X\) is a quasi-antiorder relation on \(X\), and the apartness is a trivial anti-order relation on \(X\). It is easy to check that if \(\sigma\) is a quasi-antiorder on \(X\), then ([10]) the relation \(q = \sigma \cup \sigma^{-1}\) is a coequality relation on \(X\). The notion of quasi-antiorder is defined for first time in article [8], and the notion of anti-order relation is defined for the first time in article [10]. Those relations and their properties are investigated by Baroni in [1], Bogdanić, Jojić and Romano in [3], Jojić and Romano in [6], and van Plato in [19] also.

Examples III: Let \(a\) and \(b\) be elements of semigroup \((S, =, \neq, \cdot)\). Then ([11]), the set \(C(a) = \{x \in S : x \cong SaS\}\) is a consistent subset of \(S\) such that :
- \(a \in C(a)\);
- \(C(a) \not= \emptyset \implies 1 \in C(a)\);
- Let \(a\) be an invertible element of \(S\). Then \(C(a) = \emptyset\);
- \((\forall x, y \in S)(C(a) \subseteq C(xy))\);
- \(C(a) \cup C(b) \subseteq C(ab)\).

Let \(a\) be an arbitrary element of a semigroup \(S\) with apartness. The consistent subset \(C(a)\) is called a principal consistent subset of \(S\) generated by \(a\). We introduce relation \(f\), defined by \((a, b) \in f \iff b \in C(a)\). The relation \(f\) has the
Some Notes on Quasi-antiorders and Coequality relations

following properties ([11, Theorem 7]):
- \(f \) is a consistent relation ;
- \((a, b) \in f \implies (\forall x, y \in S)((xy, b) \in f) \);
- \((a, b) \in f \implies (\forall n \in \mathbb{N})((a^n, b) \in f) \);
- \((\forall x, y \in S)((a, xby) \in f \implies (a, b) \in f) ;
- \((\forall x, y \in S)((a, xby) \in f) \).

We can construct the cotransitive relation \(c(f) = \bigcap^n f \) as cotransitive fulfillment of the relation \(f \) ([8]-[11],[15]). As consequences of these assertions we have the following results. The relation \(c(f) \) satisfies the following properties:
- \(c(f) \) is a quasi-antiorder on \(S \);
- \((\forall x, y \in S)((a, xay) \Rightarrow c(f)) \);
- \((\forall n \in \mathbb{N})((a, a^n) \Rightarrow c(f)) \);
- \((\forall x, y \in S)((a, b) \in c(f) \Rightarrow (xay, b) \in c(f)) \);
- \((\forall n \in \mathbb{N})((a, b) \in c(f) \Rightarrow (an, b) \in c(f)) \);
- \((\forall x, y \in S)((a, xby) \in c(f) \Rightarrow (a, b) \in c(f)). \)

For a given anti-ordered set \((X, =, \neq, \alpha)\) is essential to know if there exists a coequality relation \(q \) on \(X \) such that \(X/q \) is an anti-ordered set. This plays an important role for studying the structure of anti-ordered sets. The following question is natural: If \((X, =, \neq, \alpha)\) is an anti-ordered set and \(q \) a coequality relation on \(X \), is the factor-set \(X/q \) anti-ordered set? Naturally, anti-order on \(X/q \) should be the relation \(\Theta \) on \(X/q \) defined by means of the anti-order \(\alpha \) on \(X \) such that \(\Theta = \{(xq, yq) \in X/q : (x, y) \in \alpha\} \), but it is not held in general case. The following question appears: Is there coequality relation \(q \) on \(X \) for which \(X/q \) is an anti-ordered set such that the natural mapping \(\pi : X \twoheadrightarrow X/q \) is reverse isotone? The concept of quasi-antiorder relation was introduced by this author in his papers [8] and [9]-[16] (Particularly, in articles [10] and [14], the author investigated anti-ordered algebraic systems with apartness.). According to Lemma 0 in [12], if \((X, =, \neq)\) is a set and \(\sigma \) is a quasi-antiorder on \(X \), then ([12, Lemma 1]) the relation \(q \) on \(X \), defined by \(q = \sigma \cup \sigma^{-1} \), is a coequality relation on \(X \), and the set \(X/q \) is an anti-ordered set under anti-order \(\Theta \) defined by \((xq, yq) \in \Theta \iff (x, y) \in \sigma \). So, according to results in [12] and [13], each quasi-antiorder \(\sigma \) on an ordered set \(X \) under anti-order \(\alpha \) induces an coequality relation \(q = \sigma \cup \sigma^{-1} \) on \(X \) such that \(X/q \) is an anti-ordered set under \(\Theta \). (For a further study of quasi-antiorders on anti-ordered set we refer to papers [12], [13] and forthcoming the author’s paper [17].) In paper [14] we proved that the converse of this statement also holds. If \((X, =, \neq, \alpha)\) is an anti-ordered set and \(q \) coequality relation on \(X \), and if there exists an order relation \(\Theta_1 \) on \(X/q \) such that the \((X/q, =_{1}, \neq_{1}, \Theta_1)\) is an anti-ordered and the mapping \(\pi : X \twoheadrightarrow X/q \) is reverse isotone (so-called regular coequality), then there exists a quasi-antiorder \(\sigma \) on \(X \) such that \(q = \sigma \cup \sigma^{-1} \). So, each regular coequality \(q \) on a set \((X, =, \neq, \alpha)\)
induces a quasi-antiorder on \(X \). Besides, connections between the family of all quasi-antiorders on \(X \), the family of coequality relations on \(X \), and the family of all regular coequality relations \(q \) on \(X \) are given.

