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Anti-Topological construction of R
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Abstract

Hereby we reveal a construction of R dual to the topological one. due to
Cantor [1], to complete the spectrum of all structurally possible completions of
Q. This construction can be considered as anti-topological because of the ho-
ristological structures involved, while in technical details it follows the classical
one. !

A. Introduction

1. General overview. As a classical background we all learn two ways to
obtain R from Q: The first uses the order properties of exclusively, to realize
an order completion based on Dedekind’s cuts (see [2]); the other is a topological
completion of @, being based on topological properties of elements like classes
of fundamental sequences, continuous fractions, decimal approximations, and so
on (see [1].[3], etc.). By this paper we'll show that ”this service, usually done
by a topology, can also be done by horistology”, i.e. the same result can be
obtained in third (structurally distinct) way.

The horistological structures (introduced by T. Balan in [7], II, and also
presented in [11]) appear as dual, or, if we prefer, even ”anti” or opposite to the
topological ones. To offer now a relative independence from these papers we’ll
select the necessary elements in this introductory part. In particular it is easy
to see that Q is one of the simplest examples of uniform horistological space,
naturally endowed with a super-additive (briefly S.a.) norm, respectively a S.a.
metric, generating a horistological structure which allows to obtain R in a way
similar to the topological constructions. More intuitively, i.e. reflecting some
geometric images outside @ and R, we may distinguish three (manifestely ex-
haustive!) types of contructions of R, namely elliptic, parabolic and hyperbolic,
upon the starting structure we consider on Q: topology, order, recpectively
horistology.

2. Remarks. (on Cantor's construction). To justify some features of our
construction it is useful to point out the role of symmetry in the topological
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construction. Differently from the Euclidean (uniform) topology of @, which
is symmetric, the topologies to the right, respectively to the left. are essen-
tialy nonsymmetric (see [4],[5]) but they lead to the same completion. The
lack of symmetry however imposes a lot of profound changes in the classical
construction. For example, if we take the filter B = [Ve:e >0/ of entourages
Ve={(z,y) € @?: 0 <y — 2 < £} to represent a base of the uniform topology
to the right on @, then the Cauchy’s condition on a sequence (z,), namely

Ve > 03ng € N such that (V) m,n > ng = (o zr) eI

makes no sense without restrictions concerning menotony. Similarly, proposi-
tions like " convergent sequences are fundamental” cannot be obtained by "intro-
ducing the limit between the terms z,, and z,,” any longer. Even definitions. e, g.
the equivalence of the Cauchy sequences, based on the relation (B, mn) i€ Ve,
must be correspondingly changed. Because the horistologies are always con-
nected to an order (in particular < on @), they are strongly nonsymmetric.
Consequently it is natural to expect that the horistological completion of Q
shall face similar difficulties as using nonsymmetric topologies.

3. Starting facts. In order for us to facilitate the reading in absence
of a complete bibliography, we recall the meaning of some basic notations and
notions that will be used later on. Firstly, the natural order of @ will be alter-
natively noted < and K C Q?; the corresponding strict order < may therefore
be written K°. The section of K at z is defined by

Klz] = {y EQ: (z,y) € K}

In particular, K[0] = Qy is the cone of positive rational numbers. A function
[-] : K[0] = Q4 is said to be a supper additive norm (briefly S.a. norm, see [7]
I) if the following conditions hold:

(N1) [z] =0if only if z = 0,
(N2) [Az] =Alz] atany A € Q, and z € K[0];
(N3) [z +y] 2 [2] + [y] for any =,y € K[0].

Every S.a. norm generates a super-additive metric d - K — Q4 by the usual
rule

d(z,y) = [y —z],
and this one further genreates a (uniform) horistology via the ideal bases of
hyperbolic perspectives (corresponding in topology to spherical neighbourhoods,

see [7] IT) defined by
He(z) = {y € K[a] : d(z,y) > ¢}

where £ > (.

In the particular case of @, the restriction | - |_ of the usual norm to Q.
reduces to identity, i.e. |z|y = |z| = z for any > 0. Consequently |-|_ : Q. —
Q4 is additive, that is

|z + yl4+ = ||+ + |yl for any #,y > 0,



hence taking here < instead of =, as for a usual sub-additive norm ||- ||, or >, as
for a sub-additive norm, say [-1, is a question of choice. Choosing sub-aditivity
is nowadays a hard tradition, since it is the way to classical (i.e. topoelogical)
structures, but hereby we see that the other option is still operative, and it leads
to horistology.

