On Some Algebraic and Differential Equation in the Space of Generalized Functions

Vladimir Jovanović

Abstract

Here we consider existence of distributional solutions for some algebraic equations and find general solution for two ordinary differential equations in the space of generalized functions.

1. Introduction

Denote $\mathcal{D}'(\mathbb{R})$ to be the space of generalized functions (or distributions), $\mathcal{D}(\mathbb{R})$ the test function space, and $C^{\infty}(\mathbb{R})$ the space of infinitely differentiable functions on \mathbb{R} . It is well-known that for $m \in \mathbb{N}$, the equation

$$x^m u = 1 \tag{1}$$

has a solution in $\mathcal{D}'(\mathbb{R})$ (see [1]); also, for differential equation

$$u' + xu = 0 \tag{2}$$

it is easy to derive the general solution, since it is an elliptic–type equation with infinitely differentiable coeffitients (see [2]); nevertheless, we will derive general solution for this equation in Example 2. However, the algebraic equation $\alpha u=1$, where

$$\alpha(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 (3)

intrinsicly differs from the equation (1), because $(\forall k \in \mathbb{N} \cup \{0\}) \alpha^{(k)}(0) = 0$. Also, the equation $x^3u' + 2u = 0$ has quite different nature compared to the equation (2). In this paper we will consider the last two equations. Throughout the whole paper, α will denote the function defined by (3). As usual, $\langle \cdot, \cdot \rangle$ stands for the duality relation between $\mathcal{D}'(\mathbb{R})$ and $\mathcal{D}(\mathbb{R})$.

2. Algebraic equations

Proposition 1 The equation

$$\alpha u = 1 + \sum_{i=0}^{n} C_i \delta^{(i)} \tag{4}$$

has no solution in $\mathcal{D}'(\mathbb{R})$, where $C_i \in \mathbb{R}$ (i = 0, ..., n). Thereby δ and $\delta^{(i)}$ (i = 0, ..., n) are Dirac's delta distribution and its derivatives.

Proof. For $\varepsilon > 0$ introduce

$$f_{\varepsilon}(x) = \begin{cases} \varepsilon e^{-1/10(x-\varepsilon)^2}, & x > \varepsilon \\ 0, & x \le \varepsilon. \end{cases}$$

Obviously, $f_{\varepsilon} \in C^{\infty}(\mathbb{R})$. Let $\eta \in \mathcal{D}(\mathbb{R})$ be a function such that $\eta \geq 0$ on \mathbb{R} and $\eta = 1$ in a neighborhood of 0. For example, we can use $\eta(x) = 1 + \omega(x)$, where

$$\omega(x) = \left\{ \begin{array}{ll} e^{-1/(x^2 - 1)}, & |x| > 1 \\ 0, & |x| \leq 1. \end{array} \right.$$

Let $\varphi_{\varepsilon} = \eta f_{\varepsilon}$. Taking into account that all derivatives of function $f_{\varepsilon}/\varepsilon$ are uniformly bounded with respect to $\varepsilon \in (0,1)$ and $x \in \mathbb{R}$, we easily conclude that $\varphi_{\varepsilon} \to 0$ in $\mathcal{D}(\mathbb{R})$ as $\varepsilon \to 0$. If u satisfies (4), then $\langle u, \varphi_{\varepsilon} \rangle \to \langle u, 0 \rangle = 0$, and, on the other hand

$$\langle u, \varphi_{\varepsilon} \rangle = \langle u, e^{1/x^{2}} \alpha \varphi_{\varepsilon} \rangle = \langle \alpha u, e^{1/x^{2}} \varphi_{\varepsilon} \rangle =$$

$$= \langle 1 + \sum_{i=0}^{n} C_{i} \delta^{(i)}, e^{1/x^{2}} \varphi_{\varepsilon} \rangle = \langle 1, e^{1/x^{2}} \varphi_{\varepsilon} \rangle = \int_{-\infty}^{\infty} e^{1/x^{2}} \varphi_{\varepsilon} dx \ge$$

$$\geq \int_{2\varepsilon}^{3\varepsilon} \varepsilon e^{1/x^{2}} e^{-1/10(x-\varepsilon)^{2}} dx \ge \int_{2\varepsilon}^{3\varepsilon} \varepsilon e^{1/9\varepsilon^{2}} e^{-1/10\varepsilon^{2}} dx = \varepsilon^{2} e^{1/90\varepsilon^{2}} \to +\infty,$$

which is a contridiction.

