THE ab-INDEX OF POSET OF INTERVALS

DUŠKO JOJIĆ

Faculty of Natural Sciences and Mathematics, 78000 Banja Luka,
Republic of Srpska, Bosnia and Herzegovina
e-mail: ducci68@blic.net

ABSTRACT. We show that if a graded poset P admits an R-labelling, then there exists an R-labelling for its interval poset I(P). This motivate us to define a linear operator \mathcal{I} , which express ab-index of interval poset via ab-index of P.

Throughout this paper, we will consider graded posets with rank function r. We refer to [9] as a good general reference for the poset terminology. For a poset P of rank n+1 and $S \subseteq [n] = \{1, 2, ..., n\}$ we define $f_S(P)$ as the number of chains $x_1 < x_2 < \cdots < x_{|S|}$ such that $S = \{r(x_1), r(x_2), \cdots, r(x_{|S|})\}$. The sequence $(f_S(P))_{S\subseteq [n]}$ is called the flag f-vector of P. The flag f-vector of P can be encoded as a non-commutative polynomial in variables P and P and P are the flag P contains P and P are the flag P can be encoded as a non-commutative polynomial in variables P and P are the flag P can be encoded as a non-commutative polynomial in variables P and P can be encoded as a non-commutative polynomial in variables P and P can be encoded as a non-commutative polynomial in variables P and P can be encoded as a non-commutative polynomial in variables P and P can be encoded as a non-commutative polynomial in variables P and P can be encoded as a non-commutative polynomial in variables P can be encoded as a non-commutative polynomial in variables P can be encoded as P can b

Let P be a poset of rank n+1. To every chain $c:\hat{0} < x_1 < x_2 < \cdots < x_k < \hat{1}$ of P we associate a weight $wt(c) = w_1w_2 \cdots w_n$ where

$$w_i = \begin{cases} \mathbf{b}, & \text{if } i \in \{r(x_1), r(x_2), \dots, r(x_k)\}; \\ \mathbf{a} - \mathbf{b}, & \text{otherwise.} \end{cases}$$

Now, the ab-index of P is defined as

(1)
$$\Psi_P = \sum_{c-\text{chain in } P} wt(c)$$

The flag h-vector of a poset P of rank n+1 is the sequence $(h_S)_{S\subseteq [n]}$, defined by

$$h_S(P) = \sum_{T \subseteq S} (-1)^{|S \setminus T|} f_T(P).$$

Using the above transformation of flag f-vector, we can note that

$$\Psi_P = \sum_{S \subseteq [n]} h_S u_S$$

where $u_S = u_1 u_2 \cdots u_n$, $u_i = \mathbf{a}$ if $i \notin S$, $u_i = \mathbf{b}$ if $i \in S$.

The star involution * is defined on ab-monomials by $(u_1u_2\cdots u_k)^* = u_ku_{k-1}\cdots u_1$, and extended linearly on the polynomial algebra $\mathbb{Q}\langle \mathbf{a}, \mathbf{b}\rangle$. For ab-index of dual poset P^* holds $\Psi_{P^*} = (\Psi_P)^*$ ([8]).

For a poset P let $\mathcal{E}(P)$ denote its covering relation, $\mathcal{E}(P) = \{(x,y) \in P \times P : x \prec y\}$. An edge-labelling of P is a map $\lambda : \mathcal{E}(P) \to \Lambda$, where Λ is some poset (usually integers). Given an edge labelling λ , each unrefinable chain $C: x = x_0 \prec x_1 \prec \cdots \prec x_{k-1} \prec x_k = y$ of length k can be associated with its label $\lambda(C) = (\lambda(x_0 \prec x_1), \lambda(x_1 \prec x_2), \ldots, \lambda(x_{k-1} \prec x_k))$. The edge labelling λ of P is said to be an R-labelling if in every interval [x,y] of P there is a unique maximal chain where the labels are weakly increasing.

For a maximal chain $c:\widehat{0} = x_0 \prec x_1 \prec \cdots \prec x_n \prec x_{n+1} = \widehat{1}$ we define its descent set $D(c) = \{i \in [n] : \lambda(x_{i-1} \prec x_i) > \lambda(x_i \prec x_{i+1})\}$ and its descent monomial $u(c) = u_1u_2 \cdots u_n$, where $u_i = a$ if $i \notin D(c)$ and $u_i = b$ otherwise. If a poset P admits an R-labelling then the following result (see [4],[9]) gives the combinatorial interpretation of the flag h-vectors.

