MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) XIX (3)(2013), 5-10

Foundation of Mathematics

QUASI-CONJUGATIVE RELATIONS ON SETS

Daniel A. Romano

ABSTRACT. In this paper the concept of quasi-conjugative relation on sets is introduced. A characterizations of quasi-conjugative relations are obtained. In addition, particularly we show when the anti-order relation \leq^C is quasi-conjugative.

1. Introduction

The regularity of binary relations was first characterized by Zareckii ([9]). Further criteria for regularity were given by Markowsky ([6]), Schein ([8]) and Xu Xiao-quan and Liu Yingming ([10]) (see also [1] and [2]). The concepts of conjugative relations, dually conjugative relations and dually normal relations were introduced by Guanghao Jiang and Luoshan Xu ([3], [4]), and a characterization of normal relations was introduced and analyzed by Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen ([5]). In this paper, we introduce and analyze quasiconjugative relations on sets.

The following are some basic concepts needed in the sequel, for other nonexplicitly stated elementary notions please refer to [10].

For a set X, we call ρ a binary relation on X, if $\rho \subseteq X \times X$. Let $\mathcal{B}(X)$ denote the set of all binary relations on X. For $\alpha, \beta \in \mathcal{B}(X)$, define

 $\beta \circ \alpha = \{ (x, z) \in X \times X : (\exists y \in X) ((x, y) \in \alpha \land (y, z) \in \beta) \}.$

The relation $\beta \circ \alpha$ is called the composition of α and β . It is well known that $(\mathcal{B}(X), \circ)$ a semigroup. For a binary relation α on a set X, define $\alpha^{-1} = \{(x, y) \in X \times X : (y, x) \in \alpha\}$ and $\alpha^{C} = (X \times X) \setminus \alpha$.

2. Quasi-conjugative relations

The following classes of elements in the semigroup $\mathbf{B}(X)$ are known:

²⁰⁰⁰ Mathematics Subject Classification. Primary: 97E60; Secondary: 06A11; 06B35. Key words and phrases. quasi-conjugative relations.

This paper was presented at conference ATA, 25-25, May, 2012, Sombor, Serbia

 $[\]mathbf{5}$

ROMANO

DEFINITION 2.1. For relation $\alpha \in \mathcal{B}(X)$ we say that it is:

(1) regular if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha \circ \beta \circ \alpha.$$

- (2) ([5]) normal if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that $\alpha = \alpha \circ \beta \circ (\alpha^C)^{-1}$.
- (3) ([4]) dually normal if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that $\alpha = (\alpha^C)^{-1} \circ \beta \circ \alpha.$

(4) ([3]) conjugative if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha$.

(5) ([3]) dually conjugative if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that $\alpha = \alpha \circ \beta \circ \alpha^{-1}$.

(6) ([7]) quasi-regular if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that $\alpha = \alpha^C \circ \beta \circ \alpha$.

In the following definition we introduce a new class of elements in $\mathcal{B}(X)$.

DEFINITION 2.2. For relation $\alpha \in \mathcal{B}(X)$ we say that it is a *quasi-conjugative* relation on X if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha^{-1} \circ \beta \circ \alpha^C.$$

Our first lemma is an adaptation of Schein's result exposed in [8], Theorem 1. (See, also, [2], Lemma 1.)

LEMMA 2.1. For a binary relation $\alpha \in \mathcal{B}(X)$, relation $\alpha^* = ((\alpha \circ \alpha^C \circ (\alpha^C)^{-1})^C)$ is the maximal element in family of all relation $\beta \in \mathcal{B}(X)$ such that $\alpha^{-1} \circ \beta \circ \alpha^C \subseteq \alpha$.