Corolary 1 The function $f(x) = e^{1/x^2}$ can't be extended to a distribution in $\mathcal{D}'(\mathbb{R})$.

Proof. The support of $\alpha f - 1$ is $\{0\}$. According to the Schwartz's theorem (see [3]), we have $\alpha f = 1 + \sum_{i=0}^{n} C_i \delta^{(i)}$ for some $n \in N$ and $C_i \in \mathbb{R}$, i = 0, 1, ..., n. Hence, Proposition 1 yields the result. \square

Proposition 2 If $\theta(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$ (the Heaviside's function), then the equation

 $\alpha u = C_0 + C_1 \theta,$

has a solution in $\mathcal{D}'(\mathbb{R})$ only for $C_0 = C_1 = 0$.

Proof. Similarly as we have done in the previous proposition, we have

$$\langle u, \varphi_{\varepsilon} \rangle = \int_{-\infty}^{\infty} (C_0 + C_1 \theta(x)) e^{1/x^2} \varphi_{\varepsilon}(x) dx = (C_0 + C_1) \int_{0}^{\infty} e^{1/x^2} \varphi_{\varepsilon}(x) dx.$$

But, since $\int_0^\infty e^{1/x^2} \varphi_{\varepsilon}(x) dx \to +\infty$ as $\varepsilon \to 0$, it must be $C_0 + C_1 = 0$. On the other hand, putting $f_{\varepsilon}(x) = \left\{ \begin{array}{ll} \varepsilon e^{-1/10(x+\varepsilon)^2}, & x < -\varepsilon \\ 0, & x \ge -\varepsilon. \end{array} \right.$, $\varphi_{\varepsilon} = \eta f_{\varepsilon}$ (for η as in Proposition 1), we obtain

$$\langle u, \varphi_{\varepsilon} \rangle = \int_{-\infty}^{\infty} (C_0 + C_1 \theta(x)) e^{1/x^2} \varphi_{\varepsilon}(x) dx = C_0 \int_{-\infty}^{0} e^{1/x^2} \varphi_{\varepsilon}(x) dx.$$

As above, $\int_{-\infty}^{0} e^{1/x^2} \varphi_{\varepsilon}(x) dx \to +\infty$, and we conclude that $C_0 = 0$, i.e. $C_0 = C_1 = 0$. \square

Lemma 1 Define for
$$\varepsilon > 0$$
, $\alpha_{\varepsilon}(x) = \begin{cases} e^{-1/(|x| - \varepsilon)^2}, & |x| > \varepsilon \\ 0, & |x| \leq \varepsilon \end{cases}$. Then

$$(\forall k \in N \cup \{0\})$$
 $\alpha_{\varepsilon}^{(k)} \to \alpha^{(k)}$ uniformly on \mathbb{R} ,

 $as \varepsilon \to 0+$

Proof. Let $\alpha_+(x)=\left\{\begin{array}{ll} e^{-1/x^2}, & x>0\\ 0, & x\leq 0 \end{array}\right., \ \alpha_-(x)=\left\{\begin{array}{ll} e^{-1/x^2}, & x<0\\ 0, & x\geq 0 \end{array}\right.$ Then, for every $k\in\mathbb{N}$ and $x\in\mathbb{R}$, the esitimates

$$|\alpha_{+}^{(k)}(x) - \alpha_{+}^{(k)}(x - \varepsilon)| \le \varepsilon M_{k+1}^{+},$$

 $|\alpha_{-}^{(k)}(x) - \alpha_{-}^{(k)}(x + \varepsilon)| \le \varepsilon M_{k+1}^{+},$
(5)

where $M_k^+ = \max_{x \in \mathbb{R}} |\alpha_+^{(k)}(x)|$, hold. Clearly, $\alpha = \alpha_+ + \alpha_-$. The fact that $\alpha_{\varepsilon}(x) = \alpha_+(x-\varepsilon) + \alpha_-(x+\varepsilon)$ for $\varepsilon > 0$, $x \in \mathbb{R}$ and the estimates (5) imply the assertion of the Lemma. \square

Let's consider another interesting equation:

Example 1 The equation $\alpha u = \delta$ has no solution in $\mathcal{D}'(\mathbb{R})$.

