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ABSTRACT. We show that if a graded poset P admits an R-labelling,
then there exists an R-labelling for its interval poset [ (P). This motivate
us to define a linear operator 7, which express ab-index of interval poset
via ab-index of P,

Throughout this paper, we will consider graded posets with rank function
7. We refer to [9] as a good general reference for the poset terminology. For a
poset P of rank n+1and S C [n] = {1,2,...,n} we define f5(P) as the num-
ber of chains z; < z2 < -+ < z/g) such that S = {r(z;),r(z3), - (zi9))}-
The sequence (f5(P))sc(n) is called the flag f-vector of P. The flag f-vector
of P can be encoded as a non-commutative polynomial in variables a and b.

Let P be a poset of rank n+ 1. To every chain ci0) < T1<Ta<---<ap <1
of P we associate a weight wt(c) = wyws - - - w,, where

o if i€ {r(z1),r(z2),...,r(zz)}:
*7 ] a—b, otherwise.

Now, the ab-indez of P is defined as
1) Tp= ) wt)
e-chain inP [
The flag h-vector of a poset P of rank n+1 is the sequence (hs)sc), defined
by
hs(P) = D (=)l fr(P).

TCS

Using the above transformation of flag f-vector, we can note that

lpr = Z hgus
SCin]

where ug = ujug -y, 4; =aifi¢ S, u; =bifie S,
9
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The star involution #* is defined on ab-monomials by (wiug - ug)* =
UgUg—_1 - - - U1, and extended linearly on the polynomial algebra Q(a, b). For
ab-index of dual poset P* holds ¥p. = (Up)* ([8]).

For a poset P let £(P) denote its covering relation, E(P) = {(z,y) €
P x P:z <y} An edge-labelling of P is a map A : E(P) — A, where A is
some poset (usually integers). Given an edge labelling A, each unrefinable

chain Cix = zp < 21 <+ < Tp—1 < zx = y of length k can be associated
with its label A(C) = (A(zo < 1), AM(z1 < 23), ..., Mzp_y < z1)). The edge
labelling A of P is said to be an R-labelling if in every interval [z,9] of P
there is a unique maximal chain where the labels are weakly increasing.

For a maximal chain c¢'0 = Tp < T1 <+ < Ty < Zpyr = 1 we define
its descent set D(c) = {i € [n] : Azic1 < =) > Az < zi+1)} and its
descent monomial u(c) = ujug - - - uy, where u; =aifi ¢ D(c) and u; =
otherwise. If a poset P admits an R-labelling then the following result (sce
[4],[9]) gives the combinatorial interpretation of the flag h—vectors.

Theorem 1 (R. Stanley). Let P be a finite bounded graded poset of rank
n+ 1 with an R—labelling \. Then, for all S C [n], hg(P) is equal to the
number of mazimal chains of P with descent set S.

As a corollary we obtain that if a poset P has an R-labelling, then
(2) Up = Z u(c)

where the sum is over all maximal chains e.

The interval poset I(P) of a poset P is the set of all closed intervals of P
ordered by containment:

[z.y] <[,y in I(P) ifand only if 2’ <2 <y < ¢/ in P.

By the convention we also adjoin the empty interval to I (P) as the minimal
element. '

In [7] it is noted that for all n € N the interval poset of the Boolean lat-
tices By, (the face lattice of an (n — 1)-simplex) is the face lattice of n-cube,
i.e. I(L(An-1)) 2 L(Cp). Also, in [7] is asked wether it is true for every
polytope P such that there exists a polytope Q with I(L(P)) = L(Q).

The next proposition follows directly from the definition of interval posets
and from the basic properties of operations Pyr and Prism over posets and
polytopes (see [1], [5]).

Proposition 2.
(i) For any poset P we have I(P) = I(P*).
(ii) Intervals in the poset I(P) have the following form

@) =z " ¥y = 22" x [,y , [0, [z yllipy = I([z, ).




THE ab-INDEX OF POSET OF INTERVALS 11

(i) Let P be a graded poset of rank n. Then I(P) is a graded poset of
rank n + 1 and from (3) we obtain that rlz,y] = r(y) — r(z) + 1.
Also, from (3) it follows that

n—i+l

(4) FIP) = 3 fijri-1(P)

=0

(iv) For any poset P holds
(5) I(P x Byl = HP)s B

If P and Q are polytopes such that I(L(P)) = L(Q), then (as a
spectal case of (5)) we have I(L(Pyr(P))) = L(Prism(Q)).

Proposition 3. If a poset P admits an R-labelling, then there erists an
R-labelling for I(P).

