Computing The Scattering Number and The Toughness for Gear Graphs

Ersin Aslan ${ }^{\square}$ and Alpay Kirlangic ${ }^{\text {² }}$

Abstract

In a communication network, the vulnerability measures the resistance of the network to disruption of operation after the failure of certain stations or communication links. To measure the vulnerability we have some parameters which are connectivity, toughness, scattering number, integrity, tenacity and their edge analogues. This paper includes several results on the toughness and the scattering number of a gear graph as a communication network. Firstly, we compute the scattering number and toughness of a gear graph. In addition, the scattering number and toughness of the complement of a gear graph, the cartesian product of two gear graphs and the sequential join of gear graphs are computed. Finally, we compare the results for the scattering number and toughness.

AMS Mathematics Subject Classification (2000): 05C40, 68M10, 68R10
Key words and phrases: Connectivity, Network Design and Communication, Vulnerability, Scattering Number, Toughness, Gear Graph

1 Introduction

In a communication network, the vulnerability measures the resistance of the network to disruption of operation after the failure of certain stations or communication links. To measure the vulnerability we have some parameters which are connectivity [3], toughness [4], scattering number [6], integrity [1], tenacity 55 and their edge-analogues. In this paper we discuss the scattering number and the toughness of a graph. The toughness of a graph G , denoted $t(\mathrm{G})$, was defined by Chvátal [4]. For the complete graph K_{n} we have $t\left(K_{n}\right)=\infty$; if G is not complete, then

$$
t(G)=\min \left\{\frac{|S|}{\omega(G-S)}: S \subseteq V(G) \text { and } \omega(G-S)>1\right\}
$$

where $\omega(G-S)$ denotes the number of components in $G-S$.
The scattering number of a graph G, denoted $\operatorname{sc}(\mathrm{G})$, was introduced in 1978 by Jung [6. For the complete graph K_{n} we have $s c\left(K_{n}\right)=2-n$. If G is not complete, then

[^0]$$
s c(G)=\max \{\omega(G-S)-|S|: S \subseteq V(G) \text { and } \omega(G-S) \neq 1\}
$$
where $\omega(G-S)$ denotes the number of components in $G-S$.
The scattering number of a graph is closely related to the toughness of a graph. Moreover Jung calls the scattering number the "additive dual" of the toughness. From the definitions of the toughness and the scattering number, it is clear that these two parameters are very similar.

Geared systems are used in dynamic modelling. These are graph theoretic models that are obtained by using gear graphs. Similarly the complement of a gear graph, the cartesian product of gear graphs and the sequential join of gear graphs can be used to design a gear network.

Consequently these considerations motivated us to investigate the vulnerability of gear graphs by using the scattering number and the toughness. Now we give the following definitions.

Definition 1.1 The wheel graph with n spokes, W_{n}, is the graph that consists of an n-cycle and one additional vertex, say u, that is adjacent to all the vertices of the cycle. In Figure 1 we display W_{6}.

Figure 1: W_{6} Wheel graph

Definition 1.2 ([2]) The gear graph is a wheel graph with a vertex added between each pair adjacent graph vertices of the outer cycle. The gear graph G_{n} has $2 n+1$ vertices and $3 n$ edges. In Figure 2 we display G_{6}.

Figure 2: G_{6} Gear graph

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. By $\kappa(G)$ we denote the connectivity of G . $\alpha(G)$ and $\beta(G)$, respectively, denotes the independence number and the covering number of G.

Definition 1.3 The Cartesian product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} has $V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ as its vertex set and $\left(u_{1}, u_{2}\right)$ is adjacent to $\left(v_{1}, v_{2}\right)$ if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}.

Definition 1.4 Let G_{1} and G_{2} be two graphs. The union $G=G_{1} \cup G_{2}$ has $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join is denoted $V\left(G_{1}\right)+V\left(G_{2}\right)$ and consists of $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and all edges joining $V\left(G_{1}\right)$ with $V\left(G_{2}\right)$. For three or more disjoint graphs $G_{1}, G_{2}, \ldots, G_{n}$, the sequential join $G_{1}+G_{2}+\ldots+G_{n}$ is $\left(G_{1}+G_{2}\right) \cup\left(G_{2}+G_{3}\right) \cup \ldots \cup\left(G_{n-1}+G_{n}\right)$.

Next we give some lower and upper bounds for the scattering number and the toughness in terms of well known graph parameters. To have an idea about minimum and maximum values of the scattering number and the toughness for any graph G, we can use Theorems 1.1-1.3.