Later on we'll refer to the natural uniform horistology of Q in the following
sense: Starting with the natural S.a. norm [ = |- |+ we obtain the natural
S.a. metric defined by d(z,y) = y — = whenever z < y. Using d we construct
the prospects of size e(> 0), :

IL = {(z,y) € K c Q* : d(z,y) > ¢}.

The natural uniform horistology (briefly u.h.) of Q is defined by the ideal H of
prospects,
?{:{HCK:EE>Os.t.H§HE}‘

The hyperbolic perspectives of radius €(> 0) and vertex z(¢ Q) can be alterna-
tively presented as
H.(z) = H(z,¢) = IL.[z].

Finally, the natural horistology of @, expressed by the function

x:Q - P(P@Q)

which attaches an ideal of perspectives to each € Q, is defined by the (horis-
tological) uniformity from above, according to the formula

x(z) ={PCQ: 311 € X such that P C Mfa]}.

More explicitly, the assertion "P is a perspective of z” means, in the natural
horistology of @, that

3¢ > 0 such that P C (z +e, ).

In the general framework of horistological spaces we deal with discreteness,
emergence, and germs (see [7] IT) as dual notions to continuity, convergence , and
limit, which are specific to topological structures, The efficiency of these notions
in studying horistological structures is proved by the fact that any horistology
is definable by specifying the emergent nets (or ideals, see [8] and [9]).

In particular, a sequence € : N — Q of rational terms &(n) =z, is said to be
emergent from x(€ Q) iff Vn € N*3e > 0 such that Mm < n=dz,z,)>e.
If so, we say that x is a germ of £, and we note ¢ — Tn, & = germé, etc.
Because the germs are not unique , we speak of a set of germs, which is noted
Germ(§). The analysis of the structure of this set (see [10]) shows that it is
always negatively conical, i.e. = € Germ(£) = K~ z] C Germ(¢).

We may distinguish several types of germs. In this respect we remind that
zx € Germ(€) is called proper germ iff {@n :n € N} ¢ x(z*). The set of all
proper germs is noted G(€); simple examples show that this set can also be large
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enough. In the particular case of Q, endowed with its natural horistology, the
property of the orders of Q and N of being total makes things much easier. Thus
Germ(&) # 0 whenever the sequence € is bounded from helow, while ‘(€) is
either void or a singleton. The completion of Q is justified because the voidness
of G(&) is not acceptable for decreasing and bounded sequences.

B. Constructing R,

Our starting point is horistological notion equivalent to the classical Cauchy’s
condition: 1. Definition. A sequence is called horistologically fundamental
(briefly A-fundamental) if

Vng € N*3e > 0(inQ) such that V)mneN, n<m<n = T e

2. Proposition. A sequence £ is h-fundamental if and only if it is K*-
decreasing,

Proof. If we suppose that £ is h-fundamental it is enough to take m = n,
since =, > o, + ¢ implies z, > e
Conversely, if € is strictly decreasing, then, for each n, € N, the above condition
is proved with & = Smin{z, — 2 : n < m < ny, a

3. Proposition. Let £ : N — @ be an h-fundamental sequence., The set
Germ(€) is nonvoid iff £ is bounded from below (i.e. the set of values &(N) has
a lower bound).

Proof. Any germ is a lower bound of the set E(N).
Conversely, let u be a lower bound of §(N)inQ. We claim that i 1s a germ
of & In fact, for any ng € N* the number € = d(u,z,,) is strictly positive.
Consequently for any n < ngp we have

d(,‘.}., ‘B‘n) 2 d(ru! Eﬂ-g) + d(zno ¥ Eﬂ) > =S

since d is super-additive.

4. Remark. The germ p in the above proof is not unique since the set Germ
is negatively conical. Emergent sequences are not necessarily h-fundamental be-
cause emergence is possible without monotony. On the other hand, bounded and
h-fundamental sequences may have proper germs, so it is useful to distinguish
different cases by an adequate terminology.

5. Definition. Any K*-decreasing and bounded sequence £ : N — () is
called emission. The proper germ of an emission (if any) is named emitter.
The set of all emissions in Q will be noted E, and called emission power of Q
(since E c QN). -

We say that emission § precedes another emission 7, and we note £ =< 7, if the
following condition holds:

¥m € N3j(m) € N such that §(3(m)) < n(m).

