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Abstract: In this note we first prove that arbitrary matrix is equivalent
to a diagonal matrix such that these matrices have equal all nonzero
principal minors of the same order. Applying this method to Hermitian
matrices we shall prove the theorem of reducing a Hermitian matrix to its
canonical form. From this we easily derive Silvesters’ criterion for positive
definite matrices. Finally we give a criterion for positive definite matrices
connected with a property of diagonal elements of these matrices.

Except in Theorem 1, which holds for matrices over an arbitrary
field, for all matrices will be supposed to have complex elements.
We shall denote by E,;,E (a)andE, (0t) the standard
elementary matrices and by E,, the identity matrix of order n. By

ATand A will be denoted the transpose and conjugate of the
matrix A. As usual ( —!—] will be a block matrix and diag(o,

02 ,..., 0f;) diagonal square matrix of the order r .We denote n-
dimensional unitary space over the field of the complex numbers
C by C". By " :
product in this space . We also denote by Dy the principal minor
of the order k of the matrix A set in the upper left-hand corner of
A.

and < ; > will be denoted the norm and scalar

The first theorem that we shall prove is a slight modification
of well-known procedure of reducing a matrix to its Hermitian
canonical form . Namely, if we apply elementary transformation
in a special order we may preserve all nonzero principal minors.
This theorem will easily imply well-known formula of
representing a matrix as a product of a left triangular, a diagonal
and a right triangular matrices .
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Theorem 1. Let A:(ai j] . be a matrix over arbitrary field.

B 0
Then this matrix is equivalent to the matrix B= ( ——_-0' ’—[} }

where B, = diag(oy, 0,..., &), r = rang A. Moreover , if

Dy # 0 (k < r) is the principal minor of the matrix A then
Dy=a, -0, -0y .
Proof. If all principal minors of the matrix A are equal zero then
for the matrix B we may choose Hermitian canonical form of the
matrix A . So we may suppose that there exists a nonzero
principal minor . Suppose that aj; = Dy # 0. Then the matrix
x n
a a . ;
A= I-[E,k ~¢}A-HEH{——’L] is equivalent to the matrix
k=n ay, k=2 a;
A and is of the form

0
(1) B={ —0(‘) = ],a,za,,.
1

If a;; = 0 we choose ip to be minimal i such that a;; # 0 and j, to
be minimal j such that ajj# 0. Take ko = max{i, . jo }, then
D,=D, =---=D, = 0 and the matrix

A = E  (D)-A(orA-E,; ) has a nonzero element in the upper

left-hand corner. In the same time all principal minors
D, D, . ....D, of the matrix A are equal to the corresponding

principal minors of the matrix A’ . In this case we may apply the
preceding procedure and get (1) again. Note that , in both cases,
nonzero principal minors of the same order of matrices A and A’
are equal . If rang A = 1 then B; =0 which proves Theorem I. If
rang A > | we only need to repeat the preceding by the matrix
B instead of A. This procedure will obviously be finished after r
(=rang A ) steps which completes the proof of the Theorem 1.

As an immediate consequence of this theorem we have

Corollary 1. (1, formula 93.1 ) If all principal minor of a
rectangular matrix A except eventually the highest-order minor
are different from zero then the matrix A can be represented as a
product A=L-D-U where L is a left triangular matrix with unit



Bulletin of Society of Mathematicians Banja Luka, 2(1995) 11

diagonal elements, D is a diagonal matrix and U is right
triangular matrix with unit diagonal elements .

Proof. In this case we first have a;; # 0 and we get the matrix A,
in the preceding theorem multiplying the matrix A by left
triangular matrices on the left and by right triangular matrices on
the right . By the assumption we have the same situation in every
further step in the proof of the Theorem | and so the matrix L is a
product of left triangular matrices with unit diagonal elements,
consisting of the inverse matrices of the matrices by which the
matrix A is multiplied on the left while U is a product of right
triangular matrices with unit diagonal elements consisting of the
inverse matrices of the matrices by which the matrix A is
multiplied on the right .This completes the proof of Corollary I

We shall now apply the method of the preceding theorem to prove
well-known result of the reduction of a Hermitian matrix to its
canonical form preserving , in the same time , all nonzero
principal minor of the matrix A. From this we shall easily
conclude that all diagonal elements of a positive definite matrix
are positive . As an immediate consequence we may get formulas
(93.5) and (93.6) in [1] that are analogues of the representation of
the matrix A in Corollary 1 for symmetric and Hermitian matrices

Theorem 2. Let A=(a ;j ), xn be a Hermitian matrix , then there
exists a regular matrix Q such that the matrix A is equivalent to
the real matrix

e B L G
(2) B=0 -A'Q=(?‘—O*J.

where C = diag (B,.B,,....B,), r =rang A. Moreover , if the first
r principal minors of A are different from zero , then the
principal minors of the same order of matrices A and B are equal.
There further exists a regular matrix P such that

=3 D0
3 = Pl P =|——
(3) B,=P -A _(OLU]

D = diag (€, ,&,,...,€, ),&; = 1(i=12,...;r ).
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Proof Since the matrix A is a Hermitian matrix we have
T o ) PETTIT iy - - 54 . b .
a, —‘1”, j (@) =E; (a)(i,j=1....,n) If a,, # 0 then the matrix

Ay in (1) is the matrix HE“(—— AHEU[ :]

k=n 11
If a;; = 0 then we_have io=jo=ko so that we may take the matrix
A = E} (1)-A-E, (1) instead of the matrix A". Thus the matrix

Q is the product of transpose matrices of elementary matrices by
which the matrix A is multiplied on the left. Taking

Q, :HEi —1_
= |B.‘

we get (3) for P=Q-Q,.