Theorem 1.1 ([4]) Let G be a graph of order n. Then $t(G) \leq \frac{n-\alpha(G)}{\alpha(G)}$.

Theorem 1.2 ([11]) Let G be a graph of order n. Then

$$
2 \alpha(G)-n \leq s c(G) \leq \alpha(G)-\kappa(G)
$$

Theorem $1.3([\mathbf{1 0}])$ Let G be a graph of order n. Then $t(G) \geq \frac{\kappa(G)}{\kappa(G)+s c(G)}$.
In Section 2 we compute the toughness of a gear graph. Also we give some results about the toughness of graphs obtained from graph operations between gear graphs. In Section 3 we first compute the scattering number of a gear graph. Moreover we give some results connecting scattering number and graph operations between gear graphs. In Section 4, we compare the results in Sections 2 and 3.

2 Toughness

In this section we first calculate the toughness of a gear graph. In addition we consider the graph operations that are complement, cartesian product and sequential join. So we give several results about gear graphs and graph operations.

We begin with the toughness of a gear graph.

Theorem 2.1 Let G_{n} be a gear graph of order $n \geq 4$. Then $t\left(G_{n}\right)=\frac{n}{n+1}$.

Proof. The graph G_{n} has a subgraph $K_{1, n}$. Let $x_{1}, x_{2}, \ldots, x_{n+1}$ be the vertices of $K_{1, n}$ such that $\operatorname{deg}\left(x_{1}\right)=n$. Hence we have two cases:
Case 1: Suppose that $S=\left\{x_{i} \mid x_{i} \in K_{1, n}, 2 \leq i \leq n+1\right\}$, that is, S must contain all the vertices of $K_{1, n}$ except x_{1}. If we remove the vertices in S from G_{n}, then we have exactly $\mathrm{n}+1$ components. Hence

$$
\begin{equation*}
t\left(G_{n}\right)=\frac{n}{n+1} \tag{1}
\end{equation*}
$$

Case 2: Let S be a vertex cut of G_{n} such that $S \neq\left\{x_{i} \mid x_{i} \in K_{1, n}, 2 \leq i \leq n+1\right\}$. If we remove $|S|=r$ vertices from G_{n} where $1 \leq r \leq 2 n$, then we have at most r components. Hence

$$
\begin{equation*}
t\left(G_{n}\right) \geq \min _{r}\left\{\frac{r}{r}\right\}=1 \tag{2}
\end{equation*}
$$

By (1) and (2) we have $t\left(G_{n}\right)=\min \left\{\frac{n}{n+1}, 1\right\}=\frac{n}{n+1}$.

The following theorem gives the toughness of a complement of a gear graph.
Theorem 2.2 If \bar{G}_{n} be a complement of a gear graph G_{n}. Then $t\left(\bar{G}_{n}\right)=\frac{n}{2}$.
Proof. Let S be a vertex cut of \bar{G}_{n}. Hence if we remove $|S|=r$ vertices from \bar{G}_{n} where $n \leq r \leq 2 n-1$ then we have exactly 2 components. Then

$$
t\left(\bar{G}_{n}\right)=\min _{S}\left\{\frac{|S|}{\omega(G-S)}\right\}=\min _{r}\left\{\frac{r}{2}\right\}
$$

Let $f(r)=\frac{r}{2}$. The function $\mathrm{f}(\mathrm{r})$ takes its minimum value at $r=n$ and

$$
t\left(\bar{G}_{n}\right)=\frac{n}{2} .
$$

Now we consider the cartesian product. Firstly we give the toughness of graph $K_{2} \times G_{n}$. Moreover we calculate the toughness of cartesian product of two gear graphs.

Theorem 2.3 Let $n \geq 4$ be a positive integer. Then $t\left(K_{2} \times G_{n}\right)=1$.
Proof. The graph $K_{2} \times G_{n}$ has $4 n+2$ vertices and has two subgraphs, namely $G_{n 1}$ and $G_{n 2}$. Gear graph contains vertices set of whell graph. Now we define S_{1} and S_{2} as follows.

$$
S_{1}=\left\{x_{i} \mid x_{i} \in V\left(W_{n 1}\right) \text { and } \operatorname{deg}\left(x_{i}\right) \neq n\right\}
$$

and

$$
S_{2}=\left\{x_{i} \mid x_{i} \in V\left(G_{n 2}-V\left(W_{n 2}\right)\right\} \cup\left\{x_{i} \mid x_{i} \in V\left(W_{n 2}\right) \text { and } \operatorname{deg}\left(x_{i}\right)=n\right\}\right.
$$

