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On Some Algebraic and Differential
Equation in the Space of Generalized
Functions

Vladimir Jovanovié

Abstract

Here we consider existence of distributional solutions for some alge-
braic equations and find general solution for two ordinary differential
equations in the space of generalized functions.

1. Introduction

Denote D'(IR) to be the space of generalized functions (or distributions), D(R)

the test function space, and C*(IR) the space of infinitely differentiable functions
on R. It is well-known that for m € N, the equation

&= (1)
has a solution in D'(R)(see [1]); also, for differential equation
u+zu=0 (2)

it is easy to derive the general solution, since it is an elliptic—type equation with
infinitely differentiable coeffitients (see [2]); nevertheless, we will derive general
solution for this equation in Example 2. However, the algebraic equation au = 1,

where o
o ] e ks b gt
az) = { e oy 3)

intrinsicly differs from the equation (1), because (Vk € N U {0}) a'¥(0) = 0.
Also, the equation z3u’ + 2u = 0 has quite different nature compared to the
equation (2). In this paper we will consider the last two equations. Throughout
the whole paper, o will denote the function defined by (3). As usual, < -, >
stands for the duality relation betweeen D'(R) and D(R).
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2. Algebraic equations

Proposition 1 The equation

au=1+ Z Cié") (4)

i=0

has no solution in D'(R), where C; €R (i = 0,...,n). Thereby § and 69 (i =
0,...,n) are Dirac’s delta distribution and its derivatives.

Proof. For £ > 0 introduce

Ee—l/l[][x—s)a: 28

o s

Obviously, f. € C*°(R). Let n € D(R) be a function such that 7 > 0 on R and
7 = 1 in a neighborhood of 0. For example, we can use n(z) = 1 + w(z), where

e E—J/[mﬂ—n: lz| > 1
il lz] < 1.

Let . = nf.. Taking into account that all derivatives of function f./e are
uniformly bounded with respect to € € (0,1) and z € R, we easily conclude that
. — 0in D(R) as € — 0. If u satisfies (4), then < u,p. >—3< 1,0 >=0, and,
on the other hand

<t > =<u,e/Tap.>=< au,euxznpg > =

n I o o0
=<1 +ZC‘,;5{‘},3”’2595 >S=<1,e/p, >= / e/ p. dz >

i=0 —00

v3e . ds
2 2 x
2] cel/z’ g—1/10(z—¢) d:vz/ cell/%" g—1/10e* 5 _ 2 1/90¢? - 400,

2e 2e

which is a contridiction. O

Corolary 1 The function f(z) = e'/*" can’t be extended to a distribution in
D'(R).

Proof. The support of af —1is {0}. According to the Schwartz’s theorem (see
[3]), we have af =1+ Y1 ;Ci6V for some n € N and C; € R, i = 0,1,...,n.
Hence, Proposition 1 yields the result. O

150 a2

T (the Heaviside’s function), then the

Proposition 2 If 6(z) = {

equation
au = Cy + C16,

has a solution in ’D’{R} only for Co = C, = 0.
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Proof. Similarly as we have done in the previous proposition, we have

<upe >= / (Co + C18(2))e"/* p:(z) dz = (Co + C1) fo el/* g (z) de.

—00

But, since [; /% o (z) dx — 400 as € — 0, it must be Cp + C; = 0. On the
_ ce—1/10(z+e)® o o~ .

other hand, putting f.(z) = { 0 & Y 1f- (for n as in

. T .

Proposition 1), we obtain
il S / (Co + C;O(I))e”’zg:s{x)dz = Cg/o e“‘z:,::-(a') dz.
—0 —o0

As above, f_om e”’gtps(:c)d:t: — 400, and we conclude that Cy = 0, i.e. Cp =
¢ =00
e"’lfﬂxl—slnll |Il > E

0, wl<e Then

Lemma 1 Define forz >0, a-(z) = {

(vke Nu{0}) o o™  uniformly on R,

as £ — 0+.

eV 250 e M z<0
' Let = 7 _(z) = ’ !
Proof. Let a+(z) 0, # <1 2 a_(z) 0, >0 Then,
for every k € N and z € R, the esitimates

(@) — P @—e)| < My,

e (@) —aB @ +e) < eMf,

(5)

where M, = mgﬁclaf) (z)|, hold. Clearly, @ = a4 +a_. The fact that a.(z) =

ai(z—¢)+a_(z+e)fore >0, z € R and the estimates (5) imply the assertion
of the Lemma. O .

