Bull.Soc.Math. Banja Luka 2(1995), 1-7

ON COIDEALS OF PRODUCT OF COMMUTATIVE RINGS WITH APARTNESS

by

Daniel Abraham Romano

University of Banja Luka, Faculty of Sciences, Department of Mathematics and Informatics, 78000 Banja Luka, Mladena Stojanovica 2, Republic of Srpska, Bosnia and Herzegovina
e-mail: daniel@urcbl.bl.ac.yu

Abstract. The structure of coideals of the product $\Pi_{t\in T}R_t$ of commutative rings with apartnesses is quite complicated. It depends on the structure of coideals of components R_t as well as on the indexing set T. In this paper we shall give two constructions of coideals of the product ΠR_t which depends on indexing set T.

AMS Subject Classification (1991): 03F55, 04A05, 13A99

In the classical algebra, the structure of ideals of the product ΠR_t of rings R_t is quite complicated. It depends on the structure of ideals of components R_t as well as on the indexing set T. (See [2], [3], [5]) Given $r \in \Pi R_t$ put $Y(r) = \{t \in T : r(t) = 0\}$. It is not difficult to show that if F is a filter on T then $Y(F) = \{r \in \Pi R : Y(r) \in F\}$ is an ideal of ΠR_t ([2], [3]). Kochen proved ([2],[3]) that if R_t are division rings then the mapping $F \to Y(F)$ is an isomorphism of the lattice of filters on T onto the lattice of ideals of ΠR_t .

In the constructive mathematics ([1], [4], [6], [8], [9]) the matter is more complicated than classical. Given $r \in \Pi R_t$ put $Z(r) = \{t \in T : r(t) \neq 0\}$. If Q is a coideal of the ring ΠR_t , then $Z(Q) = \{Z(r) : r \in Q\}$ need not be an a-coideal of the set T. However, if Q is an inhabited subset of ΠR_t such that 0 # Q, we can construct an a-coideal $K(Q) = \{A \subseteq T : (\exists r \in Q)(Z(r) \cap Q)\}$

A $\neq \emptyset$) of the set T and Z(Q) $\subseteq K$ (Q) holds. It is not difficult to show that if H is a nonempty family of inhabited subsets of T, then S(H) = $\{r \in \Pi R_t : (\exists A \in H)(Z(r) \cap A \neq \emptyset)\}$ is a coideal of ΠR_t and if K is an acoideal on T then C(K) = $\{r \in \Pi R_t : Z(r) \in K\}$ is a coideal of ΠR_t and holds C(K) \subseteq S(K) \subseteq (ΠR_t)0. If R_t is an integrally domain, then the coideal S(H) is the union of prime coideals of the ring ΠR_t .

For all notions and notations in constructive mathematics which we used here the reader is referred to the books [1, 4, 9] and to the papers [6, 7, 8].

Let $(R,=,\neq,+,0,\cdot,1)$ be a commutative ring with identity and with apartness. A subset S of R is called a *coideal* of R if and onli if:

- (1) S # 0;
- (2) -r \in S \Rightarrow r \in S;
- (3) $r+s \in S \Rightarrow r \in S \lor s \in S$;
- $(4) rs \in S \Rightarrow r \in S \land s \in S.$

If S is an inhabitet coideal of r, then $1 \in S$. The coideal S od r is a *prime* coideal of R if and only if

(5) $r \in S \land s \in S \Rightarrow rs \in S$.

Recall that an *a-coideal K* on set $(T,=,\neq)$ such that

- (a) $T \in K, \emptyset \# K$;
- (b) $A \in K \land A \subseteq B \Rightarrow B \in K$;
- (c) $A \cup B \in K \Rightarrow A \in K \vee B \in K$.

The following two theorems have simply and technically proofs, but they have very interesting corollaries.