Case 1: Suppose that $S=S_{1} \cup S_{2}$. If we remove the vertices in S from $K_{2} \times G_{n}$ then $|S|=2 n+1$ and $\omega\left(\left(K_{2} \times G_{n}\right)-S\right)=2 n+1$. Hence we have

$$
\begin{equation*}
t\left(K_{2} \times G_{n}\right)=1 \tag{3}
\end{equation*}
$$

Case 2: Suppose that $S \neq S_{1} \cup S_{2}$. Hence if we remove $|S|=r$ vertices from $K_{2} \times G_{n}$ where $1 \leq r \leq 4 n+2$ then we have $\omega\left(\left(K_{2} \times G_{n}\right)-S\right)<r$. Then

$$
\begin{equation*}
t\left(K_{2} \times G_{n}\right)>1 \tag{4}
\end{equation*}
$$

By (3) and (4) we have $t\left(K_{2} \times G_{n}\right)=1$.

Theorem 2.4 Let $m \geq 3$ and $n \geq 3$ be positive integers. Then

$$
t\left(G_{m} \times G_{n}\right)=\frac{2 m n+m+n}{2 m n+m+n+1}
$$

Proof. It is obvious that $\alpha\left(G_{m} \times G_{n}\right)=2 m n+m+n+1$ and $\beta\left(G_{m} \times G_{n}\right)=2 m n+m+n$. To prove this theorem we have two cases.
Case 1: By Theorem 1.1 we have

$$
\begin{align*}
t\left(G_{m} \times G_{n}\right) & \leq \frac{(2 n+1)(2 m+1)-(2 m n+m+n+1)}{2 m n+m+n+1} \\
& =\frac{2 m n+m+n}{2 m n+m+n+1} \tag{5}
\end{align*}
$$

Case 2: Since $\omega(G-S) \leq \alpha(G)$ for any graph G, we have

$$
t\left(G_{m} \times G_{n}\right) \geq \min _{S}\left\{\frac{|S|}{\alpha\left(G_{m} \times G_{n}\right)}\right\}
$$

- Let $|S|=\beta\left(G_{m} \times G_{n}\right)$. Since $\beta\left(G_{m} \times G_{n}\right)=2 m n+m+n$ we have

$$
\begin{equation*}
t\left(G_{m} \times G_{n}\right) \geq \min _{S}\left\{\frac{|S|}{\alpha\left(G_{m} \times G_{n}\right)}\right\}=\frac{2 m n+m+n}{2 m n+m+n+1} \tag{6}
\end{equation*}
$$

- If $|S| \neq \beta\left(G_{m} \times G_{n}\right)$ and $|S|=r$ then $\omega\left(\left(G_{m} \times G_{n}\right)-S\right) \leq r$. Then

$$
\begin{equation*}
t\left(G_{m} \times G_{n}\right) \geq \min _{r}\left\{\frac{r}{r}\right\}=1 \tag{7}
\end{equation*}
$$

By (6) and (7) we have $t\left(G_{m} \times G_{n}\right) \geq \frac{2 m n+m+n}{2 m n+m+n+1}$
Consequently, by (5) and (8) we have

$$
t\left(G_{m} \times G_{n}\right)=\frac{2 m n+m+n}{2 m n+m+n+1} .
$$

Let $G_{3}, G_{4}, \ldots, G_{n}$ be gear graphs. In the following theorems, the toughness of graph $G_{3}+G_{4}+\ldots+G_{n}$, which is obtained sequential join operation, is calculated when n is odd and when n is even.

Theorem 2.5 If n is an even number, then

$$
t\left(G_{3}+G_{4}+\ldots+G_{n}\right)=\frac{3 n+10}{n+6}
$$

Proof. To prove this theorem we have two cases.
Case 1: If we remove all the vertices of graphs $G_{3}, G_{5}, \ldots, G_{n-1}$, then the remaining components are $G_{4}, G_{6}, \ldots, G_{n}$ and the number of removing vertices is $\sum_{i=1}^{\frac{n}{2}-1}\left|V\left(G_{2 i+1}\right)\right|=\sum_{i=1}^{\frac{n}{2}-1}(4 i+3)$. Moreover, we must remove $2 i$ more vertices from each $G_{2 i}$ where $2 \leq i \leq \frac{n}{2}$. Hence, $2 i+1$ components are obtained from each $G_{2 i}$ where $2 \leq i \leq \frac{n}{2}$. Then the number of removed vertices is exactly

$$
|S|=\sum_{i=1}^{\frac{n}{2}-1}(4 i+3)+\sum_{i=2}^{\frac{n}{2}} 2 i
$$

and the number of components is exactly

$$
\omega\left(\left(G_{3}+G_{4}+\ldots+G_{n}\right)-S\right)=\sum_{i=2}^{\frac{n}{2}}(2 i+1)
$$

