FINITELY DUAL QUASI-NORMAL RELATION

Daniel Abraham Romano

Abstract

In this paper, following Jiang Guanghao and Xu Luoshan's concepts of finitely conjugative and finitely dual normal relations on sets, the concept of finitely dual quasi-normal relations is introduced. A characterization of that relations is obtained.

1. Introduction and Preliminaries

In this article, following concepts of finitely conjugative relations ([1], Jiang Guanghao and Xu Luoshan), finitely dual normal relations ([2], Jiang Guanghao and Xu Luoshan) and finitely quasi-conjugative relations ([5], D.A.Romano and M.Vinčić) introduced in their articles, we introduce and analyze notion of finitely dual quasi-normal relations on sets

For a set X, we call ρ a binary relation on X , if $\rho \subseteq X \times X$. Let $\mathcal{B}(X)$ be denote the set of all binary relations on X . For $\alpha, \beta \in \mathcal{B}(X)$, define

$$
\beta \circ \alpha=\{(x, z) \in X \times X:(\exists y \in X)((x, y) \in \alpha \wedge(y, z) \in \beta)\}
$$

The relation $\beta \circ \alpha$ is called the composition of α and β. It is well known that $(\mathcal{B}(X), \circ)$ is a semigroup. The latter family, with the composition, is not only a semigroup, but also a monoiod. Namely, $I d_{X}=\{(x, x): x \in X\}$ is its identity element. For a binary relation α on a set X, define $\alpha^{-1}=\{(x, y) \in X \times X:(y, x) \in$ $\alpha\}$ and $\alpha^{C}=(X \times X) \backslash \alpha$.

Let A and B be subsets of X. For $\alpha \in \mathcal{B}(X)$, set
$A \alpha=\{y \in X:(\exists a \in A)((a, y) \in \alpha)\}, \alpha B=\{x \in X:(\exists b \in B)((x, b) \in \alpha)\}$.
It is easy to see that $A \alpha=\alpha^{-1} A$ holds and $\left(\alpha^{C}\right)^{-1}=\left(\alpha^{-1}\right)^{C}$. Specially, we put $a \alpha$ instead of $\{a\} \alpha$ and αb instead of $\alpha\{b\}$.

The following classes of elements in the semigroup $\mathcal{B}(X)$ have been investigated: - dually normal ([2]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

[^0]$$
\alpha=\left(\alpha^{C}\right)^{-1} \circ \beta \circ \alpha .
$$

- conjugative ([1]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{-1} \circ \beta \circ \alpha
$$

- dually conjugative ([1]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha^{-1}
$$

- quasi-regular ([4]) if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{C} \circ \beta \circ \alpha
$$

Put $\alpha^{1}=\alpha$. It is easy to see that $\left(\alpha^{-1}\right)^{C}=\left(\alpha^{C}\right)^{-1}$ holds. Previous description gives equality

$$
\alpha=\left(\alpha^{a}\right)^{i} \circ \beta \circ\left(\alpha^{b}\right)^{j}
$$

for some $\beta \in \mathcal{B}(X)$ where $i, j \in\{-1,1\}$ and $a, b \in\{1, C\}$. We should investigate all other possibilities since some of possibilities given in the previous equation have been investigated. (See, for example, our article $[\mathbf{4}],[6],[\mathbf{7}]$ and $[\mathbf{8}]$.)

Notions and notations which are not explicitly exposed but are used in this article, reader can find them from book [3] and articles [1], [2] and [4], for an example.

2. Finitely dual quasi-normal relations

In this section we introduce the concept of finitely dual quasi-normal relations as a finite extension of dually quasi-normal relation, introduced in the forthcoming article [6], and give a characterization of that relations. For that we need the concept of finite extension of a relation. That notion and belonging notation we borrow from articles [1] and [2]. For any set X, let

$$
X^{(<\omega)}=\{F \subseteq X: F \text { is finite and nonempty }\}
$$

Definition 2.1 ([1], Definition 3.3; [2], Definition 3.4). Let α be a binary relation on a set X. Define a binary relation $\alpha^{(<\omega)}$ on $X^{(<\omega)}$, called the finite extension of α, by

$$
\left(\forall F, G \in X^{(<\omega)}\right)\left((F, G) \in \alpha^{(<\omega)} \Longleftrightarrow G \subseteq F \alpha\right)
$$