THEOREM 1. Let H be a nonempty family of inhabited subsets of T. Then the set $S(H) = \{r \in \Pi_{t \in T} R_t : (\exists A \in H)(A \cap Z(r) \neq \emptyset)\}$ is a coideal of the ring ΠR_t .

Proof.

(1)
$$r \in S(\mathbf{H}) \iff (\exists A \in \mathbf{H})(A \cap Z(r) \neq \emptyset)$$

 $\Rightarrow Z(r) \neq \emptyset$
 $\Rightarrow r \neq 0$.
(2) $-r \in S(\mathbf{H}) \iff (\exists A \in \mathbf{H})(A \cap Z(-r) \neq \emptyset)$

$$\Leftrightarrow (\exists A \in H)(A \cap Z(r) \neq \emptyset)$$
$$\Leftrightarrow r \in S(H).$$

- (3) $r+s \in S(H) \Leftrightarrow (\exists A \in H)(A \cap Z(r+s) \neq \emptyset)$ $\Rightarrow (\exists A \in H)(A \cap (Z(r) \cup Z(s)) \neq \emptyset)$ $\Rightarrow (\exists A \in H)(A \cap Z(r) \neq \emptyset \lor A \cap Z(s) \neq \emptyset)$ $\Rightarrow r \in S(H) \lor s \in S(H)$.
- (4) $rs \in S(H) \iff (\exists A \in H)(Z(rs) \cap A \neq \emptyset)$ $\Rightarrow (\exists A \in H)(Z(r) \cap Z(s) \cap A \neq \emptyset)$ $\Rightarrow r \in S(H) \land s \in S(H).$

COROLLARY 1.1. For every inhabited subset A of T we can construct the coideal $S(\{A\})$.

COROLLARY 1.2. For every element t in T the set $S(\{\{t\}\}) = \{r \in \Pi R_u : t \in Z(r)\}$ is a coideal of the ring ΠR_u . If R_u is an integral domain, then the coideal $S(\{\{t\}\})$ is a prime coideal of ΠR_u .

Proof. Put
$$S(t) = S(\{t\}\})$$
. We have $r \in S(t) \land s \in S(t) \Leftrightarrow t \in Z(r) \land t \in Z(s)$ $\Leftrightarrow t \in Z(r) \cap Z(s) = Z(rs)$ $\Leftrightarrow rs \in S(t)$.

COROLLARY 1.3. Let H be a nonempty family of inhabited subsets of T. Then $S(H) = \bigcup_{A \in Ht \in A} S(t)$. If R_t is an integral domain, then the coideal S(H) is the union of prime coideals of ΠR_t .

COROLLARY 1.4. Let H_1 and H_2 be nonempty families of inhabited subsets of the set T. Then:

- (1) $H_1 \subseteq H_2 \Rightarrow S(H_1) \subseteq S(H_2)$;
- (2) $S(H_1 \cup H_2) = S(H_1) \cup S(H_2)$;
- (3) $S(H_1 \cap H_2) \subseteq S(H_1) \cap S(H_2)$.

COROLLARY 1.5. The mapping $S:H\to S(H)$ is a strongly extensional function of the power-set P(P(T)) in the family of coideals of the ring ΠR_1 .

THEOREM 2. Let K be an a-coideal of the set T. The the set $C(K) = \{r \in \Pi R_t : Z(r) \in K\}$ is a coideal of the ring ΠR_t .

(1)
$$r \in C(K)$$
 $\Leftrightarrow Z(r) \in K$
 $\Rightarrow Z(r) \neq \emptyset$
 $\Leftrightarrow r \neq 0$.

(2)
$$-r \in C(K)$$
 $\Leftrightarrow Z(-r) \in K$
 $\Leftrightarrow Z(r) \in K$
 $\Leftrightarrow r \in C(K)$.