Indeed, if we introduce $\varphi_{\varepsilon} = \eta \alpha_{\varepsilon}$, $\varphi = \eta \alpha$, where α_{ε} was defined in Lemma 1 and η in Proposition 1, we conclude, according to Lemma 1, that $\varphi_{\varepsilon} \to \varphi$ in $\mathcal{D}(\mathbb{R})$ as $\varepsilon \to 0+$. If such $u \in \mathcal{D}'(\mathbb{R})$ exists then it satisfies $\langle u, \varphi_{\varepsilon} \rangle \to \langle u, \varphi \rangle$, which is impossible, because

$$< u, \varphi_{\varepsilon}> \ =\ < u, \alpha e^{1/x^2} \varphi_{\varepsilon}> \ =\ < \alpha u, e^{1/x^2} \varphi_{\varepsilon}> \ =\ < \delta, e^{1/x^2} \varphi_{\varepsilon}> \ =0,$$

and, on the other hand,

$$\langle u, \varphi \rangle = \langle u, \alpha \eta \rangle = \langle \alpha u, \eta \rangle = \langle \delta, \eta \rangle = \eta(0) \neq 0. \square$$

More generally, we have

Theorem 1 The equation $\alpha u = C_0 + C_1 \theta + \sum_{i=2}^n C_i \delta^{(i-2)}$ has a solution only for $C_i = 0, i = 0, 1, ..., n$.

Proof. First we need

Lemma 2 For all $x \in \mathbb{R}$, $0 < \varepsilon_1 < \varepsilon_2 \Rightarrow \alpha_{\varepsilon_1}(x) \geq \alpha_{\varepsilon_2}(x)$.

Proof. Obvious.

We can now start proving Theorem 1.

We define for $k \in \{0, 1, ..., n-2\}$, $\eta_k(x) = \frac{x^k}{k!}\eta$, where η was defined in Proposition 1, and $\varphi_{\varepsilon}^k = \eta_k \alpha_{\varepsilon}$, $\varphi^k = \eta_k \alpha$. As we concluded in the previous example, we have

$$< u, \varphi_{\varepsilon}^{k} > \to < u, \varphi^{k} >,$$
 (6)

and

$$< u, \varphi_{\varepsilon}^{k} > = < C_{0} + C_{1}\theta + \sum_{i=2}^{n} C_{i}\delta^{(i-2)}, e^{1/x^{2}}\varphi_{\varepsilon}^{k} > = < C_{0} + C_{1}\theta, e^{1/x^{2}}\varphi_{\varepsilon}^{k} > =$$

$$= C_0 \int_{-\infty}^{\infty} e^{1/x^2} \eta_k(x) \alpha_{\varepsilon}(x) dx + C_1 \int_{0}^{\infty} e^{1/x^2} \eta_k(x) \alpha_{\varepsilon}(x) dx.$$

According to Lemma 2, we can apply the Lebesgue's monotone convergence theorem in the last two integrals. Thus,

$$\langle u, \varphi_{\varepsilon}^{k} \rangle \to C_{0} \int_{-\infty}^{\infty} \eta_{k}(x) dx + C_{1} \int_{0}^{\infty} \eta_{k}(x) dx, \quad \text{as } \varepsilon \to 0.$$
 (7)

On the other hand,

$$< u, \varphi^k > = < u, \alpha \eta_k > = < \alpha u, \eta_k > = < C_0 + C_1 \theta + \sum_{i=2}^n C_i \delta^{(i-2)}, \eta_k > =$$

$$= C_0 \int_{-\infty}^{\infty} \eta_k(x) dx + C_1 \int_0^{\infty} \eta_k(x) dx + \sum_{i=2}^n (-1)^{i-2} C_i \eta_k^{(i-2)}(0).$$

The last equality, (6) and (7) read for $k \in \{0, 1, ..., n-2\}$,

$$\sum_{i=2}^{n} (-1)^{i-2} C_i \eta_k^{(i-2)}(0) = 0.$$

Applying $\eta_k^{(i-2)}(0) = \delta_{i-2,k}$ to the last equation, where $\delta_{i,j}$ is the Kronecker's delta symbol, we obtain that $C_i = 0$ for i = 2, 3, ..., n. Therefore, u satisfies the equation $\alpha u = C_0 + C_1 \theta$ which has a solution only for $C_0 = C_1 = 0$ (see Proposition 2). \square

3. Differential equations

Lemma 3 Let $a \in C^{\infty}(\mathbb{R})$ such that a > 0 on \mathbb{R} . Then for each $f, g \in \mathcal{D}'(\mathbb{R})$, the relation

 $af = g \iff f = \frac{1}{a}g$

holds.

