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Kenmotsu manifolds with n-parallel Ricci
tensor

Constantin Calin
Abstract

We study a Kenmotsu manifold M with n-parallel Ricei tensor. We obtain

a characterisation (Theorem 2.3) and some properties of the Ricci operator and
the scalar curvature of M(cf.Prop. 2.2)

Introduction.

In 2], K. Kenmotsu introduced a new class of almost contact metric manifold.
later called, Kenmotsu manifolds. Tt is known that a Kenmotsu manifold M is
not a compact manifold (because divé = 2n, dimM = 2n). Later N. Papaghiuc
[5] and other geometers have studied and established important properties of
Kenmotsu submanifolds, The purpose of this paper is to prove the important
properties of the Ricci tensor, scalar curvature and the Ricci operator on a
Kenmotsu manifold.

1 Preliminaries.

It is well-known that the structure tensors (f,€,7m,9) of an almost contact metric
manifold M, satisfy

(@ PX=-X+n(X)§, () f(©=0, (© n(e)=1, =
@ nX)=g(X.m), (o) g(fX, f¥) = g(X,Y) - n(X)m(¥),

for any vector field X, Y tangent to M. Throughout the paper, all manifolds
and maps are differentiable of class €. We denote by F(M) the algebra of the
differentiable functions on M and by [(E) the F(M)-module of the sections of
a vector bundle F on M. !
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The Nijenhuis tensor field, denoted by N 7, with respect to the tensor f, is
given by

Ny(X,Y) =[fX, fY] + f’[X,Y] - f[X,Y] - f[X, Y], VX,Y € I(TM).

The almost contact metric manifold M (f, £, 7, g) is called normal if

Ni(X,Y)+2dn(X,Y)E=0, VX,Y € [(TM).

According to [2], we say an almost contact metric manifold M is called an almost
Kenmotsu manifold if

dn =0 and 3d®(X,Y, Z) = 2(n(X)®(Y, Z) + n(Y)®(Z, X)+
+7(2)8(X,Y), VX,Y e D(TM),

where @ is the fundamental 2-form, given by &(X,Y) = g(X, X)X\ Y €
I(TM). A Kenmotsu manifold is a normal almost Kenmotsu manifold. It is
known [2],[5] that an almost contact metric manifold is a Kenmotsu manifid if
and only if

(Vx )Y =g(fX,Y)§ - n(Y)fX, VXY eT(TM), (2)

where V is the Levi-Civita connection on M with respect to the metric tensor
g. By straightforward calculation, from (2) we deduce that

Vxé =X —n(X)§, VXY eT(TM) (3)
The curvatore tensor field is denoted by K and is given by
K(X,Y)Z=VxVyZ -VyVxZ - VixyiZ, VX,Y,Z e (TM).
Next we recall some properties of the curvature tensor field K from (1],[2].

Proposition 1.1 Let M be o Kenmotsu manifold with the curvature tensor K.
Then we have
(@) K(X,Y)¢=n(X)Y -n(Y)X,
() K(X.OY = g(X,Y)é - n(Y)X,
() K(X,Y)fZ=fK(X,Y)Z+g(Y, Z)fX-g(X,2)fY + 4
+9(X, fZ)Y - (Y, f2)X, (4)
(d) K(fX,fY)Z=K(X,Y)Z +4(Y,2)X — g(X,Z)Y -
d X, f2)fY + oY, f2)fX, VX,Y,Z¢€ (T M).

Next we consider an orthonormal field of frame {e1," +,emq1} with e, =
feieangr = &,4 € {1,-+-,n}. Then the Ricei tensor S is given by
2n+1
S(X,Y) =" g(K(e:, X)Y,e:), VX,Y € I(TM) (5)

=1

and the scalar curvature, denoted by r is given by r = Z?;‘;H S(ei,e;). Also the
Ricci operator, denoted by @, is a tensor field of type (1.1), given BG4 )=
9(QX,Y) VX.Y € I(TM). If S(X,Y) = ag(X,Y), with a constant, then M
is Einstein manifold. A tensor field T defined on M is parallel if VT = 0 and the

length of the tensor field 7' is denoted by ||T|| and it is given by [T =gl T).
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2  Kenmotsu manifold with n-parallel Ricci ten-
sor.