Proof. Assume that ) : £(P) — A is an R labelling for P. Let —A denote a
poset which is isomorphic with A* and disjoint with A. Now, we can define

A:E(I(P) » -A@ {0} @ A

(here @ denotes the ordinal sum of posets) with X(0, [z, z])=0forallz € P
and
r g 4 "
thuﬂﬁn={fﬂ§%,gi<?i:§
We claim that X\ is an R-labelling. If o' =25 < 2y < --- < 7, = z and
Yy=¥o <y < <ys =y are the unique rising chains in [¢', 2] and [y, 7]
then [.T.',.y] = [Ir‘:yﬂ] = [33?'—1:3"0] e e [.’L‘nfy(]] =5 [J:U:yij o P [mU?yS] =
[z',y'] is the unique rising chain in [z, vl [, y]].
Similarly, for the unique rising chain z = 24 < zy < <Lz =yin [z,y]
we have that 0 < [z, 2] = [z0. za] < [zo,21] < -+ < [zo, 2] = [z,y] is the
unique rising chain in [0, [z, 7]). O

Coalgebra techniques in studying ab-index were first applied in [5]. For
a vector space W, a coproduct is a linear map A= W — W ® W. To denote
the coproduct of an element w € W, we use the Sweedler notation (see [10])
Alw) = Y, wa) ® w(z). A coproduct A 1§ coassociative if it satisfies the
identity (A @ id) o A = (id® A) o A.

The following coassociative coproduct A on Q(a, b) is defined in [5] by:

n
Aluy -ug - uy) = E Uy U1 DUy - Uy
i=1

and extended linearly to Q(a, b).

For a coassociative coproduct A on a coalgebra W we consider map
AF . W — W®k defined by

Al = id and A% = (A®F & 4d) 0 A,
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The Sweedler notation for the map A* is

A¥@) =)o) ®T@ ® - B TG,

Maps AF on coalgebra Q(a, b) were used in [5] for the definition of mixing
operator, which express ¥pxq In the terms of Wp and ¥p. Our purpose is
to define linear operator Z : Q(a,b) — Q(a,b) such that ¥yp) = I(Tp).

Definition 4. For k = 2m we define an operator I on a monomial u by

Ii(u) = Za 1) * D Uy B U(nt2) * b-ufy+

+b - u’('m} cac Ugmt1) b- ufm_l) @@ U(9m)
and for k=2m +1

L(u) =Y 2 Upntr) " D Um) 8- Ugnt2) 2" Uamen) T

+b - Ufppy) B Ugn2) ° | RRTHEREES b - ufy)

where u(;) @ yg) @ -+ @ Uk) is a summand in AFf(u) and * is the star
involution. Now, we define an operator Z on ab-monomials by

I(w) =) Ilu)

k>1
and extend it linearly to Q(a,b).

For example, 3, Ak(a?) =a’+1@a+a®1+1Q1®1 and ') =
a® + ba? + a’b + ba® + aba + ba® + aba + bab.

Theorem 5. For any graded poset P we have that rpy = Z(¥p).

Proof. In order to motivate the definition of operator Z, we shall first prove
this theorem in the case when the poset P has an R-labelling A.
Assume that 7(P) = n and let X be the R-labelling of I(P) defined as

in the proof of proposition 3. Let clp =tg <t <+ Rtp_1 < th =
1p be a maximal chain in P, A(c) = (M1, A2,...,An) its label and u(c) =
Uil - - - Up—1 its descent monomial.

For anynaximal chain Ci0 =0 < [zo,vo] < [z1.91) <+ < [Tn—1,m-1] <
[0p,1p] = 1 in I(P) we can consider the multichain
(6) GPSIn-—IExn—'lg"'ED:yﬂsylsy'ZS"'Syn—lSiP
in P. We say that C corresponds with c if all elements of ¢ appear in (6).
Note that if z; = z;_1 then y;—1 < ¥, and if yi—1 = Ui then z; < T;_1. So,
for any maximal chain C in I(P) there exists the unique C-corresponding
maximal chain in P.

Now, we will show that for a fixed maximal chain ¢ in P, the contribution
of all its corresponding maximal chains to ¥ (p is exactly Z(u(c)). Assume
that C corresponds with ¢. If in (6) holds zo = yo = &, To = &1 = -+ =
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Ty > Tjpgl = o0 = Ty = Tyl = - = Ty = Tjggl =0 then (according
with the definition of labelling A) we have

xe) =
o (U: )\i.- /\,-+1, e -f\i+j1 y —)\;'_1, vy _’\i—jal’\ifh"'l' i )\iq—j;;: _)\‘i—jz—l,' ok )

So, the descent monomial of C
w(C) = at; - -~ Uiy j, —1DU_2 *+* Uim jo AU jy 41 * Uijg—1D o
is a monomial that appears as a summand in Z(u(c)).

Similarly, if zp = @1 > - > Tj; = Tj41 = 00 = Tjy = Tjppl > o0 =
Lj, = Tjy41 = --- we obtain that the descent monomial 4(C) is a summand
in Z(u(c)) which begin with b.

Two different c-corresponding maximal chains in I(P) (in the above con-
struction) will be associated with different summands of T(u(c)). For a given
¢, there are exactly 2" of its corresponding maximal chains in I(P) and 2"
summands in Z(u(c)).

So, we obtain that Z(u(c)) = .o u(C), where C ranged over all corre-
sponding maximal chains of I(P).

From linearity of Z and (2) it follows that ¥rpy = Z(¥p).

Proof of the theorem in general case: Let P be a graded poset of rank n.