Theorem 1 (R. Stanley). Let P be a finite bounded graded poset of rank n+1 with an R-labelling λ . Then, for all $S \subseteq [n]$, $h_S(P)$ is equal to the number of maximal chains of P with descent set S.

As a corollary we obtain that if a poset P has an R-labelling, then

(2)
$$\Psi_P = \sum_c u(c)$$

where the sum is over all maximal chains c.

The interval poset I(P) of a poset P is the set of all closed intervals of P ordered by containment:

$$[x,y] \leq [x',y']$$
 in $I(P)$ if and only if $x' \leq x \leq y \leq y'$ in P .

By the convention we also adjoin the empty interval to I(P) as the minimal element.

In [7] it is noted that for all $n \in \mathbb{N}$ the interval poset of the Boolean lattices B_n (the face lattice of an (n-1)-simplex) is the face lattice of n-cube, i.e. $I(L(\Delta_{n-1})) \cong L(C_n)$. Also, in [7] is asked wether it is true for every polytope P such that there exists a polytope Q with $I(L(P)) \cong L(Q)$.

The next proposition follows directly from the definition of interval posets and from the basic properties of operations Pyr and Prism over posets and polytopes (see [1], [5]).

Proposition 2.

- (i) For any poset P we have $I(P) \cong I(P^*)$.
- (ii) Intervals in the poset I(P) have the following form
- (3) $[[x,y],[x',y']]_{I(P)} \cong [x',x]^* \times [y,y'], \quad [\hat{0},[x,y]]_{I(P)} \cong I([x,y]).$

(iii) Let P be a graded poset of rank n. Then I(P) is a graded poset of rank n+1 and from (3) we obtain that r[x,y] = r(y) - r(x) + 1. Also, from (3) it follows that

(4)
$$f_i(I(P)) = \sum_{j=0}^{n-i+1} f_{j,j+i-1}(P)$$

(iv) For any poset P holds

$$(5) I(P \times B_1) \cong I(P) \diamond B_2.$$

If P and Q are polytopes such that $I(L(P)) \cong L(Q)$, then (as a special case of (5)) we have $I(L(Pyr(P))) \cong L(Prism(Q))$.

Proposition 3. If a poset P admits an R-labelling, then there exists an R-labelling for I(P).

Proof. Assume that $\lambda: \mathcal{E}(P) \to \Lambda$ is an R labelling for P. Let $-\Lambda$ denote a poset which is isomorphic with Λ^* and disjoint with Λ . Now, we can define

$$\overline{\lambda}: \mathcal{E}(I(P)) \to -\Lambda \oplus \{0\} \oplus \Lambda$$

(here \oplus denotes the ordinal sum of posets) with $\overline{\lambda}(\hat{0},[x,x])=0$ for all $x\in P$ and

$$\overline{\lambda}([x,y],[x',y']) = \left\{ \begin{array}{ll} \lambda(y,y'), & \text{if } x=x',y \prec y'; \\ -\lambda(x',x), & \text{if } x \prec x',y=y'. \end{array} \right.$$

We claim that $\overline{\lambda}$ is an R-labelling. If $x' = x_0 \prec x_1 \prec \cdots \prec x_r = x$ and $y = y_0 \prec y_1 \prec \cdots \prec y_s = y'$ are the unique rising chains in [x', x] and [y, y'] then $[x, y] = [x_r, y_0] \prec [x_{r-1}, y_0] \prec \cdots \prec [x_0, y_0] \prec [x_0, y_1] \prec \cdots \prec [x_0, y_s] = [x', y']$ is the unique rising chain in [[x, y], [x', y']].

Similarly, for the unique rising chain $x = x_0 \prec x_1 \prec \cdots \prec x_k = y$ in [x, y] we have that $\hat{0} \prec [x, x] = [x_0, x_0] \prec [x_0, x_1] \prec \cdots \prec [x_0, x_r] = [x, y]$ is the unique rising chain in $[\hat{0}, [x, y]]$.

Coalgebra techniques in studying ab-index were first applied in [5]. For a vector space W, a coproduct is a linear map $\Delta:W\to W\otimes W$. To denote the coproduct of an element $w\in W$, we use the Sweedler notation (see [10]) $\Delta(w)=\sum_w w_{(1)}\otimes w_{(2)}$. A coproduct Δ is coassociative if it satisfies the identity $(\Delta\otimes id)\circ\Delta=(id\otimes\Delta)\circ\Delta$.