Let’s consider another interesting equation:
Example 1 The equation au =4 has no solution in D'(R).

Indeed, if we introduce . = na., ¢ = na, where a. was defined in Lemma 1
and 5 in Proposition 1, we conclude, according to Lemma 1, that p. — ¢ in
D(R) as € = 0+. If such u € D'(R) exists then it satisfies < u,p. >—=< u,p >,
which is impossible, because

U >=< u,0e /%, > =< au, e, >=< 8,6/, >=0,
and, on the other hand,
<up>=<u,anp>=<au,n>=<46n>=n(0)#0. 0O

More generally, we have
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Theorem 1 The equation au = Co + C16 + 31, C;:8=?) has a solution only

Jor U =10, =01 .. 0.
Proof. First we need

Lemma 2 Forallz € R, 0<g <& = a.(z) > ag(z).

Proof. Obvious.
We can now start proving Theorem 1.
We define for k € {0,1,...,n—2}, m(z) = %n, where i was defined in Propo-
sition 1, and ¢* = nra., ¢*¥ = nra. As we concluded in the previous example,
we have

<u,pf >o<u, b >, (6)

and

n
<u,pt >S=<Co+Ci0+ Y Ciol?, =k 5 =< Gy + 018, eM/= gk 5=

=2

oo o0
=6 ] P (sl e+ O, ] M= 0y () ae () do.

i 0

According to Lemma 2. we can apply the Lebesgue’s monotone convergence
theorem in the last two integrals. Thus,

<‘u:ipf>—”30/ ﬂk(z)dl+01_/ n(z)dz, as e—0. (7)
— 00 1}

On the other hand.

n
<u,pf >=<uap >=<oun >=<Co+Cif+» Cd" 2 n >=

=2

5 09/ ne(z) dz + Cy fm m(z) dz + Y (=1)"2Cin = (0).

0 =2
The last equality, (6) and (7) read for k € {0.1,....,n— 2},

n

Y (—1F%cmi o) =0.

1=2

Applying n}:_g) (0) = di_2,x to the last equation, where §; ; is the Kronecker's
delta symbol, we obtain that C; = 0 for i = 2,3,...,n. Therefore, u satisfies
the equation au = Cy 4+ C160 which has a solution only for Cy = C) = 0 (see
Proposition 2). O
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3. Differential equations

Lemma 3 Let a € C°(R) such that a > 0 on R. Then for each f,g € D'(R),
the relation i

1
of st b0
holds.
Proof. Trivial. O

Example 2 Let’s solve the equation u' + zu = 0 in D'(B). Multiplying this
equation by a(z) = /2, we have (€' /?u) = 0, ie e 2y = C. Hence,
according to Lemma 3, the general solution has the form u = Ce =12,

remark 1 u' + zu = 0 is elliptic on R, hence all distributional solutions of this
equation are in fact classical solutions, hence the result.

However, the procedure showed above can’t be applyed to the equation
Lu' +2u=0, (8)

because the term z° vanishes at 0. Also, the equation is not elliptic at z = 0.
The following assertion holds:

Theorem 2 The equation (8) has only trivial solution in D'(R).
Multiplying (8) by a, we have

.
Pau + 20u =0= 2 (au' + x—?u) =0= 23(au)' = 0.

Hence, (au)’ = C16 + C26' + C38” and, finally, using uniqueness of the solution
of w' = f up to an additive constant,
au=Ch+ C10+ Cad + C36'.

Applying Theorem 1 to the last equation, we obtain that au = 0. Obviously,
{0} is the support of the distribution u. Then, the Schwartz’s theorem yields

that u has the form x
ws YA, (9)
=0
for some n € N and A; € R (i = 0,1,...,n). Let’s prove that A; = 0 (i =
0,...,n). Indeed, if n < 2, (8) and (9) imply #*u’ = 0 and 2%y’ +2u = 0, ie.
u=0. Ifn > 2, we have

0= z’u'+2u = za(i A@““’)uima(” = —6i Ai6(6_2}+2i44i6“) =
i=2

i=0 =l

i=0
n—2 : n ; n—2 .
=63 Auy26® +2)" A8 =2 (Ai = 34:12)8 + 2401 + 24n.
i=0 i=0 i=0

Since 4,4',...,6(™ are linearly independent, we have Ap—1 = A =0 A —
34, =0fori=0,1,...,n—2 From the last equations follows A4; = 0 (i =
0,1,.50m). B
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