It is easy to see that €, =sign(B,)(i=1,...,r) which completes the

proof of Theorem 2.

It is well-known fact that the signature of a Hermitian matrix
may be introduced after the proof of the law of inertia. That is
also the case with positive definite matrices. We are in position
here to prove, without the law of inertia, that B, >0 (i=1.2,...,n)
is necessary and sufficient condition that the matrix A be positive
definite. From this we give an elementary proof of Silvester’s
criterion.

Theorem 3. Let A = (Gij)n xn be a Hermitian matrix , n = rang A,

then the matrix A is positive definite if and only if, B, >0,(B,

beingasin (2),i=1,2, ..., n).

Proof. This is obvious, since A is positive definite if and only if
the matrix B in (2) is positive definite i.e. if and only if B; >0
(i=1,2.....0).

Theorem 4. (Silvester’s criterion) A Hermitian matrix
A=(a;,),,, is positive definite if and only D, >0(k=1,...,n)

where Dy are the principal minors of the order k of A.

Proof. Suppose that D, >0 (k = 1,...,n) .Theorem 2 implies that

D, =B, B, B, (k=12,...,n) and thus we have D, =P, >0 and
£>0(k=223,....,n)

Bk S Dk_|
and the matrix A is positive definite by Theorem 3.
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Conversely, let a matrix A be a positive definite. In the view
of Theorem 3 this means that B, > 0(i =1,2,...,n) in the relation
(2). Since A is positive definite, it is obvious that, for every k.
Ak = (aij )k x k 18 positive definite, hence Dy # 0. Therefore, by
Theorem2, D, =B, B, *B, (k=1.2,..;,n).

Since for every i =1,2,...n; A is positive definite if and only if
E,-A-E| is positive definite we also have the following

Corollary 2. Each diagonal element of a positive definite
Hermitian matrix is positive.

We shall finally give a criterion for positive definite matrices
which is derived from a property of diagonal elements of these
matrices. For a Hermitian matrix A=(a,;),,, we shall denote by

g, (k=2...,n) the k-1-dimensional vector (a,,.a,,....,a,, )

and by Py, the matrix P which correspond to the matrices
A, =(a;;) 4_iyxcxery in Theorem 2.

Theorem 5. A Hermitian matrix is positive definite if and onl 'y if
(4) a,, >0,

(Vk=23,. . .nmYXE

2

<a,,

= 1}‘|<a(k—l} B X>

Proof. If the matrix A is positive definite then all matrices

A, =(k =1,...,n) are positive definite by Corollary 2. It also
means that quadratic forms whose matrices are A, are positive
definite. Let k be an integer such that 1 <k <n , Py, and A(k-1) 48
above and X=(x,,X,,...,X,)=(X,_;,X, ) #0 an arbitrary row

P,.| 0

vector. For the matrix P= 3 | s it holds X-PT-AR_'?X_T>O.

From this we conclude that

T
-ag X
‘ k-1 " (k-1 k=1
i),
‘ Ay Xy

PlA P P
(Xk—ka)' = P—

(g

It follows from Theorem 2 that
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and so we obtain

0< ”Xk--l ; + Xy '(aik—l} ‘asxt\q)"'x—;' (xt—l’a”\—i- 'P;;—s>+ ukk‘xk‘l =
=”Xk_|”2 +2.Re( Xq -<a(k_” -F;__.XH> ]+ukk‘xhr <
S”Xk—l “- +2'Re‘ xkl ['(3&-—“ -E’Xk-t> ’+"1kk;xk j

Since this holds for every x, we conclude that
— 2 | 2
Kau\—u 'Pk—nXk--1>l “akk"ixk.:if! <0

which gives (4).

Assume now that a Hermitian matrix A satisfies the
condition (4). We shall prove by induction that each matrix A,
As, ..., A, is positive definite. This is true for k=1 since
A = a;; > 0 by (4). Suppose that the statement is true for k-1,
The matrix

T e e T
P AP ‘ P35 |
CTIITES ‘ Ay )
has the form
i
E., ‘Pk-l Ay
u(k—l;‘Pk—l‘ iy

Applying Theorem 2 to this matrix we get the matrix

T=dag(l} . ga, ”LHE %

where c=a, P, . Taking Xx, = ¢ we get a,, —[c*[|>0
which, by Theorem 3, yields that the matrix Ay is positive definite
and the theorem is proved.
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