The following coassociative coproduct Δ on $\mathbb{Q}(\mathbf{a}, \mathbf{b})$ is defined in [5] by:

$$\Delta(u_1 \cdot u_2 \cdots u_n) = \sum_{i=1}^n u_1 \cdots u_{i-1} \otimes u_{i+1} \cdots u_n$$

and extended linearly to $\mathbb{Q}\langle a, b \rangle$.

For a coassociative coproduct Δ on a coalgebra W we consider map $\Delta^k:W\to W^{\otimes k}$ defined by

$$\Delta^1 = id$$
 and $\Delta^{k+1} = (\Delta^{\otimes k} \otimes id) \circ \Delta$.

The Sweedler notation for the map Δ^k is

$$\Delta^k(x) = \sum_x x_{(1)} \otimes x_{(2)} \otimes \cdots \otimes x_{(k)}.$$

Maps Δ^k on coalgebra $\mathbb{Q}\langle \mathbf{a}, \mathbf{b}\rangle$ were used in [5] for the definition of mixing operator, which express $\Psi_{P\times Q}$ in the terms of Ψ_P and Ψ_Q . Our purpose is to define linear operator $\mathcal{I}: \mathbb{Q}\langle \mathbf{a}, \mathbf{b}\rangle \to \mathbb{Q}\langle \mathbf{a}, \mathbf{b}\rangle$ such that $\Psi_{I(P)} = \mathcal{I}(\Psi_P)$.

Definition 4. For k = 2m we define an operator I_k on a monomial u by

$$I_k(u) = \sum_{u} \mathbf{a} \cdot u_{(m+1)} \cdot \mathbf{b} \cdot u_{(m)}^* \cdot \mathbf{a} \cdot u_{(m+2)} \cdots \mathbf{b} \cdot u_{(1)}^* + \mathbf{b} \cdot u_{(m)}^* \cdot \mathbf{a} \cdot u_{(m+1)} \cdot \mathbf{b} \cdot u_{(m-1)}^* \cdots \mathbf{a} \cdot u_{(2m)}$$

and for k = 2m + 1

$$I_k(u) = \sum_{u} \mathbf{a} \cdot u_{(m+1)} \cdot \mathbf{b} \cdot u_{(m)}^* \cdot \mathbf{a} \cdot u_{(m+2)} \cdots \mathbf{a} \cdot u_{(2m+1)} + \mathbf{b} \cdot u_{(m+1)}^* \cdot \mathbf{a} \cdot u_{(m+2)} \cdot \mathbf{b} \cdot u_{(m)}^* \cdots \mathbf{b} \cdot u_{(1)}^*$$

where $u_{(1)} \otimes u_{(2)} \otimes \cdots \otimes u_{(k)}$ is a summand in $\Delta^k(u)$ and * is the star involution. Now, we define an operator \mathcal{I} on ab-monomials by

$$\mathcal{I}(u) = \sum_{k \ge 1} I_k(u)$$

and extend it linearly to $\mathbb{Q}\langle a, b \rangle$.

For example, $\sum_k \Delta^k(\mathbf{a}^2) = \mathbf{a}^2 + 1 \otimes \mathbf{a} + \mathbf{a} \otimes 1 + 1 \otimes 1 \otimes 1$ and $\mathcal{I}(\mathbf{a}^2) = \mathbf{a}^3 + \mathbf{b}\mathbf{a}^2 + \mathbf{a}^2\mathbf{b} + \mathbf{b}\mathbf{a}^2 + \mathbf{a}\mathbf{b}\mathbf{a} + \mathbf{b}\mathbf{a}^2 + \mathbf{a}\mathbf{b}\mathbf{a} + \mathbf{b}\mathbf{a}\mathbf{b}$.

Theorem 5. For any graded poset P we have that $\Psi_{I(P)} = \mathcal{I}(\Psi_P)$.

Proof. In order to motivate the definition of operator \mathcal{I} , we shall first prove this theorem in the case when the poset P has an R-labelling λ .

