QUASI-CONJUGATIVE RELATIONS ON SETS

Daniel A. Romano

Abstract

In this paper the concept of quasi-conjugative relation on sets is introduced. A characterizations of quasi-conjugative relations are obtained. In addition, particulary we show when the anti-order relation \leqslant^{C} is quasiconjugative.

1. Introduction

The regularity of binary relations was first characterized by Zareckií ([9]). Further criteria for regularity were given by Markowsky ([6]), Schein ([8]) and Xu Xiao-quan and Liu Yingming ([10]) (see also [1] and [2]). The concepts of conjugative relations, dually conjugative relations and dually normal relations were introduced by Guanghao Jiang and Luoshan Xu ([3], [4]), and a characterization of normal relations was introduced and analyzed by Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen ([5]). In this paper, we introduce and analyze quasiconjugative relations on sets.

The following are some basic concepts needed in the sequel, for other nonexplicitly stated elementary notions please refer to $[\mathbf{1 0}]$.

For a set X, we call ρ a binary relation on X , if $\rho \subseteq X \times X$. Let $\mathcal{B}(X)$ denote the set of all binary relations on X . For $\alpha, \beta \in \mathcal{B}(X)$, define

$$
\beta \circ \alpha=\{(x, z) \in X \times X:(\exists y \in X)((x, y) \in \alpha \wedge(y, z) \in \beta)\}
$$

The relation $\beta \circ \alpha$ is called the composition of α and β. It is well known that $(\mathcal{B}(X), \circ)$ a semigroup. For a binary relation α on a set X, define $\alpha^{-1}=\{(x, y) \in$ $X \times X:(y, x) \in \alpha\}$ and $\alpha^{C}=(X \times X) \backslash \alpha$.

2. Quasi-conjugative relations

The following classes of elements in the semigroup $\mathbf{B}(X)$ are known:

[^0]Definition 2.1. For relation $\alpha \in \mathcal{B}(X)$ we say that it is:
(1) regular if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha
$$

(2) ([5]) normal if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ\left(\alpha^{C}\right)^{-1} .
$$

(3) ([4]) dually normal if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\left(\alpha^{C}\right)^{-1} \circ \beta \circ \alpha
$$

(4) ([3]) conjugative if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{-1} \circ \beta \circ \alpha
$$

(5) ([3]) dually conjugative if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha \circ \beta \circ \alpha^{-1} .
$$

(6) ([7]) quasi-regular if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{C} \circ \beta \circ \alpha
$$

In the following definition we introduce a new class of elements in $\mathcal{B}(X)$.
Definition 2.2. For relation $\alpha \in \mathcal{B}(X)$ we say that it is a quasi-conjugative relation on X if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{-1} \circ \beta \circ \alpha^{C}
$$

Our first lemma is an adaptation of Schein's result exposed in [8], Theorem 1. (See, also, [2], Lemma 1.)

Lemma 2.1. For a binary relation $\alpha \in \mathcal{B}(X)$, relation

$$
\alpha^{*}=\left(\left(\alpha \circ \alpha^{C} \circ\left(\alpha^{C}\right)^{-1}\right)^{C}\right.
$$

is the maximal element in family of all relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha
$$

Proof. First, remember ourself that

$$
\max \left\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha\right\}=\cup\left\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha\right\}
$$

Let $\beta \in B(X)$ be an arbitrary relation such that $\alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha$. We will prove that $\beta \subseteq \alpha^{*}$. If not, there is $(x, y) \in \beta$ such that $\neg\left((x, y) \in \alpha^{*}\right)$. The last gives:
$(x, y) \in \alpha \circ \alpha^{C} \circ\left(\alpha^{C}\right)^{-1} \Longleftrightarrow$
$(\exists u, v \in X)\left((x, u) \in\left(\alpha^{C}\right)^{-1} \wedge(u, v) \in \alpha^{C} \wedge(v, y) \in \alpha\right) \Longleftrightarrow$
$(\exists u, v \in X)\left((u, x) \in \alpha^{C} \wedge(u, v) \in \alpha^{C} \wedge(y, v) \in \alpha^{-1}\right) \Longrightarrow$
$(\exists u, v \in X)\left((u, x) \in(\alpha)^{C} \wedge(x, y) \in \beta \wedge(y, v) \in \alpha^{1-} \wedge(u, v) \in \alpha^{C}\right) \Longrightarrow$ $(\exists u, v) \in X)\left((u, v) \in \alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha \wedge(u, v) \in \alpha^{C}\right)$
We got a contradiction. So, must be $\beta \subseteq \alpha^{*}$.
On the other hand, we should prove that