From this definition, we immediately obtain that

$$
\begin{gathered}
\left(\forall F, G \in X^{(<\omega)}\right)\left((F, G) \in\left(\alpha^{C}\right)^{(<\omega)} \Longleftrightarrow G \subseteq F \alpha^{C}\right) \\
\left(\forall F, G \in X^{(<\omega)}\right)\left((F, G) \in\left(\alpha^{-1}\right)^{(<\omega)} \Longleftrightarrow G \subseteq F \alpha^{-1}=\alpha F\right)
\end{gathered}
$$

and

$$
\left(\forall F, G \in X^{(<\omega)}\right)\left((F, G) \in\left(\left(\alpha^{-1}\right)^{C}\right)^{(<\omega)} \Longleftrightarrow G \subseteq F\left(\alpha^{C}\right)^{-1}=\alpha^{C} F\right)
$$

Notion of dually quasi-normal relation we borrow from paper [8].
Definition 2.2 ([8], Definition 2.1 (b)). For relation $\alpha \in \mathcal{B}(X)$ we say that it is a dually quasi-normal relation on X if exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\left(\alpha^{C}\right)^{-1} \circ \beta \circ \alpha^{C} .
$$

The family of dually quasi-normal relations on not empty. Let $\alpha \in \mathcal{B}(X)$ be a relation such that $\left(\alpha^{C}\right)^{-1} \circ \alpha^{C}=I d_{X}$. We have

$$
\begin{aligned}
\alpha= & I d_{X} \circ \alpha \circ I d_{X}=\left(\left(\alpha^{C}\right)^{-1} \circ \alpha^{C}\right) \circ \alpha \circ\left(\left(\alpha^{C}\right)^{-1} \circ \alpha^{C}\right)= \\
& \left(\alpha^{C}\right)^{-1} \circ\left(\alpha^{C} \circ \alpha \circ\left(\alpha^{C}\right)^{-1}\right) \circ \alpha^{C}=\left(\alpha^{C}\right)^{-1} \circ \beta \circ \alpha^{C} .
\end{aligned}
$$

Therefore, α is a dually quasi-normal relation.
Now, we can introduce concept of finitely dual quasi-normal relation.
Definition 2.3. A relation α on a set X is called finitely dual quasi-normal if there exists a relation $\beta^{(<\omega)}$ on $X_{(<\omega)}$ such that

$$
\alpha^{(<\omega)}=\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)} .
$$

Although it is seems, in accordance with Definition 2.2, it would be better to call a relation α on X to be finitely dual quasi-normal it its a finite extension to $X^{(<\omega)}$ is a dually quasi-normal relation, we will not use that option. That concept is different from our concept given by Definition 2.3.

Now we give an essential characterization of finitely dual quasi-normal relations.
Theorem 2.1. A relation α on a set X if a finitely dual quasi-normal relation if and only if for all $F, G \in X^{(<\omega)}$, if $G \subseteq F \alpha$, then there are $U, V \in X^{(<\omega)}$, such that
(i) $U \subseteq F \alpha^{C}, G \subseteq \alpha^{C} V$, and
(ii) for all $S, T \in X^{(<\omega)}$, if $U \subseteq S \alpha^{C}$ and $T \subseteq \alpha^{C} V$ then $T \subseteq S \alpha$.

Proof. (1) Let α be a finitely dual quasi-normal relation on set X. Then there is a relation $\beta^{(<\omega)} \subseteq X^{(<\omega)} \times X^{(<\omega)}$ such that $\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)}=$ $\alpha^{(<\omega)}$. For all $(F, G) \in\left(X^{(<\omega)}\right)^{2}$, if $G \subseteq F \alpha$, i.e., $(F, G) \in \alpha^{(<\omega)}$, thus $(F, G) \in$ $\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)}$. Whence there is $(U, V) \in\left(X^{(<\omega)}\right)^{2}$ such that $(F, U) \in\left(\alpha^{C}\right)^{(<\omega)},(U, V) \in \beta^{(<\omega)}$ and $(V, G) \in\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)}$, i.e., $U \subseteq F \alpha^{C}$, $G \subseteq V\left(\alpha^{C}\right)^{-1}=\alpha^{C} V$. Hence we get the condition (i).