Therefore, we have

$$
\begin{gather*}
t\left(G_{3}+G_{4}+\ldots+G_{n}\right)=\frac{3\left(-1+\frac{n}{2}\right)+\frac{1}{2}(-2+n) n+\frac{1}{4}(-2+n)(4+n)}{-1+\frac{n}{2}+\frac{1}{4}(-2+n)(4+n)} \\
t\left(G_{3}+G_{4}+\ldots+G_{n}\right)=\frac{3 n+10}{n+6} \tag{9}
\end{gather*}
$$

Case 2: If we remove all the vertices of graphs $G_{4}, G_{6}, \ldots, G_{n}$, then the remaining components are $G_{3}, G_{5}, \ldots, G_{n-1}$ and the number of removed vertices is $\sum_{i=2}^{\frac{n}{2}}\left|V\left(G_{2 i}\right)\right|=\sum_{i=2}^{\frac{n}{2}}(4 i+1)$. Moreover, we must remove $2 i-1$ more vertices from each $G_{2 i-1}$ where $2 \leq i \leq \frac{n}{2}$. Hence, $2 i$ components are obtained from each $G_{2 i}$ where $2 \leq i \leq \frac{n}{2}$. Then the number of removed vertices is exactly

$$
|S|=\sum_{i=2}^{\frac{n}{2}}(4 i+1)+\sum_{i=2}^{\frac{n}{2}}(2 i-1)
$$

and the number of components is exactly

$$
\omega\left(\left(G_{3}+G_{4}+\ldots+G_{n}\right)-S\right)=\sum_{i=2}^{\frac{n}{2}} 2 i
$$

So

$$
\begin{equation*}
t\left(G_{3}+G_{4}+\ldots+G_{n}\right)=\frac{\frac{3}{4}(n-2)(n+4)}{\frac{1}{4}(n-2)(n+4)}=3 \tag{10}
\end{equation*}
$$

By (9) and (10) we have

$$
t\left(G_{3}+G_{4}+\ldots+G_{n}\right)=\frac{3 n+10}{n+6}
$$

Theorem 2.6 If n is an odd number, then

$$
t\left(G_{3}+G_{4}+\ldots+G_{n}\right)=\frac{3 n^{2}+4 n-27}{(n-1)(n+5)}
$$

Proof. The proof follows directly from theorem 2.5.

3 Scattering number

In this section we first calculate the scattering number of a gear graph. Also we calculate the scattering number of some graphs which are obtained by using gear graphs and graph operations.

Now we give the scattering number of a gear graph.
Theorem 3.1 Let G_{n} be a gear graph of order n. Then $\operatorname{sc}\left(G_{n}\right)=1$.
Proof. Since $\alpha\left(G_{n}\right)=n+1$, then we have

$$
\begin{equation*}
s c\left(G_{n}\right) \geq 1 \tag{11}
\end{equation*}
$$

by Theorem 1.2.
On the other hand, let S be a vertex cut of G_{n} and $|S|=r$. If we remove r vertices from G_{n}, then $\omega\left(G_{n}-S\right) \leq r+1$. Since $\omega\left(G_{n}-S\right)-|S| \leq r+1-r$, we have

$$
\begin{equation*}
s c\left(G_{n}\right) \leq 1 \tag{12}
\end{equation*}
$$

By (11) and (12) we have $s c\left(G_{n}\right)=1$.

The following theorem gives the scattering number of a complement of a gear graph.