Proof. First, remember ourself that

$$\begin{split} & \max\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^C \subseteq \alpha\} = \cup\{\beta \in \mathcal{B}(X): \alpha^{-1} \circ \beta \circ \alpha^C \subseteq \alpha\}.\\ & \text{Let } \beta \in B(X) \text{ be an arbitrary relation such that } \alpha^{-1} \circ \beta \circ \alpha^C \subseteq \alpha. \text{ We will prove that } \beta \subseteq \alpha^*. \text{ If not, there is } (x,y) \in \beta \text{ such that } \neg((x,y) \in \alpha^*). \text{ The last gives:}\\ & (x,y) \in \alpha \circ \alpha^C \circ (\alpha^C)^{-1} \Longleftrightarrow \\ & (\exists u, v \in X)((x,u) \in (\alpha^C)^{-1} \land (u,v) \in \alpha^C \land (v,y) \in \alpha) \Longleftrightarrow \\ & (\exists u, v \in X)((u,x) \in \alpha^C \land (u,v) \in \alpha^C \land (y,v) \in \alpha^{-1}) \Longrightarrow \\ & (\exists u, v \in X)((u,x) \in (\alpha)^C \land (x,y) \in \beta \land (y,v) \in \alpha^{1-} \land (u,v) \in \alpha^C) \Longrightarrow \\ & (\exists u, v) \in X)((u,v) \in \alpha^{-1} \circ \beta \circ \alpha^C \subseteq \alpha \land (u,v) \in \alpha^C) \end{aligned}$$
We got a contradiction. So, must be $\beta \subseteq \alpha^*.$ On the other hand, we should prove that

$$\alpha^{-1} \circ \alpha^* \circ \alpha^C \subset \alpha$$

Let $(x, y) \in \alpha^{-1} \circ \alpha^* \circ \alpha^C$ be an arbitrary element. Then, there are elements $u, v \in X$ such that $(x, u) \in \alpha^C$, $(u, v) \in \alpha^*$ and $(v, y) \in \alpha$. So, from

$$(x,u) \in \alpha, \, \neg((u,v) \in (\alpha^C)^{-1} \circ \alpha^C \circ \alpha^{-1}), \, (v,y) \in \alpha^C,$$

6

we have $\neg((x,y) \in \alpha^C)$. Indeed. Suppose that $(x,y) \in \alpha^C$. Then, we have $(u,v) \in (\alpha^C)^{-1} \circ \alpha^C \circ \alpha^{-1}$, which is impossible. Hence, we have to $(x,y) \in \alpha$ and, there fore, $\alpha^C \circ \alpha^* \circ \alpha \subseteq \alpha$.

Finally, we conclude that α^* is the maximal element of the family of all relations $\beta \in \mathcal{B}(X)$ such that $\alpha^{-1} \circ \beta \circ \alpha^C \subset \alpha$. \Box

The family of all quasi-conjugative relations on set X is not empty. For example, for relation ∇_X on X, defined by $(x, y) \in \nabla_X \iff x \neq y$, holds

$$\nabla_X = \nabla_X \circ Id_X \circ Id_X = \nabla_X^{-1} \circ Id_X \circ \nabla_X^C$$

because the relation ∇_X is a symmetric relation on X and $\nabla^C_X = Id_X$ holds. So, the relation ∇_X is a quasi-conjugative relation on X.

In the following proposition we give an intrinsic characterization of quasiconjugative relations.

THEOREM 2.1. For a binary relation α on a set X, the following conditions are equivalent:

(1) α is a quasi-conjugative relation.

- (2) For all $x, z \in X$, if $(x, y) \in \alpha$, there exist $u, v \in X$ such that:
- (a) $(x, u) \in \alpha^C \land (y, v) \in \alpha$, where exist $u, v \in X$ su (b) $(\forall s, t \in X)((s, u) \in \alpha^C \land (t, v) \in \alpha \Longrightarrow (s, t) \in \alpha)$. (3) $\alpha \subseteq \alpha^{-1} \circ \alpha^* \circ \alpha^C$.

Proof. (1) \implies (2). Let α be a quasi-conjugative relation, i.e. let there exists a relation β such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha^C$. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that

$$(x, u) \in \alpha^C, (u, v) \in \beta, (v, y) \in \alpha^{-1}.$$

Follows that there exist elements $u, v \in X$ such that $(x, u) \in \alpha^C$ and $(y, v) \in \alpha$. This proves condition (a). Now, we check the condition (b). Let $s, t \in X$ be arbitrary elements such that $(s, u) \in \alpha^C$ and $(t, v) \in \alpha$. Now, from $(s, u) \in \alpha^C$, $(u, v) \in \beta$ and $(v, t) \in \alpha^{-1}$ follows $(s, t) \in \alpha^{-1} \circ \beta \circ \alpha^{C} = \alpha$.

 $(2) \Longrightarrow (1)$. Define a binary relation

 $\alpha' = \{(u,v) \in X \times X : (\forall s,t \in X) ((s,u) \in \alpha^C \land ((t,v) \in \alpha \Longrightarrow (s,t) \in \alpha)\}$

and show that $\alpha^{-1} \circ \alpha' \circ \alpha^C = \alpha$ is valid. Let $(x, y) \in \alpha$. Then there exist elements $u, v \in X$ such that the conditions (a) and (b) are hold. We have $(u, v) \in \alpha'$ by definition of relation α' .