Now we check the condition (ii). For all $(S, T) \in\left(X^{(<\omega)}\right)^{2}$, if $U \subseteq S \alpha^{C}$ and $T \subseteq \alpha^{C} V$, i.e., $(S, U) \in\left(\alpha^{C}\right)^{(<\omega)}$ and $(V, T) \in\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)}$, then by $(U, V) \in$ $\beta^{(<\omega)}$, we have $(S, T) \in\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)}$, i.e., $(S, T) \in \alpha^{(<\omega)}$. Hence $T \subseteq S \alpha$.
(2) Let α be a relation on a set X such that for $F, G \in X^{(<\omega)}$ with $G \subseteq F \alpha$ there are $U, V \in X^{(<\omega)}$ such that conditions (i) and (ii) hold. Define a binary relation $\beta^{(<\omega)} \subseteq X^{(<\omega)} \times X^{(<\omega)}$ by

$$
(F, G) \in \beta \Longleftrightarrow\left(\forall S, T \in X^{(<\omega)}\right)\left(\left(F \subseteq S \alpha^{C} \wedge T \cap \alpha^{C} G \neq \emptyset\right) \Longrightarrow T \cap S \alpha \neq \emptyset\right)
$$

First, check that (a) $\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)} \subseteq \alpha^{(<\omega)}$ holds. For all $H, W \in X^{(<\omega)}$, if $(H, W) \in\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)}$, then there are $F, G \in X^{(<\omega)}$ with $(H, F) \in\left(\alpha^{C}\right)^{(<\omega)},(F, G) \in \beta^{(<\omega)}$ and $\left.(G, W) \in\left((\alpha)^{C}\right)^{-1}\right)^{(<\omega)}$. Then $F \subseteq H \alpha^{C}$ and $W \subseteq G\left(\alpha^{C}\right)^{-1}=\alpha^{C} G$. For all $w \in W$, let $S=H$, $T=\{w\}$. Then $F \subseteq S \alpha^{C}$ and $\alpha^{C} G \cap T \neq \emptyset$ because $w \in T$ and $w \in \alpha^{C} G$. Since
$(F, G) \in \beta^{(<\omega)}$, we have that $F \subseteq S \alpha^{C} \wedge \alpha^{C} G \cap T \neq \emptyset$ implies $T \cap S \alpha \neq \emptyset$. Hence, $w \in S \alpha$, i.e. $W \subseteq S \alpha$. So, we have $(H, W)=(S, W) \in \alpha^{(<\omega)}$. Therefore, we have $\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta \circ\left(\alpha^{C}\right)^{(<\omega)} \subseteq \alpha^{(<\omega)}$.

The second, check that $(\mathrm{b}) \alpha^{(<\omega)} \subseteq\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)}$ holds. For all $H, W \in X^{(<\omega)}$, if $(H, W) \in \alpha^{(<\omega)}$ (i.e., $W \subseteq H \alpha$), there are $A, B \in X^{(<\omega)}$ such that:
(i') $A \subseteq H \alpha^{C}, W \subseteq \alpha^{C} B$, and
(ii') for all $S, T \in X^{(<\omega)}$, if $A \subseteq S \alpha^{C}$ and $T \subseteq \alpha^{C} B$, then $T \subseteq S \alpha$.
Now, we have to show that $(A, B) \in \beta^{(<\omega)}$. Let be for all $(C, D) \in\left(X^{(<\omega)}\right)^{2}$ the following $A \subseteq D \alpha^{C}$ and $D \cap \alpha^{C} B \neq \emptyset$ hold. From $D \cap \alpha^{C} B \neq \emptyset$ follows that there exists an element $d \in D \cap \alpha^{C} B(\neq \emptyset)$. So, $d \in D$ and $d \in \alpha^{C} B$. Put $S=C$ and $T=\{d\}$. Then, by (ii'), we have

$$
\left(A \subseteq S \alpha^{C} \wedge T=\{d\} \subseteq \alpha^{C} B\right) \Longrightarrow\{d\}=T \subseteq S \alpha
$$

i.e. $\emptyset \neq\{d\} \cap S \alpha=T \cap S \alpha$. Therefore, $(A, B) \in \beta^{(<\omega)}$ by definition of $\beta^{(<\omega)}$. Finally, for $(H, A) \in(\alpha)^{(<\omega)},(A, B) \in \beta^{(<\omega)}$ and $(B, W) \in\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)}$ follows that $(H, W) \in\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta \circ\left(\alpha^{C}\right)^{(<\omega)}$.