(3)
$$r+s \in C(K) \Leftrightarrow Z(r+s) \in K$$

 $\Rightarrow Z(r+s) \in K \land Z(r+s) \subseteq Z(r) \cup Z(s)$
 $\Rightarrow Z(r) \cup Z(s) \in K$
 $\Rightarrow Z(r) \in K \lor Z(s) \in K$
 $\Leftrightarrow r \in C(K) \lor s \in C(K)$.

(4)
$$rs \in C(K)$$
 $\Leftrightarrow Z(rs) \in K$
 $\Rightarrow Z(rs) \in K \land Z(rs) \subseteq Z(r) \cap Z(s)$
 $\Rightarrow Z(r) \cap Z(s) \in K$
 $\Rightarrow Z(r) \in K \land Z(s) \in K$
 $\Leftrightarrow r \in C(K) \land s \in C(K)$.

COROLLARY 2.1. Let K be an a-coideal of the set T such that $A \in K$ $\land B \in K \Rightarrow A \cap B \in K$ and let R_t ($t \in T$) be integral domains. Then the coideal C(K) is a prime coideal of the ring ΠR_t .

Proof.

$$r \in C(K) \land s \in C(K) \Leftrightarrow Z(r) \in K \land Z(s) \in K$$

 $\Rightarrow Z(rs) = Z(r) \cap Z(s) \in K$
 $\Leftrightarrow rs \in C(K)$.

COROLLARY 2.2. Let K be an a-coideal of the set T. Then $C(K) \subseteq S(K) = (\prod_{t \in T} R_t)_0$.

COROLLARY 2.3. Let K1 and K2 be a-coideals of the set T. Then:

- (1) $K_1 \subseteq K_2 \Rightarrow C(K_1) \subseteq C(K_2)$;
- (2) $C(K_1 \cup K_2) = C(K_1) \cup C(K_2)$;
- (3) $C(K_1) \neq C(K_2) \Rightarrow K_1 \neq K_2$.

COROLLARY 2.4. The mapping $C:K \to C(K)$ is strongly extendional function of the family of a-coideals on the set T in the family of coideals of the ring ΠR_t .

In [5] Olszewski proved that if R_t ($t \in T$) are rings with identity then Y(J) is a filter on T for every ideal J of ΠR_t (in the classical algebra). In the next two theorems we analyse the symmetrical problem: Is Z(Q) acoideal of the set T if Q is a coideal of the ring ΠR_t ? In the theorem 3 we give a construction of an a-coideal K(Q) of T where Q is an inhabited subset of ΠR_t .

THEOREM 3. Let Q be an inhabited subset of the ring ΠR_t such that Q # 0. Then the set $K(Q) = \{A \subseteq T : (\exists r \in Q)(Z(r) \cap A \neq \emptyset)\}$ is an a-coideal of the set T.

Proof.

- (1) $A \in K(Q) \Leftrightarrow (\exists r \in Q)(A \cap Z(r) \neq \emptyset)$ $\Leftrightarrow (\exists r \in Q)(\exists t \in Z(r))(t \in A)$ $\Rightarrow A \neq \emptyset$.
- (2) $A \subseteq B \land A \in K(Q) \Leftrightarrow A \subseteq B \land (\exists r \in Q)(A \cap Z(r) \neq \emptyset)$ $\Rightarrow (\exists r \in Q)(B \cap Z(r) \neq \emptyset)$ $\Leftrightarrow B \in K(Q)$.
- (3) $A \cup B \in K(Q) \Leftrightarrow (\exists r \in Q)((A \cup B) \cap Z(r) \neq \emptyset)$ $\Rightarrow (\exists r \in Q)(A \cap Z(r) \neq \emptyset \lor B \cap Z(r) \neq \emptyset)$ $\Rightarrow A \in K(Q) \lor B \in K(Q)$.
- (4) $Q \# 0 \Rightarrow (\exists r \in Q)(r \neq 0)$ $\Leftrightarrow (\exists r \in Q)(Z(r) \neq \emptyset)$ $\Rightarrow (\exists r \in Q)(Z(r) \cap T \neq \emptyset)$ $\Leftrightarrow T \in K(Q)$.