Further, from $(x, u) \in \alpha^C$, $(u, v) \in \alpha'$ and $(v, y) \in \alpha^{-1}$ follows $(x, y) \in \alpha^{-1} \circ$ $\alpha' \circ \alpha^C$. Hence, we have $\alpha \subseteq \alpha^{-1} \circ \alpha' \circ \alpha^C$. Contrary, let $(x, y) \in \alpha^{-1} \circ \alpha' \circ \alpha^C$ be an arbitrary pair. There exist elements $u, v \in X$ such that $(x, u) \in \alpha^C$, $(u, v) \in \alpha'$ and $(v, y) \in \alpha^{-1}$, i.e. such that $(x, u) \in \alpha^C$ and $(y, v) \in \alpha$, Hence, by definition of relation α' , follows $(x, y) \in \alpha$ since $(u, v) \in \alpha'$. Therefore, $\alpha^{-1} \circ \alpha' \circ \alpha^C \subseteq \alpha$. So, the relation α is a quasi-conjugative relation on X since there exists a relation α' such that $\alpha^{-1} \circ \alpha' \circ \alpha^C = \alpha$.

(1) \iff (3). Let α be a quasi-conjugative relation. Then there a relation β such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha^C$. Since $\alpha^* = max\{\beta \in \mathcal{B}(X) : \alpha^{-1} \circ \beta \circ \alpha^C \subseteq \alpha\}$, we have $\beta \subseteq \alpha^*$ and $\alpha = \alpha^{-1} \circ \beta \circ \alpha^C \subseteq \alpha^{-1} \circ \alpha^* \circ \alpha^C$. Contrary, let holds $\alpha \subseteq \alpha^{-1} \circ \alpha^* \circ \alpha^C$,

for a relation α . Then, we have $\alpha \subseteq \alpha^{-1} \circ \alpha^* \circ \alpha^C \subseteq \alpha$. So, the relation α is a quasi-conjugative relation on set X. \Box

COROLLARY 2.1. Let (X, \leq) be a poset. Relation \leq^C is a quasi-conjugative relation on X if and only if for all $x, y \in X$ such that $x \leq^{C} y$ there exist elements $u, v \in X$ such that : (a') $x \leq u \land y \leq^C v$, and (b') $(\forall z \in X)(z \leq^C u \lor z \leq v)$.

Proof. Let \leq^C be a quasi-conjugative relation on set X, and let $x, y \in X$ be elements such that $x \leq^C y$. Then, by previous Theorem, there exist elements $u, v \in X$ such that:

(a) $x \leq u \wedge y \leq^C v$;

(b) $(\forall s, t \in X)((s \leqslant u \land t \leqslant^C v) \Longrightarrow s \leqslant^C t).$

Let z be an arbitrary element and if we put z = s = t in formula (b), we have

$$(z \leqslant u \land z \leqslant^C v) \Longrightarrow z \leqslant^C z.$$

It is a contradiction. Hence, $\neg(z \leq u \land z \leq^C v)$. Follows

$$z \leqslant^C u \lor z \leqslant v.$$

Contrary, let $x, y \in X$ be arbitrary elements such that $x \leq^C y$. There exist elements $u, v \in X$ such that

(a')
$$x \leq u \wedge y \leq^C v$$
, and

(b') $(\forall z \in X) (z \leq C u \lor z \leq v).$

Let $s, t \in X$ be arbitrary elements such that $s \leq u$ and $t \leq^C v$. For s = z, we have $s \leq^C u \lor s \leq v$. Since, the option $s \leq u \land t \leq^C v \land s \leq^C u$ is a contradiction, left to us the possibility $s \leq u \wedge t \leq^C v \wedge s \leq v$. If we suppose that $s \leq t$, we will have $s \leq^C v$ what is in contradiction with $s \leq v$. So, must be $s \leq^C t$. This prove that the relation \leq^C satisfies condition (b) of previous theorem. Hence, the relation \leq^C is a quasi-conjugative relation on X. \Box

EXAMPLE 2.1. Let α be a quasi-conjugative relation on set X. Then there exists a relation β on X such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha^C$. If θ is an equivalence relation on X, we define relation $\alpha/\theta = \{(a\theta, b\theta) \in X/\theta \times X/\theta : (a, b) \in \alpha\}$ and β/θ by analogy. We have

$$\alpha/\theta = (\alpha/\theta)^{-1} \circ \beta/\theta \circ (\alpha/\theta)^C.$$

So, the relation α/θ is a quasi-conjugative relation on X/θ .

