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YANG-BAXTER EQUATIONS IN MTL-ALGEBRAS

Tahsin Oner and Tugce Kalkan

Abstract. In this work, we handle set-theoratical solutions of Yang-Baxter

equation problem in fundamental algebraic structures. The aim of this paper
is to construct new set-theoretical solutions for the Yang–Baxter equation by
using MTL-algebra.

1. Introduction

The Yang-Baxter equation was primarily given in theoretical physics [12] and
in statistical mechanics ([1], [2], [11]). It has been brought about many applications
not only these areas but also quantum groups, quantum computing, knot theory,
etc. [8]. Recent advances show to us in other areas like as C∗ algebras, Hopf
algebras, conformal field theory, etc. clarify the importance of the equation. Many
authors have taken advantage of the axioms of these algebraic structures to sort
out this equation. We want to observe the Yang-Baxter equation in associated with
MTL-algebras.

Oner and Katican have constructed a new set-theoretical solutions to the Yang–
Baxter equation using BL-algebras [15], and Wasjberg Algebras [14].

All sorts of fuzzy logical algebras have been widely identified and analysed, for
example, MV-algebras [3] , BL-algebras [5] and NM-algebras [4]. Between these
algebras, MTL-algebras are the most important since the others are special con-
ditions of MTL-algebras. Therefore, MTL-algebras play a crucial role in studying
fuzzy logics and their relevant structures.

In this paper, we examine the Yang-Baxter equation in relation with MTL-
algebra. We give fundamental definitions and theorems of MTL-algebras and give
some solutions of the set-theoretical Yang-Baxter equation in MTL-algebras.
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2. Preliminaries

The following fundamental notions are taken from [16].

Definition 2.1. An algebraic structure L = (L,∧,∨,⊙,→, 0, 1) of type (2, 2,
2, 2, 0, 0) is called an MTL-algebra if it satisfies the following conditions:

(a) L is a bounded lattice,
(b) (L,⊙, 1) is a commutative monoid,
(c) s1 ⊙ s2 6 s3 if and only if s1 6 s2 → s3,
(d) (s1 → s2) ∨ (s2 → s1) = 1, for any s1, s2, s3 ∈ L.

For any s ∈ L and a natural number n, we define

¬s = s → 0, ¬¬s = ¬(¬s), s0 = 1 and sn = sn−1 ⊙ s for all n > 1.

Let L = (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra, unless otherwise is stated.

Proposition 2.1. In every MTL-algebra L = (L,∧,∨,⊙,→, 0, 1) , the follow-
ing hold for all s ∈ L:

(1) (s → 0) → 0 = s,
(2) s → s = 1, 1 → s = s, s → 1 = 1,
(3) ¬s = ¬¬¬s,
(4) 1⊙ s = s, s⊙ 0 = 0,
(5) ¬0 = 1, ¬1 = 0.

Definition 2.2. Let L = (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. Then L is
called

(a) a Gödel algebra if s1 ⊙ s2 = s1 ∧ s2 = s1 ⊙ (s1 → s2) for any s1, s2 ∈ L,
(b) an IMTL-algebra if ¬¬s = s for any s ∈ L.

3. Solutions to the Yang-Baxter Equation in MTL-Algebras

In this paper, we present some results in connection with the (set-theoretical)
Yang- Baxter equation in MTL-algebras.

Let V be a vector space over a field F , which is algebraically closed and of
characteristic zero.

Definition 3.1. ([9]) A linear automorphism φ of V ⊗ V is a solution of the
Yang-Baxter equation, if the following equality holds in the automorphism group
of V ⊗ V ⊗ V :

(3.1) (φ⊗ idV ) ◦ (idV ⊗ φ) ◦ (φ⊗ idV ) = (idV ⊗ φ) ◦ (φ⊗ idV ) ◦ (idV ⊗ φ).

In the following definitions φnm means φ acting on the n-th and m-th compo-
nent.

Definition 3.2. ([10]) φ is a solution of the Yang-Baxter equation if

φ12 ◦ φ23 ◦ φ12 = φ23 ◦ φ12 ◦ φ23,(3.2)

Definition 3.3. ([9]) φ is a solution of the quantum Yang-Baxter equation if

φ12 ◦ φ13 ◦ φ23 = φ23 ◦ φ13 ◦ φ12.(3.3)
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Let T be the twist map T : V ⊗V → V ⊗V defined by T (u⊗v) = v⊗u. Then,
φ satisfies (3.2) if and only if φ ◦ T satisfies (3.3) if and only if T ◦φ satisfies (3.3).