Lemma 1.1 Let \(\tau \) be a quasi-antiorder on set \(X \). Then \(x \tau (\tau x) \) is a strongly extensional subset of \(X \), such that \(x \bowtie x \tau x \), for each \(x \in X \). Besides, the following implication \((x, z) \in \tau \Rightarrow x \tau \cup \tau z = X \) holds for each \(x, z \) of \(X \).

Proof: From \(\tau \subseteq \not\exists \) it follows \(x \bowtie x \tau \). Let \(yz \in \tau \) holds, and let \(z \) be an arbitrary element of \(X \). Thus, \((x, y) \in \tau \) and \((x, z) \in \tau \cap (z, y) \in \tau \). So, we have \(z \in x \tau \cup y \not\bowtie z \). Therefore, \(x \tau \) is a strongly extensional subset of \(X \) such that \(x \bowtie x \tau \).

The proof that \(\tau x \) is a strongly extensional subset of \(X \) such that \(x \bowtie \tau x \) is analogous. Besides, the following implication \((x, z) \in \tau \Rightarrow x \tau \cup \tau z = X \) holds for each \(x, y \) of \(X \). Indeed, if \((x, z) \in \tau \) and \(y \) is an arbitrary element of \(X \), then \((\forall y \in X)((x, y) \in \tau \cap (y, z) \in \tau) \). Thus, \(X = x \tau \cup \tau z \). \(\square \)

Let \(\tau \) be a quasi-antiorder on set \(X \). Then for every pair \((x, z)\) of \(\tau \) there exists a pair \((A_x, B_z)\) of strongly extensional subsets of \(X \) such that \(x \bowtie A_x \land z \bowtie B_z \) and \(X = A_x \cup B_z \) and \(x \in B_z \land z \in A_x \).

Example IV: If \(A \) is a strongly extensional subset of \(X \), then the relation \(\sigma \) on \(X \), defined by \((x, y) \in \sigma \iff x \in A \land x \not\bowtie y \), is a quasi-antiorder relation on \(X \).

Proof: It is clear that \(\sigma \) is a consistent relation on \(X \). Assume \((x, z) \in \sigma \) and let \(y \) be an arbitrary element of \(X \). Then, \(x \in A \land x \not\bowtie y \). Thus, \(x \not\bowtie y \lor y \not\bowtie z \).

If \(x \not\bowtie y \) and \(x \in A \), then \((x, y) \in \sigma \). If \(y \not\bowtie z \) and \(x \in A \), by strongly extensionality of \(A \), we have \(y \not\bowtie z \) and \(x \in A \) and \(x \not\bowtie y \lor y \in A \). In the case of \(y \not\bowtie z \land x \in A \land x \not\bowtie y \) we have again \((x, y) \in \sigma \); in the case of \(y \not\bowtie z \) and \(x \in A \) and \(y \in A \) we have \((y, z) \in \sigma \). So, the relation \(\sigma \) is a cotransitive relation.

Therefore, relation \(\sigma \) is a quasi-antiorder relation on \(X \). Further on, we have:

\[
x \in A \Rightarrow x\sigma = C(x), \quad \neg(x \in A) \Rightarrow x\sigma = \emptyset;
\]

\[
y \in A \Rightarrow y\sigma = C(y) \cap A, \quad y \bowtie A \Rightarrow y\sigma = A. \checkmark
\]

2 Main Results

In the following proposition we give a connection between the family \(\mathcal{Z}(X) \) of all quasi-antiorders on set \(X \) and the family \(\mathcal{Q}(X) \) of all coequality relation on \(X \).

For a set \((X, \bowtie, \not\bowtie, \alpha)\) by \(\mathfrak{R}(X, \alpha) \) we denote the family of all regular coequality relations \(q \) on \(X \) with respect to \(\alpha \), and by \(\mathcal{Z}(X, \alpha) \) denotes the family of all quasi-antiorder relation on \(X \) included in \(\alpha \).