EXAMPLE 2.2. Let α be a quasi-conjugative element in $\mathcal{B}(X')$. Then there exists a relation $\beta \in \mathcal{B}(X')$ such that $\alpha = \alpha^{-1} \circ \beta \circ \alpha^C$. For a mapping $f: X \longrightarrow X'$ and a relation $\gamma \in \mathcal{B}(X')$ we define $f^{-1}(\gamma)$ by

$$(x,y) \in f^{-1}(\gamma) \Longleftrightarrow (f(x),f(y)) \in \gamma.$$

If f is a surjective mapping, we have:

$$(x,y) \in f^{-1}(\alpha) \iff (x,y) \in (f^{-1}(\alpha))^{-1} \circ f^{-1}(\beta) \circ (f^{-1}(\alpha))^C.$$

So, the relation $f^{-1}(\alpha)$ is a quasi-conjugative relation in $\mathcal{B}(X)$.

EXAMPLE 2.3. Let θ be an equivalence relation on X. There is a natural surjective mapping $\pi : X \longrightarrow X/\theta$. Then, the relation $\nabla_{X/\theta}$, by comment after the Lemma 2.1, is a quasi-conjugative relation on X/θ . Thus, by Example 2.2, the relation $\pi^{-1}(\nabla_{X/\theta})$ is a quasi-conjugative relation on X.

REMARK 2.1. There is a possibility to introduce the notion of dually quasiconjugative relation on semigroup.

For relation $\alpha \in \mathcal{B}(X)$ we say that it is a *dually quasi-conjugative relation* on X if and only if there exists a relation $\beta \in \mathcal{B}(X)$ such that

$$\alpha = \alpha^C \circ \beta \circ \alpha^{-1}.$$

For these relations we can state dual statements of Lemma 2.1, Theorem 2.1 and Corollary 2.1.

On the other hand, since for a quasi-conjugative relation α holds

$$\alpha^{-1} = (\alpha^{-1} \circ \beta \circ \alpha^{C})^{-1} = (\alpha^{-1})^{C} \circ \beta^{-1} \circ (\alpha^{-1})^{-1}$$

we conclude that the relation α is a quasi-conjugative relation on X if and only if the relation α^{-1} is a dually quasi-conjugative relation on X.

References

- [1] H.J.Bandelt: Regularity and complete distributivity. Semigroup Forum 19(1980), 123-126
- H.J.Bandelt: On regularity classes of binary relations. In: Universal Algebra and Applications. Banach Center Publications, vol. 9(1982), 329-333
- [3] Jiang Guanghao and Xu Luoshan: Conjugative Relations and Applications. Semigroup Forum, 80(1)(2010), 85-91.
- [4] Jiang Guanghao and Xu Luoshan: Dually normal relations on sets; Semigroup Forum, 85(1)(2012), 75-80
- [5] Jiang Guanghao, Xu Luoshan, Cai Jin and Han Guiwen: Normal Relations on Sets and Applications; Int. J. Contemp. Math. Sciences, 6(15)(2011), 721 - 726
- [6] G.Markowsky: Idempotents and product representations with applications to the semigroup of binary relations. Semigroup Forum, 5(1972), 95-119
- [7] D.A.Romano: Quasi-regular relation on sets a new class of relations on sets, Publications de l'Institut Mathmatique, (To appear)
- [8] B.M.Schein: Regular elements of the semigroup of all binary relations. Semigroup Forum 13(1976), 95-102
- [9] A. Zareckii: The semigroup of binary relations. Mat. Sb. 61(3)(1963), 291-305 (In Russian)
- [10] Xu Xiao-quan and Liu Yingming. Relational representations of hypercontinuous lattices, in: Domain Theory, Logic, and Computation, Kluwer Academic Publisher, 2003, 65-74.

Received 27.02.2012; in revised form 18.06.2012; available on internet 19.11.2012

FACULTY OF MECHANICAL ENGINEERING, BANJA LUKA UNIVERSITY, 71, VOJVODA STEPA STEPANOVIĆ STREET, 78000 BANJA LUKA, BOSNIA AND HERZEGOVINA *E-mail address*: bato49@hotmail.com