Ifbothé <npandn=<¢ hold, then we say that & and 7 are equivalent, and we
note § ~ . Finally, if £ <75, but § # 1, we say that ¢ strictly preceeds n, and
we note £ < .



Using these terms for the above relations is justified by the following prop-
erties:
6. Proposition

(1) =< is a preorder on E;

(i) = is an equivalence on E;
(#44) = 1is the strict preorder of < (l.e. <==7).

Proof. (i) Because each sequence £ from E is K*-decreasing, we have 2,1, < @,
at any n € N. Consequently € < £, i.e. relation < is reflexive. The transitivity
of < follows from that of K*. The proof of (ii) is routine.

Property (iii) expresses the fact that £ < 7 is the contrary of n < £&. To prove
(iii) in this form we write the negation of £ < 7 as:

Im € N such that (V)n € N = £(n) > n(m).

Then obviously 1 < &, but 7 % £.
Passing from emissions to their set of germs is monotonous, i.e.
7. Proposition. For any £, € E we have:

(i) If € < n, then Germ(&) € Germ(n);
(1) If € <, then Germ(€) C Germ(n);

(1i1) Germ(£) = Germ(n) ift £ =1
(and this is further equivalent to G'(§) = G(n) whenever G(£) # 0 holds).

Proof. (i) Let * € Germ(€), and let m € N be fixed. Then there is some
j(m) € N such that £(j(m)) < n(m), and correspondingly an € > 0, such that
d(z*,£(j(m))) > . Because d is a S.a. metric, it follows that d(x*,n(m)) >
d(z*,£(j(m))) + d(&(i(m)),n(m)) > &.

(ii) If £ < n, then there is some m € N such that £(m) < n(n) for all n in N
(see also (iil) in the previous proposition), hence £(m) € Germ(n) \ Germ(¢).

(iii) is a standard consequence of (i) and (ii).

Now we can introduce the real numbers as follows:

8. Definition. For any £ € E, its class of equivalenc_e-;é ={neE:n=x¢&}
is called real number. The set of all real numbers is called real line, and we note
Bl =R

In particular, for any « from @, the equivalence class that contains the
emission £ of terms &(n) =z + %, where n € N*, is noted &, and it is called the
real number associated with x. The function e : Q — R, defined by e(z) = % is
called canonical embedding.




-on R because < on FE is so.

C. The Structure of R

In this section we’ll extend the order and the algebraic operations from Q to

the above constructed R, to justify that it is a totally and completely ordered
field.

1. Definition. If £ = 5 then we consider that the generated real numbers
coincide, and we note £ = 7. If € < 7, then we say that € is less than 7, and we

note § < 7). Similarly, if £ < 7, then £ is said to be strictly smaller than 1j, and
we note £ < 1.

2. Proposition.

(¢) The relations =, <, and < are well defined (i.e. they are stable relative to
any change of representatives in the equivalence classes);

(1) = is an equivalence, and < is a total order on R;
(4i1) < is the strict order asociated with < (ie. g‘8=<)_

Proof. (i) It is easy to see that @ ~ £ <~ w implies a = w.

(i) < is obviously reflexive, anti-symmetric and transitive, It is a total order

(iii) jis (< \ =) because <= (< \ ~) on E.

The sum of two emissions § = £ + 7 is defined, as usually, by 8(n) = &(n) +
n(n) at any n € N. 3

3. Definition. If ¥ = £ + 1, then 4 is called sum of the real numbers £ and

7, and it is noted ¥ = £ + 17, The resulting binary operation is called addition
of real numbers. :

4. Proposition. The addition on R has the following properties:
(i) + is well defined on R;
(#i) (R,+) is a commutative group;

(iii) the order < is compatible with +.
Proof. (i) Changing the representatives in the classes € and 7 doesn’t affect
the result £ + 7.

(ii) Proving associativity and commutativity is routine. The null element

of the group is 0 = e(0), i.e. the class containing the emission ¥ of terms
i) = %,n € N~

To define the opposite of a real number € let us note that taking ( — &),

where (—¢£)(n) = —€(n) at any n in N, makes no sense since —£ isn’t emission
any more. Therefore we have to imagine a different way to obtain —¢ as for
example using the germs of £. In fact, we may fix gy € Germ(€) and then divide
the segment [go, o] into 2,3, etc., say k equal parts, stopping when

1
g0 + E(% — go) € Germ(£).