A connection between the set-theoretical Yang-Baxter equation and MTL-
algebras is constituted by the following definition.

Definition 3.4. ([10]) Let X be a set and φ : X2 → X2, φ(p, q) = (p′, q′) be
a map. The map φ is a solution for the set-theoretical Yang-Baxter equation if it
satisfies (3.2), which is also equivalent to (3.3), where

φ12 : X3 → X3, φ12(s1, s2, s3) = (s′1, s
′
2, s3),

φ23 : X3 → X3, φ23(s1, s2, s3) = (s1, s
′
2, s

′
3),

φ13 : X3 → X3, φ13(s1, s2, s3) = (s′1, s2, s
′
3).

Now we construct solutions to the set theoretical Yang-Baxter equation by
using MTL-algebras.

Lemma 3.1. Let L = (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. Then the follow-
ing are a solution of the set-theoretical Yang-Baxter equation:

(a) φ(s1, s2) = (s1 ⊙ 1, s2 ⊙ 1),
(b) φ(s1, s2) = ((1⊙ (s1 → 0)) → 0, (1⊙ (s2 → 0)) → 0),
(c) φ(s1, s2) = (((s1 → 0)⊙ (s2 → 0)) → 0, 0),
(d) φ(s1, s2) = (s2 ⊙ s1, 1),
(e) φ(s1, s2) = (s1 ⊙ s2, 1).

Proof. The proofs of (a) and (b) are clear.
(c) We define

φ12(s1, s2, s3) = (((s1 → 0)⊙ (s2 → 0)) → 0, 0, s3),

φ23(s1, s2, s3) = (s1, ((s2 → 0)⊙ (s3 → 0)) → 0, 0).

For all (s1, s2, s3) ∈ L3, using Proposition 2.1 (1), (2) and (4) we have

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23(((s1 → 0)⊙ (s2 → 0)) → 0, 0, s3))

= φ12(((s1 → 0)⊙ (s2 → 0)) → 0, ((0 → 0)⊙ (s3 →
0)) → 0, 0)

= φ12(((s1 → 0)⊙ (s2 → 0)) → 0, s3, 0)

= ((((((s1 → 0)⊙ (s2 → 0)) → 0) → 0)⊙ (s3 → 0))

→ 0, 0, 0)

= ((((s1 → 0)⊙ (s2 → 0))⊙ (s3 → 0)) → 0, 0, 0)
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and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1, ((s2 → 0)⊙ (s3 → 0)) → 0, 0))

= φ23(((s1 → 0)⊙ ((((s2 → 0)⊙ (s3 → 0)) → 0) →
0)) → 0, 0, 0)

= (((s1 → 0)⊙ ((s2 → 0)⊙ (s3 → 0))) → 0, ((0 → 0)

⊙(0 → 0)) → 0, 0)

= (((s1 → 0)⊙ ((s2 → 0)⊙ (s3 → 0))) → 0, 0, 0).

Since (L,⊙, 1) is a commutative monoid, it is a solution.
(d) φ12 and φ23 are defined by

φ12(s1, s2, s3) = (s2 ⊙ s1, 1, s3),

φ23(s1, s2, s3) = (s1, s3 ⊙ s2, 1).

For all (s1, s2, s3) ∈ L3, by using Proposition 2.1 (4), we get

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23(s2 ⊙ s1, 1, s3))

= φ12(s2 ⊙ s1, s3 ⊙ 1, 1)

= φ12(s2 ⊙ s1, s3, 1)

= (s3 ⊙ (s2 ⊙ s1), 1, 1)

and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1, s3 ⊙ s2, 1))

= φ23((s3 ⊙ s2)⊙ s1, 1, 1)

= ((s3 ⊙ s2)⊙ s1, 1, 1).

Since (L,⊙, 1) is a commutative monoid, it is a solution, as required.
(e) The proof is similar to (d). �

Theorem 3.1. Let (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. If the MTL-algebra
is a Gödel algebra, then φ(s1, s2) = (s2 ⊙ s1, s1) is a solution of the set-theoretical
Yang-Baxter equation.