Theorem 3.2 Let \bar{G}_{n} be a complement graph of a gear graph G_{n}. Then

$$
s c\left(\bar{G}_{n}\right)=2-n
$$

it Proof. The graph \bar{G}_{n} has two complete subgraphs, namely $K_{n 1}$ and $K_{n 2}$. Each vertices of $K_{n 1}$ is joined to the vertices of $K_{n 2}$ with $(n-2)$ edges. Let S be a vertex cut of \bar{G}_{n} and so $n \leq|S| \leq 2 n-1$. If we remove all the vertices of S from \bar{G}_{n}, then the number of remaining components is exactly 2 . Then $s c\left(\bar{G}_{n}\right)=\max _{S}\{2-|S|\}$. The function $2-|S|$ takes its maximum value at $|S|=n$ and

$$
s c\left(\bar{G}_{n}\right)=2-n
$$

Next we concentrate on the scattering number and cartesian product. Hence we calculate the scattering number of graphs $K_{2} \times G_{n}$ and $G_{m} \times G_{n}$.

Theorem 3.3 Let G_{n} be a gear graph. Then $s c\left(K_{2} \times G_{n}\right)=0$.
Proof. Since $t\left(K_{2} \times G_{n}\right)=1$ by Theorem 2.3, then we have

$$
\frac{\kappa\left(K_{2} \times G_{n}\right)}{\kappa\left(K_{2} \times G_{n}\right)+s c\left(K_{2} \times G_{n}\right)} \leq 1
$$

by Theorem 1.3. So

$$
\begin{equation*}
s c\left(K_{2} \times G_{n}\right) \geq 0 \tag{13}
\end{equation*}
$$

On the other hand let S be a vertex cut of $K_{2} \times G_{n}$ and $|S|=r$. If we remove r vertices from $K_{2} \times G_{n}$ then $\omega\left(\left(K_{2} \times G_{n}\right)-S\right) \leq r$ and $\omega\left(\left(K_{2} \times G_{n}\right)-S\right)-|S| \leq r-r$. So

$$
\begin{equation*}
s c\left(K_{2} \times G_{n}\right) \leq 0 \tag{14}
\end{equation*}
$$

By (13) and (14) we have $s c\left(K_{2} \times G_{n}\right)=0$.

Theorem 3.4 Let $m \geq 3$ and $n \geq 3$ be positive integers. Then

$$
s c\left(G_{m} \times G_{n}\right)=1
$$

Proof. Since $\alpha\left(G_{m} \times G_{n}\right)=2 m n+m+n+1$ and $\left|V\left(G_{m} \times G_{n}\right)\right|=(2 m+1)(2 n+1)$, then we have

$$
\begin{equation*}
s c\left(G_{m} \times G_{n}\right) \geq 1 \tag{15}
\end{equation*}
$$

by Theorem 1.2.
Now let S be a vertex cut of $G_{m} \times G_{n}$ and $|S|=r$. If we remove r vertices from $G_{m} \times G_{n}$, then $\omega\left(\left(G_{m} \times G_{n}\right)-S\right) \leq r+1$. Hence we have

$$
\begin{equation*}
s c\left(G_{m} \times G_{n}\right) \leq 1 \tag{16}
\end{equation*}
$$

By (15) and (16) we have $s c\left(G_{m} \times G_{n}\right)=1$.

The following theorems give some results on the scattering number and sequential join operation.

Theorem 3.5 Let $n \geq 5$ be a positive integer. Then

$$
s c\left(G_{3}+G_{4}+\ldots+G_{n}\right)=-7
$$

Proof. Let S be a vertex cut of graph $G_{3}+G_{4}+\ldots+G_{n}$ and set $|S|=r$. Since $|S| \geq \kappa(G)$ for any graph G and $\kappa\left(G_{3}+G_{4}+\ldots+G_{n}\right)=9$, we have two cases: Case 1: If we remove r vertices from $G_{3}+G_{4}+\ldots+G_{n}$, then $\omega\left(\left(G_{3}+G_{4}+\ldots+G_{n}\right)-S\right) \leq r-7$. So

$$
\begin{equation*}
s c\left(G_{3}+G_{4}+\ldots+G_{n}\right) \leq-7 \tag{17}
\end{equation*}
$$

Case 2: Since the set S is a vertex cut, we have $\omega\left(\left(G_{3}+G_{4}+\ldots+G_{n}\right)-S\right) \geq 2$. So

$$
\omega\left(\left(G_{3}+G_{4}+\ldots+G_{n}\right)-S\right)-|S| \geq 2-r
$$

and

$$
s c\left(G_{3}+G_{4}+\ldots+G_{n}\right) \geq \max _{r}\{2-r\}
$$

The function 2-r takes its maximum value at $\mathrm{r}=9$ and

$$
\begin{equation*}
s c\left(G_{3}+G_{4}+\ldots+G_{n}\right) \geq-7 \tag{18}
\end{equation*}
$$

By (17) and (18) we have $s c\left(G_{3}+G_{4}+\ldots+G_{n}\right)=-7$.