We note the resulting germ g. Applying the same construction to [g;, ], we
obtain g» and so on. Now we can define a sequence 7 by taking n(n) = —g,
at any n in N. It is easy to see that n € E and 7} is the opposite of £, ie.
E+h=n+£=0.

(iii) If £ < 7}, then £+ 9 < 7+ for arbitrary J € R, sincé a similar property
holds for their representatives.

As customarily, if 0 < €, we say that: € is (strictly) positive. Similar condi-
tions introduce the notions of (strictly) riegative, non-positive, and nonnegative
real numbers. About these terms we may mention the following properties:

5. Proposition.

(i) € is nonnegative iff 0 € Germ(€); the contrary (i.e. € is strictly negative)
holds iff £(n) < 0 at some n € N;

(1) £ is positive iff —£ is negative;
(i) € < 7 iff ) — € is positive.

The proof is routine.

Finally, in order to define the multiplication of real numbers, we shall start
with the usual multiplication of positive emissions, that is ¢ = £ - 1), meaning
((n) =&(n)n(n) at any n € N.

6. Definition. If{ and 7 are posmwe real numbers, then C is said to be
their produect, noted ¢ =¢.-q, iff ¢ = €-n. Otherwise, i.e. when one of the
factors is non-positive, we define their pmduct by the convention:

r = HE<h<q
Eq=q —&-(—) ifn<0<¢
(-8 -(-9) if&n<0

7. Proposition. The multiplication has the following properties:
(7) It is well defined;
(77) (R,+,-) is a commutative field;
(iit) the order < is compatible with it.

Proof. The most part of the proof is routine. We only mention that the
unit real number is 1 ¢ E, and the inverse £~! is not correctly defined by
£ 1(n) = [€(n)]"! because £' ¢ E. Therefore we have to distinguish two
cases: & strictly positive, and £ strictly negative. In the first case, all the
representatives have a strictly positive germ. Let § be strictly positive, and
let (gn) with go > 0 be the sequence associated with & as in the proof of the
proposition 4 (ii). If we note 7(n) = [gn] ™" at any n € N, it is easy to see that
 is an emission, and 7-£ € 1, that is 7 = é‘l. In the second case we define the
inverse by —[(—€)7]. O



So far we can say that R reproduces the properties of Q. A copy of Q is
recognized as a part e(Q) C R. The following property is still essentially new,
and justifies the whole construction:

8. Theorem. R is completely ordered.

Proof. Let A # 0 be a bounded set of real numbers. We fix & € 4 and
a lower bound bo of A, If bg €A oréc< bo for any other lower bound ¢, then
by = infA. If not, we consider another point

%(f)o + &)

If this is a member of A, then we note it gh if not, _we note it by and we  repeat the
construction from above by putting it instead of bo Except the case b t=anfd,
we continue the process, until eventually by = infA at some step k € N. I_n
the contrary case the above process never ends, and it produces a decreasing
and bounded sequence (é;’,,) in A. If for every n in N we select representative
emission &, : N — Q in the class &,, then the sequence (€x)nen of these emissions
is strictly decreasing in the order <, while the sequence (:‘;:n)ﬂeN of classes is
strictly decreasing relative to the order <. Now we start another construction:
We note & (0) = xo; because & < &, for m = 0 there exists mg = j(0) € N such
that & (mo) < &(0), hence & (mqo) < xo; we note & (mg) = z,. Similarly, since
€2 < &, for mo € N, there exists m; = j(mo) € N such that &(m;) < & ( mg).
We note 2y = & (m;) So far we have r; < #; < 2. By induction, using
the term zp = & (my—1), and the hypothesis Eps1 =< &, it follows that for
mr—1 € N there exists my = j(my—_1) in N such that &, (my) < & (mr—_1). So
we obtained the next term x4y = &y (my), satisfying obviously xp.y < @y.

The result of this construction is an emission a : N — Q of terms a(m) = z,,.
We claim that & = infA, which is justified by a direct proof.

As generally, sup(A4) = —(inf(—A4)).

Summarizing the properties of the above constructed set R, we may conclude
that:

9. Corollary. R is a totally ordered commutative field that is complete in
its order.

10. Remark. It is generally known (see [3], etc.) that any two fields pos-
sessing thése properties are algebraically and order isomorphic. Consequently
the above horistological R represents a copy of the previously constructed R's.
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