Proof. We define

φ12(s1, s2, s3) = (s2 ⊙ s1, s1, s3),

φ23(s1, s2, s3) = (s1, s3 ⊙ s2, s2).
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By using Definition 2.1 (b) and Definition 2.2 (a), for all (s1, s2, s3) ∈ L3, we obtain

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23(s2 ⊙ s1, s1, s3)

= φ12(s2 ⊙ s1, s3 ⊙ s1, s1)

= ((s3 ⊙ s1)⊙ (s2 ⊙ s1), s2 ⊙ s1, s1)

= ((s3 ⊙ s2)⊙ (s1 ⊙ s1), s2 ⊙ s1, s1)

= ((s3 ⊙ s2)⊙ s1, s2 ⊙ s1, s1)

and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1, s3 ⊙ s2, s2))

= φ23((s3 ⊙ s2)⊙ s1, s1, s2)

= ((s3 ⊙ s2)⊙ s1, s2 ⊙ s1, s1).

Since the MTL- algebra is a Gödel algebra, it is a solution. �
Corollary 3.1. Let (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. The following

are solutions to the set-theoretical Yang-Baxter equation in MTL-algebras since the
(L,⊙, 1) is a commutative monoid:

(a) φ(s1, s2) = (s1 ⊙ s2, s1),
(b) φ(s1, s2) = (s2 ⊙ s1, s2),
(c) φ(s1, s2) = (s1 ⊙ s2, s2).

Lemma 3.2. Let (L,∧,∨,⊙,→, 0, 1) be an IMTL-algebra. Thus φ(s1, s2) =
(¬s2,¬s1) is a solution of the set-theoretical Yang-Baxter equation.

Proof. We define φ12 and φ23 as follows:

φ12(s1, s2, s3) = (¬s2,¬s1, s3),
φ23(s1, s2, s3) = (s1,¬s3,¬s2).

For all (s1, s2, s3) ∈ L3 we have

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23(¬s2,¬s1, s3)
= φ12(¬s2,¬s3,¬¬s1)
= (¬¬s3,¬¬s2,¬¬s1)
= (s3, s2, s1)

and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1,¬s3,¬s2)
= φ23(¬¬s3,¬s1,¬s2)
= (¬¬s3,¬¬s2,¬¬s1)
= (s3, s2, s1).
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�

Lemma 3.3. Let (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. Then the following
are solutions of the set-theoretical Yang-Baxter equation:

(a) φ(s1, s2) = (¬¬s1, s2),
(b) φ(s1, s2) = (¬¬s1, s1).

Proof. (a) We define

φ12(s1, s2, s3) = (¬¬s1, s2, s3),
φ23(s1, s2, s3) = (s1,¬¬s2, s3).

By using Proposition 2.1 (3), for all (s1, s2, s3) ∈ L3, we obtain

(φ12 ◦ φ23 ◦ φ12)((s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23(¬¬s1, s2, s3)
= φ12(¬¬s1,¬¬s2, s3)
= (¬¬¬¬s1,¬¬s2, s3)
= (¬¬s1,¬¬¬¬s2, s3)

and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1,¬¬s2, s3)
= φ23(¬¬s1,¬¬s2, s3)
= (¬¬s1,¬¬¬¬s2, s3).

Therefore, it is a solution.
(b) It is similar to (a). �

Lemma 3.4. Let (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. Then φ(s1, s2) =
((s2 → 0)⊙1, (s1 → 0)⊙1) is a solution of the set-theoretical Yang-Baxter equation.

Proof. The proof is obtained from Proposition 2.1 (1) and (3). �

Example 3.1. Let (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra, where L = {0, a, 1}.
We define → and ⊙ by the following Cayley tables: Then φ(s1, s2) = ((s2 →

→ 0 a 1
0 1 1 1
a a 1 1
1 0 a 1

⊙ 0 a 1
0 0 0 0
a 0 0 a
1 0 a 1

0)⊙s1, 0) is a solution of the set-theoretical Yang-Baxter equation in MTL-algebra.

Proof. φ12 and φ23 are defined as follows:

φ12(s1, s2, s3) = ((s2 → 0)⊙ s1, 0, s3),

φ23(s1, s2, s3) = (s1, ((s3 → 0)⊙ s2, 0).