Let M be a Kenmotsu manifold and S be the Ricci tensor on M. Then using
(4b) and (5) we obtain

Proposition 2.1 Lel M be a Kenmotsu manifold. The the Ricci tensor S and
the Ricci operator Q) verify

() S(X,n) =-2nn(X); (b) S(,€) =-2n; (6)
(c) Q€= —-2n¢, YX eD(TM).

Theorem 2.1 Let M be a Kenmotsu manifold. Then the Ricei tensor S verifies
the next assertions

(@) S(X,Y) =L 527 g(JK(X, fY)es, e:)—
(2?1 - 1)9(_\ Y) —n(X)n(Y),
(5.5 Sigsil= S(,Y, Y) + 2nn(X)n(Y), (7)
(¢) (Vz)(X.Y) = (VxS)NY,Z) + (VyyS)(fX, Z)+
+n(X)S(FY. £Z) + 2(n = Dn(X)g(FY, F2)+
+2n(Z)g(f X, fY), VXY, Zel(TM)

Proof Let XY € I'(TM) and ey, -, €3,,+1 an orthonormal field of frame with
enti = fei, ey = & 1 € {1,-++,n}, and using (1), (4dc), we get

g(K (fei, X)Y, fei) = —g(K (fe., X fei,Y) =

= —g(fK (e X)e, ¥) — g(X,eg(Y, f2e0) = glfes fea(X, V)+ o
+g(X, fe)a(Y, fei) = g(K (fei, X )“ Y) - g(X, e)g(f2Y, e)—
“g(Ffes, fe)g(X,Y) + 9(FX, e)g(fY, ).

By using the Bianchi identities we infer that
9(K(fei. X)e;, fY) = g(K(fei, X) Y, e;) + g(K (X, fY)es, fe;). (9)

Using again (4c) for the calculation of g(K(fe;, X)fY,e;), then from (5), (8)
and (9) we obtain assertion (a). Next from (7a), using (1a), (4b) and (Ga) we

infer that i
S(X,fY) =3 .07 9(FK(X,Y)ei, €)= (10)
—(2n - 1)g(X, f}) VY} € D(TM)

Now it is easy to see that S(fX,Y) + S(X, fY) = 0 and consequently the
assertion (b) is proved. Next using the fact that V is a Levi-Civita conunection,
(2), (Ta), and (10) we get

(VevS)FX, Z2) = =4 3220 g(Viv K)(X, Z)es, fei)—
(zu—l,, g(Vey )X, Z) - S(Vyy )X, Z) =
=150 0((Viy K)(X, Z)es, fei) = (2n — 1)n(X)g(fY, fZ)—
—n(X)S(fY, fZ) - n(2)g(f X, fY), ¥X,Y,Z €L (TM).

(11)
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In the same way we obtain

(V2SHX,Y) = =L S Y (g((V2 K)(X, fY )es, fei)+
+9(K (X, (V2 )Y Jei,e)) —n(X)g(fY, £Z) —n(YV)g(f X, £Z) =
= 1 I g( V2K X, fY)es, fes) — 2nn(Y)g(X, Z)—

-n(Y)S(X, Z) - 9(X)g(fZ, fY), VX,Y,Z € (TM)

(12)

Finally, the assertion (7c), follows from (11), (12) and the Bianchi identity. Now
we prove the following:

Theorem 2.2 Let M be a Kenmotsu manifold. The Ricci tensor S is parallel
if and only if M is Einstein manifold.

Proof. Let X,Y € ['(T'M) and suppose that M is a Kenmotsu manifold with
parallel Ricei tensor. Using (3), (6a), and the fact that V is a Levi-Civita
connection, we infer that

0= (VxS)(Y,€) = VxS(Y,£) — S(VxY,£) = 8(X,Vxé) =
=2ng(Y, X —n(X)€) — S(Y, X —n(X)¢) =
—S(X,Y) - 2ng(X,Y), VX,Y € T(TM),

and the assertion is proved. Conversely follow from the fact that M is Einstein
manifold and V is a metric connection.

