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ABSTRACT. Let G be a connected graph on n vertices VL, V2, ..,V and let
—— t
8(vs) be the degree of the vertex v, , If (\/a(m! Vo), .., 3(om )) is

an eigenvector of the (0, 1)-adjacency matrix of G, then G is either regular or
(bipartite) semiregular.

Introduction

Let G = (V(G), E(G)) be a graph with vertex set V(G) = {w,va,...,u,}. The
number of first neighbors of the vertex 1 is the degree of this vertex and is de-
noted by d(v;) . The column—vector (\/6('51)._ Vo(uve),. .., \/‘6(1,-'?1))r is denoted
by 6(G).

A graph G is said to be regular (or, more precisely: r-regular) if there exists
an integer r, such that for all v € V(G) , 6(v) = r. A bipartite graph G
with bipartition V(G) = V4(G) U V4(G) is said to be semiregular (or more pre-
cisely: (ry,r)-semiregular) if there exist integers r and ry, such that for all
v € Vi(G), é6(v) = ry and forall v € Va(G) , 6(v) = ry.

Some time ago graphs possessing a peculiar spectral property were examined [2].
Definition. A graph G is said to be SQR ifg(G) is one of its eigenvectors, i. e.,
if the equality A(G)4(G) = AJ(G) is obeyed for some A, where A(G) is the
(0, 1)-adjacency matrix of G .
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Recall that the adjacency matrix is defined as
1 if (v;,v;) € E(G)
A@) =11AG)Il 5 A@), = |
0 otherwise .
It is immediately verified that regular and semiregular graphs are SQR. In the
paper [2] it was conjectured that no other connected graph is SQR . We now show
that, indeed, this conjecture s true, i. e., we prove the following:

-

Theorem. Let G be a connected graph. Then §(G) is an eigenvector of G if and

only if G is either regular or (biparitite) Semiregular,

Proof of the Theorem

From the Definition it immediately follows [2] that a graph G is SOR if the equal-
ity

1) AW = 3 o)

(""|'Uj)EE(G)
holds for all i = 1, 2,...,n, (Recall [1] that X is the element of the graph spec-

trum, corresponding to the eigenvector §, (@)
By direct checking it can be verified [2] that all regular and all semiregular graphs

satisfy Eq. (1). This implies the “if” part of Theorem 1.

Consider an arbitrary connected graph G'. Let z be a vertex of G, such that forall

VEG, i(z) <i(v). Denote d(z) bya, a> 1.
Letyi,...,y, be the first neighbors of z, labelled so that for alli=1,... qa, O(u) >
6(v;) . Denote d(v;) byb,b>1.

Ifb > 1, let the first neighbors of 1 other than z be = IR

With the above specified notation, the application of Eq. (1) to the vertices 7 and
y (i. e., choosing in Eq Dy =zandy; = Yy) vields:

@) Aa = v’hi\/&(vd

=1
b—-1

3) MW = Va+ > Vi) .
i=1

Ifa = 1, then the sum on the right-hand side of (2) does not exist and has, for-
mally, to be set equal to zero. Similarly, if b = 1, then the sum on the right-hand
side of (3) is zero.

Expressing A from (2) and substituting it into (3) one obtains:

a b—1
@ 6=+ Vo) - 1] = 3 vadta).

i=2 i=1
Consider first the left-hand side of (4) and observe that because of o(y) < b, the
term /b d(y;) is less than or equal to b . Then, assuming a > 1, we have
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[\/b ay;) — 1} < (@ —1)(b — 1) and, consequently,

1=2

() b-1)+% [\/55(3,&-) = 1} <ab-1).
g=12

Clearly, relation (5) holds, as an equality, also ifa = 1. If @ > 1 then equality in
(5) will occur if and only if 6(31) = () = - - - = o(ya) = b.

Consider now the right—hand side of (4). Because of §(3) > a, the term vao(z)
is greater than or equal to . Then, assumin gb> 1, wehave

b—1
(6) > Vad(z) = ab-1).
t=1

Again, relation (6) holds, as equality, also if b = 1. If b > 1 then equality in (6)
will occur if and only if §(z) = .. - = 0(zp-1) = 6(z) = a.

Comparing (5) and (6) we see that the relation (4) will be obeyed if and only if
equality holds in both (5) and (6). This happens in the following four cases:

Case l.a=1,b=1"

Case2. a =1, b>1and6{21)=---=§(zb_])=6(;c)=l;
Case3. a>1,b=1:
Case 4. a>1,b>1anddé(y;) = d(yp) =+ =0(Ya) =band §(z) = ... =

0(zp—1) = 6(z) = a.

In Case 1 G is the 1-regular graph (possessing two vertices). In Case 2 ¢ is the
(b+ 1)-vertex star, i. e., the connected (1, b)—semiregular graph. Similarly, in Case
3 G is the (a + 1)-vertex star, a (1. a)-semiregular graph. Thus in Cases 1-3 the
proof of the “only if” part of Theorem is done. Remains the Case 4.

In Case 4 all the vertices Y1:Y2, - .-, Ya adjacent to the vertex = have equal degrees.
In view of this, whatever condition must be obeyed by y (in order that Eq. (1) be
satisfied), must also be obeyed by 1, ..., y,. All first neighbors of 3 must have
equal degrees. Therefore, all first neighbors of 4 , i = 1,2,...,a, must have
equal degrees, equal to §(z). Because = was an arbitrarily chosen vertex of G,
whatever holds for = and its first neighbors, must hold for all vertices of G . This,
in particular, implies that all vertices of G are either of degree a or of degree b,
If a = b then all vertices of G have equal degrees. Hence G is regular. If ¢ =
then any vertex of degree a is adjacent to vertices of degree b and vice versa. Hence
G is bipartite, (a, b)-semiregular.

This completes the proof of the Theorem. [J

Denote by A the set of all non-negative integers.

Corollary 1. Let G be SQR. Then the eigenvalue associated with the eigenvector
§(G) is of the form A\ = \Vk , k € Np.

Corollary 2. Let G be SQR, but not connected. If A€ My, then each component
of G is a A-regular graph or an (r1,72)-semiregular graph, such that Mnrs =
A2, or an isolated vertex. If A & No, then each component of G is an (ry,ry)-
semiregular graph, such that ry ro = X2, or an isolated vertex.
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