Assume that r(P) = n and let $\overline{\lambda}$ be the R-labelling of I(P) defined as

in the proof of proposition 3. Let $c:\hat{0}_P = t_0 \prec t_1 \prec \cdots \prec t_{n-1} \prec t_n = \widehat{1}_P$ be a maximal chain in P, $\lambda(c) = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ its label and $u(c) = u_1u_2\cdots u_{n-1}$ its descent monomial.

For any maximal chain $C:\hat{0} = \emptyset \prec [x_0, y_0] \prec [x_1, y_1] \prec \cdots \prec [x_{n-1}, y_{n-1}] \prec [\hat{0}_P, \hat{1}_P] = \hat{1}$ in I(P) we can consider the multichain

(6)
$$\hat{0}_P \le x_{n-1} \le x_{n-2} \le \cdots x_0 = y_0 \le y_1 \le y_2 \le \cdots \le y_{n-1} \le \hat{1}_P$$

in P. We say that C corresponds with c if all elements of c appear in (6). Note that if $x_i = x_{i-1}$ then $y_{i-1} \prec y_i$, and if $y_{i-1} = y_i$ then $x_i \prec x_{i-1}$. So, for any maximal chain C in I(P) there exists the unique C-corresponding maximal chain in P.

Now, we will show that for a fixed maximal chain c in P, the contribution of all its corresponding maximal chains to $\Psi_{I(P)}$ is exactly $\mathcal{I}(u(c))$. Assume that C corresponds with c. If in (6) holds $x_0 = y_0 = t_i$, $x_0 = x_1 = \cdots =$

 $x_{j_1} \succ x_{j_1+1} \succ \cdots \succ x_{j_2} = x_{j_2+1} = \cdots = x_{j_3} \succ x_{j_3+1} \succ \cdots$, then (according with the definition of labelling $\overline{\lambda}$) we have

$$\overline{\lambda}(C) =$$

= $(0, \lambda_i, \lambda_{i+1}, \dots, \lambda_{i+j_1}, -\lambda_{i-1}, \dots, -\lambda_{i-j_2}, \lambda_{i+j_1+1}, \dots, \lambda_{i+j_3}, -\lambda_{i-j_2-1}, \dots)$. So, the descent monomial of C

$$u(C) = \mathbf{a}u_i \cdots u_{i+j_1-1} \mathbf{b}u_{i-2} \cdots u_{i-j_2} \mathbf{a}u_{i+j_1+1} \cdots u_{i+j_3-1} \mathbf{b} \cdots$$

is a monomial that appears as a summand in $\mathcal{I}(u(c))$.

Similarly, if $x_0 \succ x_1 \succ \cdots \succ x_{j_1} = x_{j_1+1} = \cdots = x_{j_2} \succ x_{j_2+1} \succ \cdots \succ x_{j_3} = x_{j_3+1} = \cdots$ we obtain that the descent monomial u(C) is a summand in $\mathcal{I}(u(c))$ which begin with **b**.

Two different c-corresponding maximal chains in I(P) (in the above construction) will be associated with different summands of $\mathcal{I}(u(c))$. For a given c, there are exactly 2^n of its corresponding maximal chains in I(P) and 2^n summands in $\mathcal{I}(u(c))$.

So, we obtain that $\mathcal{I}(u(c)) = \sum_{C} u(C)$, where C ranged over all corresponding maximal chains of I(P).

From linearity of \mathcal{I} and (2) it follows that $\Psi_{I(P)} = \mathcal{I}(\Psi_P)$.

Proof of the theorem in general case: Let P be a graded poset of rank n. Let $c: \hat{0}_P < t_1 < \cdots < t_k < \hat{1}_P$ be an arbitrary chain in P and let r_i denote $r(t_i)$. The contribution of c to Ψ_P is

$$wt(c) = (\mathbf{a} - \mathbf{b})^{r_1 - 1} \mathbf{b} (\mathbf{a} - \mathbf{b})^{r_2 - r_1 - 1} \mathbf{b} \cdots \mathbf{b} (\mathbf{a} - \mathbf{b})^{n - r_k - 1}.$$

We say that a chain $C: \hat{0} = \emptyset < [x_0, y_0] < [x_1, y_1] < \dots < [x_r, y_r] < [\hat{0}_P, \hat{1}_P] = \hat{1}$ in I(P) corresponds with c iff the multichain

$$\hat{0}_P < x_r \le x_{r-1} \le \dots \le x_0 \le y_0 \le y_1 \le y_2 \le \dots \le y_r \le \hat{1}_P$$

in P contains exactly those elements which appear in c. Note that for every chain C in I(P) there exists the unique chain in P which corresponds with C.