$$
\alpha^{-1} \circ \alpha^{*} \circ \alpha^{C} \subseteq \alpha .
$$

Let $(x, y) \in \alpha^{-1} \circ \alpha^{*} \circ \alpha^{C}$ be an arbitrary element. Then, there are elements $u, v \in X$ such that $(x, u) \in \alpha^{C},(u, v) \in \alpha^{*}$ and $(v, y) \in \alpha$. So, from

$$
(x, u) \in \alpha, \neg\left((u, v) \in\left(\alpha^{C}\right)^{-1} \circ \alpha^{C} \circ \alpha^{-1}\right),(v, y) \in \alpha^{C}
$$

we have $\neg\left((x, y) \in \alpha^{C}\right)$. Indeed. Suppose that $(x, y) \in \alpha^{C}$. Then, we have $(u, v) \in\left(\alpha^{C}\right)^{-1} \circ \alpha^{C} \circ \alpha^{-1}$, which is impossible. Hence, we have to $(x, y) \in \alpha$ and, there fore, $\alpha^{C} \circ \alpha^{*} \circ \alpha \subseteq \alpha$.

Finally, we conclude that α^{*} is the maximal element of the family of all relations $\beta \in \mathcal{B}(X)$ such that $\alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha$.

The family of all quasi-conjugative relations on set X is not empty. For example, for relation ∇_{X} on X, defined by $(x, y) \in \nabla_{X} \Longleftrightarrow x \neq y$, holds

$$
\nabla_{X}=\nabla_{X} \circ I d_{X} \circ I d_{X}=\nabla_{X}^{-1} \circ I d_{X} \circ \nabla_{X}^{C}
$$

because the relation ∇_{X} is a symmetric relation on X and $\nabla_{X}^{C}=I d_{X}$ holds. So, the relation ∇_{X} is a quasi-conjugative relation on X.

In the following proposition we give an intrinsic characterization of quasiconjugative relations.

Theorem 2.1. For a binary relation α on a set X, the following conditions are equivalent:
(1) α is a quasi-conjugative relation.
(2) For all $x, z \in X$, if $(x, y) \in \alpha$, there exist $u, v \in X$ such that:
(a) $(x, u) \in \alpha^{C} \wedge(y, v) \in \alpha$,
(b) $(\forall s, t \in X)\left((s, u) \in \alpha^{C} \wedge(t, v) \in \alpha \Longrightarrow(s, t) \in \alpha\right)$.
(3) $\alpha \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{C}$.

Proof. (1) $\Longrightarrow(2)$. Let α be a quasi-conjugative relation, i.e. let there exists a relation β such that $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{C}$. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that

$$
(x, u) \in \alpha^{C},(u, v) \in \beta,(v, y) \in \alpha^{-1} .
$$

Follows that there exist elements $u, v \in X$ such that $(x, u) \in \alpha^{C}$ and $(y, v) \in \alpha$. This proves condition (a). Now, we check the condition (b). Let $s, t \in X$ be arbitrary elements such that $(s, u) \in \alpha^{C}$ and $(t, v) \in \alpha$. Now, from $(s, u) \in \alpha^{C}$, $(u, v) \in \beta$ and $(v, t) \in \alpha^{-1}$ follows $(s, t) \in \alpha^{-1} \circ \beta \circ \alpha^{C}=\alpha$.
$(2) \Longrightarrow(1)$. Define a binary relation

$$
\alpha^{\prime}=\left\{(u, v) \in X \times X:(\forall s, t \in X)\left((s, u) \in \alpha^{C} \wedge((t, v) \in \alpha \Longrightarrow(s, t) \in \alpha)\right\}\right.
$$

and show that $\alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{C}=\alpha$ is valid. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that the conditions (a) and (b) are hold. We have $(u, v) \in \alpha^{\prime}$ by definition of relation α^{\prime}.