Remark 3.1 One can easily show that $s c\left(G_{3}+G_{4}\right)=-6$.

4 Conclusion

A network has often as considerable an impact on network's performance as the vertices themselves. Performance measures for the networks are essential to guide the designer in choosing an appropriate topology. In order to measure the performance we are interested the following performance metrics:

1. The number of the components of the remaining network,
2. The diameter of the network,
3. The average distance between node pairs,
4. The probability that the network becomes disconnected,

They measure the extent to which the network can withstand the failure of links and vertices while still remaining functional [8, 9].

If the network does get disconnected, then remaining components should continue to function with reduced capacity. We would prefer a network which would disconnect in such a way that its capacity is almost seem as before. That is, we have the fundamental question: "How difficult is it to reconstruct the network?". This question is analyzed by considering the number of components of the remaining graph. Therefore, we are concerned with the toughness and scattering number of a graph as a measure of graph vulnerability.

In order to reconstruct a disrupted network easily, the number of connected components, formed after the vertices deleted, should be possibly small. In the following Table 1, if we consider the graphs G_{n} and $G_{m} \times G_{n}$ for both measures the number of components is always more than the number of deleted vertices. But if the difference is only one, this case shows that the graphs G_{n} and $G_{m} \times G_{n}$ are neither very strong nor very weak. If we examine the graphs \bar{G}_{n} and $G_{3}+G_{4}+\ldots+G_{n}$, regardless of the number of deleted vertices we can say that the number of components is quite small and according to these results the reconstruction of these two graphs is very easy.

	toughness	scattering number
G_{n}	$\frac{n}{n+1}$	1
\bar{G}_{n}	$\frac{n}{2}$	$2-n$
$G_{m} \times G_{n}$	$\frac{2 m n+m+n}{2 m n+m+n+1}$	1
$G_{3}+G_{4}+\cdots+G_{n}$	$\frac{3 n+10}{n+6}$	-7

Table 1

References

[1] C. A. Barefoot, R. Entringer, and H. Swart, Vulnerability In Graphs-A Comparative Survey, J. Combin. Math. Combin. Comput., 1 (1987), 13-22.
[2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classess: A Survey, SIAM Monographs on Discrete Mathematics and Applications, Springer, (1999).
[3] J. A. Bondy, and U. S. R. Murty, Graph Theory with Applications, The McMilan Press Ltd., 1976.
[4] V. Chvatal, Tough Graphs and Hamiltonian Circuits., Discrete Math., 5(1973), 215-228.
[5] M. B. Cozzens, D. Moazzami, and S. Stueckle, The Tenacity of a Graph, Combinatorics and Algorithms (Yousef Alavi and Allen Schwenk, eds.) Wiley, New York, (1995), 1111-1112.
[6] H. A. Jung, On a Class of Posets and the Corresponding Comparability Graphs, J. Combin. Theory Ser. B, 24(2)(1978), 125-133.
[7] A. Kırlangı̣ and A. O. Aytac, The Scattering Number of Thorn Graphs, International Journal of Computer Mathematics, 81(3)(2004), 299-311.
[8] V. Lakamraju, Z. Koren, I. Koren and C. M. Krishna, Measuring the Vulnerability of Interconnection Networks in Embedded Systems, Parallel and Distributed Processing, Lecture Notes in Computer Science, Volume 1388 (1998), 919-924
[9] H. Lee, J. Kim, E. Oh and H. Lim, Hyper-star graph: A new interconnection network improving the network cost of the hypercube, Proc. EurAsiaICT:Information and Communacation Technology. Lecture Notes in Computer Science (LNCS) 2510, Springer-Verlag, (2002), 858-865.
[10] S. Zhang, and S. Peng, Realitionships Between Scattering Number and Other Vulnerability Parameters, Intenational Journal of Computer Mathematics, 81(3)(2004), 291-298.
[11] S. Zhang and Z. Wang, Scattering Number in Graphs, Networks, $37(2)(2001), 102-106$.

Received by the editors February 07, 2011

[^0]: ${ }^{1}$ Turgutlu Vocational Training School, Celal Bayar University, Turgutlu-Manisa, Turkey; email: ersin.aslan@bayar.edu.tr
 ${ }^{2}$ Department of Mathematics, Ege University, 35100 Bornova-Izmir, Turkey; email: alpay.kirlangicc@ege.edu.tr