Taking into account the previous result, we introduce a weaker condition for
the Ricci tensor so called n-parallel Ricci tensor on a Kenmotsu manifold.

Definition 2.1 Let M be a Kenmotsu manifold. We say that the Ricci tensor
S is n-parallel if

(NxSIfY.fZ2)=0, VX ¥ Ze I(TM) (13)
Next we have

Theorem 2.3 Let M be a Kenmotsu manifold. Then the nezt three assertions
are equivalents

(i) The Ricci tensor S is n-parallel
(i1) (Vx8)(Y, 2) = -n(Y)S(X,2) - n(2)S(X,Y)-
—2nn(YV)g(X, Z) - 2nn(2)¢(X,Y), VX,Y,Z € T(TM), (14)
(iii) IVQI? = 2/|Q|I> + 16n3 + 8n? + 8nr

Proof. The equivalence of the assertions (i) and (ii) it follows from (13) and
(7b), by direct calculation. Next let {e;, fe;, £} an orthonormal field of frame
on M. Then using (3) and (6¢), we get

(Ve.&) = Ve, Q6 — QV £ = —Qe; — 2nV . £ = —2ne; — Qeji=1,---,2n 41,
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and therefore the above result implies

il

! D (Ve Q) (Ve Q) = n + dnr 4+ 4n? 4 QI (15)

=1
On the other hand, using (2) and (6¢), we obtain
(Ve; Q)fej = Ve, Qfej = Q(ve; f)ej 7 vae.-ej S

= =(Ve.)Qe;j + f(V.,)e; — Qlg(fei,e;)€ — ne;) fe; =
- g(fei: QEJ)E - f(ve. Q)ej i 2?2-9(f£‘," EJ.'}E.

From the above relation we obtain
g((qu)fej: (VH;Q)fej) == g(f(vex'Q)eﬁ f(VEiQ)EJ')—"

+(g(fei, Qe;) + 2ng(fes e;))? = 9(F(Ve.Q)ej, F(Ve,Q)e;)+ (16)
+9°(Qfei,e;) + dng*(fei e;) + dng(fei, Qej)g(fei,e;).

Finally, using (15) and (16) we deduce that

Ay

IVQI? = 322 9((Ve. Q)es, (Ve Q)e; =

= 2t B0 (V@) e, (Ve @)fes) + T2 (V.. Q)% (V..0)¢) <
= Z i 0 (Ve Q)es, £(Ve,Q)es+

+9(fQe;, 9(fQej, e:)e;) + dn?g(fe;, 9(fej,ei)e)+
+ang(fQej, g(fe;, e:)e;)) + 8n® + dny +4n? + |QI? =

= Eletiied s ordld (¥, Qles, £(Vo, Q)es) o 1QII? + 16n° + 8n2 + 8nr.

The equivalence of the assertions (i) and (iii) follows from the above assertion

] begaﬁe ig 15 easy to see that the Ricci tensor S is n-parallel if and only if

.r \i;ll ZJL (g(f(VEi Q)ej:f(vr?; Q)e;f) = 0.

] Proposition 2.2 Let M be o Kenmotsu manifold with n-parallel Ricei tensor
S. Then

(a) the scalar curvature r is constant,

(b) the length of the Ricci operator () is constant.

I Proof. Let {ei, fei, €},i=1,.-- ;7 be an orthonormal field of frame on M and
' using (6a), (14) we get that

i Vxr = S (Vi S)(ei, 01) = —an 204 n(e:)g(X, e;)—
. —230 nles)S(X,e) = —dng(X) — 25(X,6) =0, VX eT(TM),

i which proves the assertion (a). Next, because S(X,Y) = g(QXx, Y), using (6a),
' (6¢) and (14) we deduce

VxIQI? = 2 72 g((Vx Q)es, Qer) = 2Y 2 (Y xS) e, Qes) =
, = =230 (n(e:)S(Qei, X) + 1(Qes) S(er, X) 4
+2nn(e)g(Qei, X) + 2nn(Qei)S(ei, X)) = —4(S(X, Q€) + 2ng(X. Q) =0

. and the assertion (b) is proved.
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