COROLLARY 3.1. Let Q be an inhabited subset of the ring ΠR_t such that 0 # Q. Then $Q \subseteq C(K(Q)) \subseteq S(K(Q)) = (\Pi R_t)_0$.

Proof.

$$\begin{split} \mathbf{r} \in Q &\Rightarrow \mathbf{r} \neq 0 \\ &\Leftrightarrow \mathbf{Z}(\mathbf{r}) \neq \varnothing \\ &\Leftrightarrow \mathbf{Z}(\mathbf{r}) \cap \mathbf{Z}(\mathbf{r}) \neq \varnothing \\ &\Leftrightarrow \mathbf{Z}(\mathbf{r}) \in \mathit{K}(Q) \\ &\Leftrightarrow \mathbf{r} \in \mathit{C}(\mathit{K}(Q)) \;. \end{split}$$

COROLLARY 3.2. Let ΠR_t be product of rings such that $(\forall A \subseteq T)(\exists a \in \Pi R_t)(Z(a) = A)$.

Then, for every a-coideal K on T, $K \subseteq K(C(K))$.

Proof.

$$\varnothing \neq A \in K \implies \{r \in \Pi R_t : Z(r) = A\} \subseteq C(K)$$

$$\implies (r \in \Pi R_t)(Z(r) \cap Z(r) \neq \varnothing)$$

$$\implies A \in K(C(K(Q)).$$

In the next theorem we describe a case when Z(S) is an a-coideal of the set T where S is a coideal of the ring ΠR_1 .

THEOREM 4. Let IIR, be the product of discrete Heyting fields and let S be a coideal of ΠR_t . Then the set Z(S) is an a-coideal of T.

Proof.

COROLLARY 4.1. If S is a prime coideal of the ring IIR, of discrete Heyting fields, then the a-coideal Z(S) has the property

 $A \in Z(S) \land B \in Z(S) \Rightarrow A \cap B \in Z(S).$

Proof.

$$A \in Z(S) \land B \in Z(S) \iff (\exists a,b \in S)(A = Z(a) \land B = Z(b))$$

$$\Rightarrow ab \in S$$

$$\Rightarrow Z(ab) \in Z(S) \land Z(ab) = Z(a) \cap Z(b)$$

$$\Rightarrow Z(ab) \in Z(S)$$

$$\Rightarrow A \cap B \in Z(S).$$

References

- [1] E. Bishop: Foundations of Constructive Analysis, Mcgraw-Hill, New York 1967.
- [2] P.Eklof: The Ultraproduct Theory for Algebraists; In: Handbook of Mathematical Logic, Volume 1 (Editor: J.Barwice), North-Holland, Amsterdam 1977.

- [3] J.Kochen: Ultraproduct in the Theory of Models; Ann. Math. Ser. 2., 74(1961), 221-261.
- [4] R.Mines, F.Richman and W.Ruitenburg: A Course of Constructive Algebra; Springer, New York 1988.
- [5] J.Olszewski: On Ideals of Products of Rings; Demonstratio Math., 27(1) (1994), 1-7.
- [6] D.A.Romano: Rings and Fields, a Constructive View; Z.Math.Logik Grundl. Math., 34(1)(1988), 25-40.
- [7] D.A.Romano: Equality and Coequality Relations on the Cartesian Product of Sets; Z. Math. Logik Grundl. Math., 34(5)(1988), 471-480.
- [8] D.A.Romano: Rings and Modules, a Constructive View; In: Proceedings of the conference "Algebra and Logic", Sarajevo 1987, (Editor: S.Crvenkovic) University of Novi Sad, Institute of Mathematics, Novi Sad 1989, 113-140.
- [9] A. S. Troelstra and D. van Dalen: Constructivism in Mathematics, An Introduction; North-Holland, Amsterdam 1988.