By assertion (a) and (b), finally we have $\alpha^{(<\omega)}=\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)}$

Particulary, if we put $F=\{x\}$ and $G=\{y\}$ in the previous theorem, we conclude the following corollary.

Corollary 2.1. Let α be a relation on a set X. Then α is a finitely dual quasi-normal on X if and only if for all elements $x, y \in X$ such that $(x, y) \in \alpha$ there are finite subsets $U, V \in X^{(<\omega)}$ such that
$\left(1^{0}\right)(\forall u \in U)\left((x, u) \in \alpha^{C}\right) \wedge(\exists v \in V)\left((y, v) \in \alpha^{C}\right)$, and
$\left(2^{0}\right)$ for all $S \in X^{(<\omega)}$ and $t \in X$ holds

$$
\left(U \subseteq S \alpha^{C} \wedge(\exists v \in V)\left((t, v) \in \alpha^{C}\right)\right) \Longrightarrow(\exists s \in S)((s, t) \in \alpha)
$$

Proof. Let α be a finitely dual quasi-normal relation on X and let x, y be elements of X such that $(x, y) \in \alpha$. If we put $F=\{x\}$ and $G=\{y\}$ in Theorem 3.1 then there exist finite U and V of $X^{(<\omega)}$ such that conditions $\left(1^{0}\right)$ and $\left(2^{0}\right)$ hold.

Opposite, let for all elements $x, y \in X$ such that $(x, y) \in \alpha$ be there are U and V of $X^{(<\omega)}$ such that conditions $\left(1^{0}\right)$ and $\left(2^{0}\right)$ hold. Define binary relation $\beta^{<\omega} \subseteq X^{<\omega} \times X^{<\omega}$ by

$$
(A, B) \in \beta^{<\omega} \Longleftrightarrow\left(\forall S \in X^{<\omega}\right)(\forall t \in X)\left(\left(A \subseteq S \alpha^{C} \wedge t \in \alpha^{C} B\right) \Longrightarrow t \in S \alpha\right)
$$

The proof that the equality $\left(\left(\alpha^{C}\right)^{-1}\right)^{(<\omega)} \circ \beta^{(<\omega)} \circ\left(\alpha^{C}\right)^{(<\omega)}=\alpha^{(<\omega)}$ holds is some as in the Theorem 3.1. So, the relation α is a finitely dual quasi-normal.

References

[1] G.Jiang and L.Xu: Conjugative relations and applications. Semigroup Forum, 80(1)(2010), 85-91. doi: 10.1007/s00233-009-9185-6
[2] G.Jiang and L.Xu: Dually normal relations on sets; Semigrouop Forum, 85(1)(2012), 75-80. doi: 10.1007/s00233-011-9364-0
[3] J.M.Howie: An introduction to semigroup theory; Academic press, 1976.
[4] D.A.Romano: Quasi-regular relations - A new class of relations on sets; Publications de l'Institut Mathmatique, 93(107)(2013), 127-132. doi: 10.2298/PIM1307127R
[5] D.A.Romano and M.Vincic: Finitelly quasi-conjugative relations; Bull. Int. Math. Virtual Inst., 3(1)(2013), 29-34.
[6] D.A.Romano: Quasi-conjugative relations on sets; MAT-KOL, XIX (3) (2013), 5-10.
[7] D.A.Romano: Two new classes of relations, In: Mateljevic, Stanimirovic, Maric and Svetlik (eds.) Symposium MATHEMATICS and APPLICATIONS, 24-25 May, 2013 (pp. 34-39), Faculty of Mathematics, University of Belgrade, Belgrade 2014. Available online at: http://alas.matf.bg.ac.rs/ konferencija/zbornik.html.
[8] D.A.Romano: Quasi-normal relations - a new class of relations on sets; Kyungpook Math. J., 55(3)(2015), 541-548. doi: 10.5666/KMJ.2015.55.3.541

Received by editors 06.09.2015; Available online 16.01.2017.
6, Kordunaška Street, 78000 Banja Luka, Bosnia and Herzegobina
E-mail address: bato49@hotmail.com

[^0]: 2010 Mathematics Subject Classification. 20M20, 03E02, 06A11.
 Key words and phrases. relation on set, dually quasi-normal relations, finitely dual quasinormal relations.