Further, from $(x, u) \in \alpha^{C},(u, v) \in \alpha^{\prime}$ and $(v, y) \in \alpha^{-1}$ follows $(x, y) \in \alpha^{-1} \circ$ $\alpha^{\prime} \circ \alpha^{C}$. Hence, we have $\alpha \subseteq \alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{C}$. Contrary, let $(x, y) \in \alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{C}$ be an arbitrary pair. There exist elements $u, v \in X$ such that $(x, u) \in \alpha^{C},(u, v) \in \alpha^{\prime}$ and $(v, y) \in \alpha^{-1}$, i.e. such that $(x, u) \in \alpha^{C}$ and $(y, v) \in \alpha$, Hence, by definition of relation α^{\prime}, follows $(x, y) \in \alpha$ since $(u, v) \in \alpha^{\prime}$. Therefore, $\alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{C} \subseteq \alpha$. So, the relation α is a quasi-conjugative relation on X since there exists a relation α^{\prime} such that $\alpha^{-1} \circ \alpha^{\prime} \circ \alpha^{C}=\alpha$.
$(1) \Longleftrightarrow(3)$. Let α be a quasi-conjugative relation. Then there a relation β such that $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{C}$. Since $\alpha^{*}=\max \left\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha\right\}$, we have $\beta \subseteq \alpha^{*}$ and $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{C} \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{C}$. Contrary, let holds $\alpha \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{C}$,
for a relation α. Then, we have $\alpha \subseteq \alpha^{-1} \circ \alpha^{*} \circ \alpha^{C} \subseteq \alpha$. So, the relation α is a quasi-conjugative relation on set X.

Corollary 2.1. Let (X, \leqslant) be a poset. Relation \leqslant^{C} is a quasi-conjugative relation on X if and only if for all $x, y \in X$ such that $x \leqslant^{C} y$ there exist elements $u, v \in X$ such that :
(a') $x \leqslant u \wedge y \leqslant^{C} v$, and
(b') $(\forall z \in X)\left(z \leqslant^{C} u \vee z \leqslant v\right)$.
Proof. Let \leqslant^{C} be a quasi-conjugative relation on set X, and let $x, y \in X$ be elements such that $x \leqslant^{C} y$. Then, by previous Theorem, there exist elements $u, v \in X$ such that:
(a) $x \leqslant u \wedge y \leqslant^{C} v$;
(b) $(\forall s, t \in X)\left(\left(s \leqslant u \wedge t \leqslant^{C} v\right) \Longrightarrow s \leqslant^{C} t\right)$.

Let z be an arbitrary element and if we put $z=s=t$ in formula (b), we have

$$
\left(z \leqslant u \wedge z \leqslant^{C} v\right) \Longrightarrow z \leqslant^{C} z
$$

It is a contradiction. Hence, $\neg\left(z \leqslant u \wedge z \leqslant^{C} v\right)$. Follows

$$
z \leqslant{ }^{C} u \vee z \leqslant v
$$

Contrary, let $x, y \in X$ be arbitrary elements such that $x \leqslant^{C} y$. There exist elements $u, v \in X$ such that
(a') $x \leqslant u \wedge y \leqslant^{C} v$, and
(b') $(\forall z \in X)\left(z \leqslant^{C} u \vee z \leqslant v\right)$.
Let $s, t \in X$ be arbitrary elements such that $s \leqslant u$ and $t \leqslant^{C} v$. For $s=z$, we have $s \leqslant^{C} u \vee s \leqslant v$. Since, the option $s \leqslant u \wedge t \leqslant^{C} v \wedge s \leqslant^{C} u$ is a contradiction, left to us the possibility $s \leqslant u \wedge t \leqslant^{C} v \wedge s \leqslant v$. If we suppose that $s \leqslant t$, we will have $s \leqslant^{C} v$ what is in contradiction with $s \leqslant v$. So, must be $s \leqslant^{C} t$. This prove that the relation \leqslant^{C} satisfies condition (b) of previous theorem. Hence, the relation \leqslant^{C} is a quasi-conjugative relation on X.