If we denote by a_k the number of chains in I(P) which correspond with a given chain c in P whose length is k, then (considering all possibilities for the greatest element of C) we have

$$a_{k+1} = 2a_k + a_{k-1}$$
 where $a_0 = 3, a_1 = 7$.

Now, we shall show that

$$\mathcal{I}(wt(c)) = \sum_{C} wt(C)$$

where C ranges over all chains in I(P) which correspond with c. Summands that appear in $\Delta^{l+1}(wt(c))$ are indexed by all l-elements subsets of $\{1, 2, \ldots, n-1\}$. For a given set $S = \{i_1, i_2, \ldots, i_l\}$ and w = wt(c) we put

$$w_S = w_1 \cdots w_{i_1-1} \otimes w_{i_1+1} \cdots w_{i_2-1} \otimes \cdots \otimes w_{i_l+1} \cdots w_{n-1} =$$

$$= w_{S(1)} \otimes w_{S(2)} \otimes \cdots \otimes w_{S(l+1)}$$

(if $i_j = i_{j-1} + 1$ then $w_{i_{j-1}+1} \cdots w_{i_j-1} = 1$).

Note that summands which correspond with $S \nsubseteq \{r_1, r_2, \dots, r_k\}$ will vanish in $\Delta^{|S|+1}(wt(c))$ and in $\mathcal{I}(wt(c))$ too.

For $S = \{i_1, i_2, \dots, i_l\} \subseteq \{r_1, r_2, \dots, r_k\}$ and l = 2m we consider chains

$$\begin{split} C^+ &: [t_{i_m}, t_{i_m}] < [t_{i_m}, t_{i_{m+1}}] < \ldots < [t_{i_m}, t_{i_{m+1}}] < \\ &< [t_{i_{m-1}}, t_{i_{m+1}}] < \ldots < [t_{i_{m-1}}, t_{i_{m+1}}] < [t_{i_{m-1}}, t_{i_{m+1}+1}] \ldots < \\ &< [t_{i_{m-1}}, t_{i_{m+2}}] < [t_{i_{m-1}-1}, t_{i_{m+2}}] \ldots < [\hat{0}_P, t_{i_l}] < \ldots < [\hat{0}_P, \hat{1}_P] \end{split}$$

and

$$\begin{split} C^{-}[t_{i_{m+1}},t_{i_{m+1}}] &< [t_{i_{m+1}-1},t_{i_{m+1}}] < \ldots < [t_{i_m},t_{i_{m+1}}] < [t_{i_m},t_{i_{m+1}+1}] < \\ &< \ldots < [t_{i_m},t_{i_{m+2}}] < [t_{i_{m-1}},t_{i_{m+2}}] \ldots < [t_{i_{m-1}},t_{i_{m+2}}] < \\ &< [t_{i_{m-1}},t_{i_{m+2}+1}] \ldots < [t_{i_1},\hat{1}_P] < \ldots < [\hat{0}_P,\hat{1}_P]. \end{split}$$

The contribution of C^+ and all of its 2^{m+1} subchains (which correspond with c and may not contain elements $[t_{i_m}, t_{i_m}], [t_{i_{m-1}}, t_{i_{m+1}}], \cdots, [t_{i_1}, t_{i_{l-1}}], [\hat{0}_P, t_{i_l}])$ to $\Psi_{I(P)}$ is

$$\mathbf{a} \cdot w_{S(m+1)} \cdot \mathbf{b} \cdot w_{S(m)}^* \cdot \mathbf{a} \cdot w_{S(m+2)} \cdots \mathbf{a} \cdot w_{S(l+1)}$$
.