Let us note that families \(\mathcal{Z}(X) \), \(\mathcal{Z}(X, \alpha) \) and \(\mathcal{Q}(X) \) are complete lattices. Indeed, in the following two theorems we give proofs for those facts:
Some Notes on Quasi-antiorders and Coequality relations

Theorem 2.1 If $\{\tau_k\}_{k \in J}$ is a family of quasi-antiorders on a set $(X,=,\neq)$, then $\bigcup_{k \in J} \tau_k$ and $c(\bigcap_{k \in J} \tau_k)$ are quasi-antiorders in X. So, the families $\Im(X)$ and $\Im(X,\alpha)$ are complete lattices.

Proof: (1) Let $\{\tau_k\}_{k \in J}$ be a family of quasi-antiorders on a set $(X,=,\neq)$ and let x, z be an arbitrary elements of X such that $(x,z) \in \bigcup_{k \in J} \tau_k$. Then, there exists k in J such that $(x,z) \in \tau_k$. Hence, for every $y \in X$ we have $(x,y) \in \tau_k \lor (y,z) \in \tau_k$. So, $(x,y) \in \bigcup_{k \in J} \tau_k \lor (y,z) \in \bigcup_{k \in J} \tau_k$. On the other hand, for every k in J holds $\tau_k \subseteq \neq$. From this we have $\bigcup_{k \in J} \tau_k \subseteq \neq$. So, we can put $\text{sup} \{\tau_k : k \in J\} = \bigcup_{k \in J} \tau_k$.

(2) Let $R (\subseteq \neq)$ be a relation on a set $(X,=,\neq)$. Then for an inhabited family of quasi-antiorders under R there exists the biggest quasi-antiorder relation under R. That relation is exactly the relation $c(R)$. In fact:

By (1), there exists the biggest quasi-antiorder relation on X under R. Let Q_R be the inhabited family of all quasi-antiorder relation on X under R. With (R) we denote the biggest quasi-antiorder relation $\bigcup Q_R$ on X under R. On the other hand, the fulfillment $c(R) = \bigcap_{n \in N} n R$ of the relation R is a cotransitive relation on set X under R. Therefore, $c(R) \subseteq (R)$ holds.

We need to show that $(R) \subseteq c(R)$. Let $\tau (\subseteq (R) = \bigcup Q_R)$ be a quasi-antiorder relation in X under R. Firstly, we have $\tau \subseteq R = \text{sup} R$. Assume $(x,z) \in \tau$. Then, out of $(\forall y \in X)((x,y) \in \tau \lor (y,z) \in \tau)$ we conclude that for every y in X holds $(x,y) \in R \lor (y,z) \in R$, i.e. holds $(x,z) \in R^+ = \text{sup} R$. So, we have $\tau \subseteq \text{sup} R$. Now, we will suppose that $\tau \subseteq n R$, and suppose that $(x,z) \in \tau$. Then, $(\forall y \in X)((x,y) \in \tau \lor (y,z) \in \tau)$ implies that $(x,y) \in R \lor (y,z) \in n R$ holds for every $y \in X$. Therefore, $(x,z) \in n^+ R$. So, we have $\tau \subseteq n^+ R$. Thus, by induction, we have $\tau \subseteq \bigcap n R$. Let us remember that τ is an arbitrary quasi-antiorder on X under R. Hence, we proved that $(R) \subseteq \bigcup Q_R \subseteq c(R)$. If $\{\tau_k : k \in J\}$ is a family of quasi-antiorders on a set $(X,=,\neq)$, then $c(\bigcap_{k \in J} \tau_k)$ is a quasi-antiorder in X, and we can set $\text{inf} \{\tau_k : k \in J\} = c(\bigcap_{k \in J} \tau_k)$.

Theorem 2.2 Let $(X,=,\neq)$ be a set with aparness. The family $q(X)$ is a complete lattice.

Proof: If $\{q_k : k \in \Lambda\}$ is a family of coequality relations on X, then $\bigcup q_k$ and $c(\bigcap q_k)$ are coequality relations on X such that $(\forall k \in \Lambda)(q_k \subseteq q_k)$ and $(\forall k \in \Lambda)(c(\bigcap q_k) \subseteq q_k)$. Since $\bigcup q_k$ is the minimal extension of every q_k we can put $\text{sup} \{q_k : k \in \Lambda\} = \bigcup q_k$, and since $c(\bigcap q_k)$ is the maximal coequality relation under $\bigcap q_k (\subseteq q_k)$ we can set $\text{inf} \{q_k : k \in \Lambda\} = c(\bigcap q_k)$.

References

Some Notes on Quasi-antiorders and Coequality relations

Received by the editors on October 13, 2009, and revised version on December 21, 2009