Proof. Trivial.

Example 2 Let's solve the equation u' + xu = 0 in $\mathcal{D}'(\mathbb{R})$. Multiplying this equation by $a(x) = e^{x^2/2}$, we have $(e^{x^2/2}u)' = 0$, i.e. $e^{x^2/2}u = C$. Hence, according to Lemma 3, the general solution has the form $u = Ce^{-x^2/2}$.

remark 1 u' + xu = 0 is elliptic on \mathbb{R} , hence all distributional solutions of this equation are in fact classical solutions, hence the result.

However, the procedure showed above can't be applyed to the equation

$$x^3u' + 2u = 0, (8)$$

because the term x^3 vanishes at 0. Also, the equation is not elliptic at x = 0. The following assertion holds:

Theorem 2 The equation (8) has only trivial solution in $\mathcal{D}'(\mathbb{R})$.

Multiplying (8) by α , we have

$$x^3 \alpha u' + 2\alpha u = 0 \Rightarrow x^3 (\alpha u' + \frac{2\alpha}{x^3} u) = 0 \Rightarrow x^3 (\alpha u)' = 0.$$

Hence, $(\alpha u)' = C_1 \delta + C_2 \delta' + C_3 \delta''$ and, finally, using uniqueness of the solution of w' = f up to an additive constant,

$$\alpha u = C_0 + C_1 \theta + C_2 \delta + C_3 \delta'.$$

Applying Theorem 1 to the last equation, we obtain that $\alpha u = 0$. Obviously, $\{0\}$ is the support of the distribution u. Then, the Schwartz's theorem yields that u has the form

$$u = \sum_{i=0}^{n} A_i \delta^{(i)}, \tag{9}$$

for some $n \in \mathbb{N}$ and $A_i \in \mathbb{R}$ (i = 0, 1, ..., n). Let's prove that $A_i = 0$ (i = 0, ..., n). Indeed, if n < 2, (8) and (9) imply $x^3u' = 0$ and $x^3u' + 2u = 0$, i.e. u = 0. If $n \ge 2$, we have

$$0 = x^3 u' + 2u = x^3 \left(\sum_{i=0}^n A_i \delta^{(i+1)} \right) + 2 \sum_{i=0}^n A_i \delta^{(i)} = -6 \sum_{i=2}^n A_i \delta^{(i-2)} + 2 \sum_{i=0}^n A_i \delta^{(i)} = -6 \sum_{i=2}^n A_i \delta^{(i-2)} + 2 \sum_{i=0}^n A_i \delta^{(i)} = -6 \sum_{i=2}^n A_i \delta^{(i-2)} + 2 \sum_{i=0}^n A_i \delta^{(i)} = -6 \sum_{i=2}^n A_i \delta^{(i-2)} + 2 \sum_{i=0}^n A_i \delta^{(i)} = -6 \sum_{i=2}^n A_i \delta^{(i-2)} + 2 \sum_{i=0}^n A_i \delta^{(i)} = -6 \sum_{i=2}^n A_$$

$$= -6\sum_{i=0}^{n-2} A_{i+2}\delta^{(i)} + 2\sum_{i=0}^{n} A_i\delta^{(i)} = 2\sum_{i=0}^{n-2} (A_i - 3A_{i+2})\delta^{(i)} + 2A_{n-1} + 2A_n.$$

Since $\delta, \delta', \ldots, \delta^{(n)}$ are linearly independent, we have $A_{n-1} = A_n = 0$, $A_i - 3A_{i+2} = 0$ for $i = 0, 1, \ldots, n-2$. From the last equations follows $A_i = 0$ $(i = 0, 1, \ldots, n)$. \square

References

- [1] Gel'fand I.M., Shilov G.E., Generalized functions, Fizmatgiz., Moscow, 1958
- [2] Hörmander L., Linear partial differential equations, Academic Press, New York, 1963
- [3] Schwartz L., Théorie des distributions, Hermann, Paris, 1950

Vladimir Jovanović
Faculty of Sciences
Mladena Stojanovića 2
Bosnia and Herzegovina