Let clp <ti < - <t < 1p be an arbitrary chain in P and let r; denote
r(t;). The contribution of ¢ to ¥p is

wt(ec) = (a—b)"b(a—b)* " 'b---b(a — b)* .

We say that a chain C:0 =0 < [zo,v0] < [z1,3] < -+ < [2r, 4] < [0p,1p] =
1 in I(P) corresponds with ¢ iff the multichain

Op<z,<zra < <z<pw<yu<wp<--<y<ip

in P contains exactly those elements which appear in c¢. Note that for every
chain C in I(P) there exists the unique chain in P which corresponds with
C.

If we denote by aj the number of chains in I(P) which correspond with
a given chain ¢ in P whose length is k, then (considering all possibilities for
the greatest element of C) we have

Gr =205 - 05 where agp = 3,a; = 7.

Now, we shall show that ¢

I(wt(c)) = Y _ wt(C)
C

where C ranges over all chains in I(P) which correspond with c.
Summands that appear in Al (wt(c)) are indexed by all [-elements subsets
of {1,2,...,n—1}. For a given set § = {i1,ia,.. .,i1} and w = wt(c) we put

Wg = Wy Wip—1 @ Wiy 41 Wip—1 - @ Wiy~ Wp—1 =
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= wg(1) @ Wg(2) ® - @ Ws(i+1)
(if4; =4;—1 + 1 thepwy, 41 - w1 = 1

Note that summands which correspond with S € {ry,ra,..., 7%} will van-
ish in AlSI+1(wt(c)) and in Z(wt(c)) too.
For S = {iy,d9,...,4} € {r1,r2,...,rx} and | = 2m we consider chains

C+E[tim,t,ﬁm] < [tf_,n,tim.}.l] e {tim rtim+1] <
=2 [tim—]dt‘im+l] <...< [tim—ll t':m-'-l] < {ti:n—l’tirnfl+1] 2 <
< [tinl—l-‘t‘lm-l-?] < [titn—l_lltim-ﬁ?] e < [(‘]P"tlll <...< [f]P? iP]
and
C_[t!:,“.y]_!t?:";.;_t] 5 [ti7r,+1—1:t€r;;+1_] = = [tim'tinn—l] < [tim ?t‘im+1+1] =
< ol < [tilrl1tinaT2] < [tffm"l' tivrl——2] T < ’tirn‘—i ?ti'm,+2] <

< [ o binigit]) e S [ligs 281 < s < [Upydp:
The contribution of C* and all of its 2™*! subchains (which correspond
with ¢ and may not contain elements [t;,., ti,. ), [tim_ 1y bimr)s o [Bins tiy ),
[OPvtit]) to lIJI[P] is

a- wS(m+1) ‘b- T.L'B{m) Jit - 15 'ws(m_i_g) el - 0 w3(£+1)-
Similarly, the contribution of C~ and all of its 2™ subchains (which corre-
spond with ¢ and may not contain elements [t;.. ;. .|, [ti_ 1 tigals
[til?titl) to "I’{{p) is

b Wiy 8 We(m42) - b Ws(m) *** b+ Wgy)-

We use the same reasoning in the case when [ = 2m + 1. The number of
the used c-corresponding chains (for all S C {ry,...rz}) is

k. (k : 42
Yo (i)(gl%J +2U5%°))y,

t=0

which is exactly ag. So, we have Z(wt(c)) = ) o wt(C), where C ranges
over all chains in I(P) that correspond with ¢. From linearity of 7 and (1)
we obtain Z(¥p) = ¥;(py for any graded poset P. O

A derivation f on an algebra A is a linear map satisfying the product
rule f(zy) = f(x)y+zf(y), and f(1) = 0. In [5] are defined the derivations
G,G" and D on Q(a,b) by

@(a) = ba, G(b) = ab; G'(a) = ab, G'(b) =ba; D=G +G'.
In [5] are also defined operators Pyr and Prism on Q(a,b) as
Pyr(u) = u-(a+b) + G(u), Prism(u) = u- (a+b) + D(u).
For any graded poset P holds (theorem 4.4. in [5])
Upyp, = Pyr(¥p) , ¥pop, = Prism(¥p).
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As ab-index is surjective (lemma 3.4. in [6]), from (i) and (iv) of Proposition
2 we obtain

Corollary 6. The operator T satisfies
I(u*) =Z(u) , Z(Pyr(u)) = Prism(Z(u))
for any ab-polynomial u.

A finite graded poset is Eulerian if every interval whose rank is at least
one contains as many elements of even rank as of odd rank, ie. for every
interval in P the Euler-Poincaré formula holds.

M. Bayer and A. Klapper showed in [3] that the ab-index of an Euler-
ian poset P may be written uniquely as a polynomial ®p in the non-
commutative variables ¢ = a+ b and d = ab + ba. This polynomial is
called the cd-indez of P. It is easy to see (from (4) and generalized Dehn-
Sommerville relations, see [2]) that if a poset P is Eulerian, then I(P) is
Eulerian, and so is ¥p) € Q(c,d). As in [5], [6], we can ask: Do there
exist formulae for ¥(py where the computation is inside algebra Q{c,d)?
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