Example 2.1. Let α be a quasi-conjugative relation on set X. Then there exists a relation β on X such that $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{C}$. If θ is an equivalence relation on X, we define relation $\alpha / \theta=\{(a \theta, b \theta) \in X / \theta \times X / \theta:(a, b) \in \alpha\}$ and β / θ by analogy. We have

$$
\alpha / \theta=(\alpha / \theta)^{-1} \circ \beta / \theta \circ(\alpha / \theta)^{C}
$$

So, the relation α / θ is a quasi-conjugative relation on X / θ.
Example 2.2. Let α be a quasi-conjugative element in $\mathcal{B}\left(X^{\prime}\right)$. Then there exists a relation $\beta \in \mathcal{B}\left(X^{\prime}\right)$ such that $\alpha=\alpha^{-1} \circ \beta \circ \alpha^{C}$. For a mapping $f: X \longrightarrow X^{\prime}$ and a relation $\gamma \in \mathcal{B}\left(X^{\prime}\right)$ we define $f^{-1}(\gamma)$ by

$$
(x, y) \in f^{-1}(\gamma) \Longleftrightarrow(f(x), f(y)) \in \gamma
$$

If f is a surjective mapping, we have:

$$
(x, y) \in f^{-1}(\alpha) \Longleftrightarrow(x, y) \in\left(f^{-1}(\alpha)\right)^{-1} \circ f^{-1}(\beta) \circ\left(f^{-1}(\alpha)\right)^{C}
$$

So, the relation $f^{-1}(\alpha)$ is a quasi-conjugative relation in $\mathcal{B}(X)$.

Example 2.3. Let θ be an equivalence relation on X. There is a natural surjective mapping $\pi: X \longrightarrow X / \theta$. Then, the relation $\nabla_{X / \theta}$, by comment after the Lemma 2.1, is a quasi-conjugative relation on X / θ. Thus, by Example 2.2, the relation $\pi^{-1}\left(\nabla_{X / \theta}\right)$ is a quasi-conjugative relation on X.

REmark 2.1. There is a possibility to introduce the notion of dually quasiconjugative relation on semigroup.

For relation $\alpha \in \mathcal{B}(X)$ we say that it is a dually quasi-conjugative relation on X if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$
\alpha=\alpha^{C} \circ \beta \circ \alpha^{-1}
$$

For these relations we can state dual statements of Lemma 2.1, Theorem 2.1 and Corollary 2.1.

On the other hand, since for a quasi-conjugative relation α holds

$$
\alpha^{-1}=\left(\alpha^{-1} \circ \beta \circ \alpha^{C}\right)^{-1}=\left(\alpha^{-1}\right)^{C} \circ \beta^{-1} \circ\left(\alpha^{-1}\right)^{-1}
$$

we conclude that the relation α is a quasi-conjugative relation on X if and only if the relation α^{-1} is a dually quasi-conjugative relation on X.

References

[1] H.J.Bandelt: Regularity and complete distributivity. Semigroup Forum 19(1980), 123-126
[2] H.J.Bandelt: On regularity classes of binary relations. In: Universal Algebra and Applications. Banach Center Publications, vol. 9(1982), 329-333
[3] Jiang Guanghao and Xu Luoshan: Conjugative Relations and Applications. Semigroup Forum, 80(1)(2010), 85-91.
[4] Jiang Guanghao and Xu Luoshan: Dually normal relations on sets; Semigroup Forum, 85(1)(2012), 75-80
[5] Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen: Normal Relations on Sets and Applications; Int. J. Contemp. Math. Sciences, 6(15)(2011), 721-726
[6] G.Markowsky: Idempotents and product representations with applications to the semigroup of binary relations. Semigroup Forum, 5(1972), 95-119
[7] D.A.Romano: Quasi-regular relation on sets - a new class of relations on sets, Publications de l'Institut Mathmatique, (To appear)
[8] B.M.Schein: Regular elements of the semigroup of all binary relations. Semigroup Forum 13(1976), 95-102
[9] A. Zareckii: The semigroup of binary relations. Mat. Sb. 61(3)(1963), 291-305 (In Russian)
[10] Xu Xiao-quan and Liu Yingming. Relational representations of hypercontinuous lattices, in: Domain Theory, Logic, and Computation, Kluwer Academic Publisher, 2003, 65-74.

Received 27.02.2012; in revised form 18.06.2012; available on internet 19.11.2012
Faculty of Mechanical Engineering, Banja Luka University, 71, Vojvoda Stepa Stepanović Street, 78000 Banja Luka, Bosnia and Herzegovina

E-mail address: bato49@hotmail.com

[^0]: 2000 Mathematics Subject Classification. Primary: 97E60; Secondary: 06A11; 06B35.
 Key words and phrases. quasi-conjugative relations.
 This paper was presented at conference ATA, 25-25, May, 2012, Sombor, Serbia