Similarly, the contribution of C^- and all of its 2^m subchains (which correspond with c and may not contain elements $[t_{i_m}, t_{i_{m+1}}], [t_{i_{m-1}}, t_{i_{m+2}}], \cdots, [t_{i_1}, t_{i_l}]$ to $\Psi_{I(P)}$ is

$$\mathbf{b} \cdot w_{S(m+1)}^* \cdot \mathbf{a} \cdot w_{S(m+2)} \cdot \mathbf{b} \cdot w_{S(m)}^* \cdots \mathbf{b} \cdot w_{S(1)}^*$$

We use the same reasoning in the case when l=2m+1. The number of the used c-corresponding chains (for all $S \subseteq \{r_1, \ldots r_k\}$) is

$$\sum_{i=0}^{k} {k \choose i} \left(2^{\left\lfloor \frac{i+1}{2} \right\rfloor} + 2^{\left\lfloor \frac{i+2}{2} \right\rfloor}\right),$$

which is exactly a_k . So, we have $\mathcal{I}(wt(c)) = \sum_C wt(C)$, where C ranges over all chains in I(P) that correspond with c. From linearity of \mathcal{I} and (1) we obtain $\mathcal{I}(\Psi_P) = \Psi_{I(P)}$ for any graded poset P.

A derivation f on an algebra A is a linear map satisfying the product rule f(xy) = f(x)y + xf(y), and f(1) = 0. In [5] are defined the derivations G, G' and D on $\mathbb{Q}(\mathbf{a}, \mathbf{b})$ by

$$Q(a) = ba$$
, $G(b) = ab$; $G'(a) = ab$, $G'(b) = ba$; $D = G + G'$.

In [5] are also defined operators Pyr and Prism on $\mathbb{Q}(\mathbf{a}, \mathbf{b})$ as

$$Pyr(u) = u \cdot (\mathbf{a} + \mathbf{b}) + G(u), Prism(u) = u \cdot (\mathbf{a} + \mathbf{b}) + D(u).$$

For any graded poset P holds (theorem 4.4. in [5])

$$\Psi_{P \times B_1} = Pyr(\Psi_P)$$
, $\Psi_{P \diamond B_2} = Prism(\Psi_P)$.

As ab-index is surjective (lemma 3.4. in [6]), from (i) and (iv) of Proposition 2 we obtain

Corollary 6. The operator I satisfies

$$\mathcal{I}(u^*) = \mathcal{I}(u)$$
, $\mathcal{I}(Pyr(u)) = Prism(\mathcal{I}(u))$

for any ab-polynomial u.

A finite graded poset is Eulerian if every interval whose rank is at least one contains as many elements of even rank as of odd rank, i.e. for every interval in P the Euler-Poincaré formula holds.

M. Bayer and A. Klapper showed in [3] that the ab-index of an Eulerian poset P may be written uniquely as a polynomial Φ_P in the non-commutative variables $\mathbf{c} = \mathbf{a} + \mathbf{b}$ and $\mathbf{d} = \mathbf{ab} + \mathbf{ba}$. This polynomial is called the \mathbf{cd} -index of P. It is easy to see (from (4) and generalized Dehn-Sommerville relations, see [2]) that if a poset P is Eulerian, then I(P) is Eulerian, and so is $\Psi_{I(P)} \in \mathbb{Q}\langle \mathbf{c}, \mathbf{d} \rangle$. As in [5], [6], we can ask: Do there exist formulae for $\Psi_{I(P)}$ where the computation is inside algebra $\mathbb{Q}\langle \mathbf{c}, \mathbf{d} \rangle$?

REFERENCES

- M. Bayer and L. Billera: Counting faces and chains in polytopes and posets, In: Greene, C., ed.: Combinatorics and Algebra (Contemporary Mathematics, Vol. 34, pp. 207-252) Providence: American Mathematical Society 1984.
- [2] M. Bayer and L. Billera: Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Invent. Math. 79, 143 - 157 (1985).
- [3] M. Bayer and A. Klapper: A new index for polytopes, Discrete Comput. Geom. 6, 33 - 47 (1991).
- [4] Bjorner A.: Shellable and Cohen-Macaulay partially ordered sets Trans. Amer. Math. Soc., 260(1):159-183, (1980)
- [5] R. Ehrenborg and M. Readdy: Coproducts and the cd-index, J. Algebraic Combin. 8, 273 - 299 (1998).
- [6] Ehrenborg R. and H. Fox.: Inequalities for cd-indices of joins and products of polytopes, Combinatorica 23, No.3, 427-452 (2003).
- [7] Lindström B.: Problem P 73, Aequationes Math. 6, 113 (1971).
- [8] R. P. Stanley: Flag f-vectors and the cd-index, Math. Z. 216, 483 499 (1994).
- [9] R. P. Stanley: Enumerative Combinatorics, Vol. I Cambridge University Press, Cambridge/New York, 1997
- [10] M. Sweedler: Hopf Algebras Benjamin, New York, 1969