YANG-BAXTER EQUATIONS IN MTL-ALGEBRAS 605

By using Proposition 2.1 (2) and (4), we get

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23((s2 → 0)⊙ s1, 0, s3))

= φ12((s2 → 0)⊙ s1, (s3 → 0)⊙ 0, 0)

= φ12((s2 → 0)⊙ s1, 0, 0)

= ((0 → 0)⊙ ((s2 → 0)⊙ s1), 0, 0)

= ((s2 → 0)⊙ s1, 0, 0) (5)

and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1, (s3 → 0)⊙ s2, 0))

= φ23((((s3 → 0)⊙ s2) → 0)⊙ s1, 0, 0)

= ((((s3 → 0)⊙ s2) → 0)⊙ s1, (0 → 0)⊙ 0, 0)

= ((((s3 → 0)⊙ s2) → 0)⊙ s1, 0, 0). (6)

Since the equation (5) is equal to equation (6) for all (s1, s2, s3) ∈ L, we get
φ(s1, s2) = ((s2 → 0) ⊙ s1, 0) is a solution in this MTL-algebra, but it is not in
MTL-algebras. �

Similarly, φ(s1, s2) = (0 → (s2 ⊙ s1), s1) and φ(s1, s2) = ((s1 ⊙ (s2 → 0)) →
0, s1) are also solutions for MTL-algebra in Example 3.1 whereas they are not
solutions in MTL-algebras.

Example 3.2. Notice that the map φ(s1, s2) = (s1 → s2, s1) is a solution to
the set-theoretical Yang-Baxter equation in Boolean algebras [7] while it is not a
solution in Wajsberg algebra [14] and also in MTL-algebras. Since

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23(s1 → s2, s1, s3))

= φ12(s1 → s2, s1 → s3, s1)

= ((s1 → s2) → (s1 → s3), s1 → s2, s1)

and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1, s2 → s3, s2)

= φ23(s1 → (s2 → s3), s1, s2)

= (s1 → (s2 → s3), s1 → s2, s1)

We get φ12 ◦ φ23 ◦ φ12(s1, s2, s3) ̸= φ23 ◦ φ12 ◦ φ23(s1, s2, s3). If we define s1 →
(s2 → s3) = (s1 → s2) → (s1 → s3), then φ(s1, s2) = (s1 → s2, s1) is a solution in
MTL-algebras.

Proposition 3.1 ([6]). MTL-algebras are distributive lattices.
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Lemma 3.5. Let (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. Then φ(s1, s2) =
(s1 ∧ s2, s1 ∨ s2) is a solution of the set-theoretical Yang-Baxter equation.

Proof. It is easy to get the proof by using Proposition 3.1. �

Example 3.3. φ(s1, s2) = (s1 ∧ s2, s1 ∨ s2) is a solution of the set-theoretical
Yang-Baxter equation in MV-algebras [13] and MTL-algebras from Proposition 3.1
and Lemma 3.5 while it is usually not a solution of the set-theoretical Yang-Baxter
equation in Wasjberg-algebras [14].

Theorem 3.2. Let (L,∧,∨,⊙,→, 0, 1) be an MTL-algebra. If the MTL-algebra
is an IMTL-algebra, then φ(s1, s2) = (¬(¬s1 ⊙ ¬s2), 0) is a solution of the set-
theoretical Yang-Baxter equation.

Proof. Let φ12 and φ23 be defined as follows:

φ12(s1, s2, s3) = (¬(¬s1 ⊙ ¬s2), 0, s3),
φ23(s1, s2, s3) = (s1,¬(¬s2 ⊙ ¬s3), 0).

By using Definition 2.2 (b) and Proposition 2.1 (4) and (5), for all (s1, s2, s3) ∈ L3

we get

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = φ12(φ23(φ12(s1, s2, s3)))

= φ12(φ23(¬(¬s1 ⊙ ¬s2), 0, s3))
= φ12(¬(¬s1 ⊙ ¬s2),¬(¬0⊙ ¬s3), 0)
= φ12(¬(¬s1 ⊙ ¬s2), s3, 0)
= (¬(¬¬(¬s1 ⊙ ¬s2)⊙ ¬s3), 0, 0))
= (¬((¬s1 ⊙ ¬s2)⊙ ¬s3), 0, 0)

and

(φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) = φ23(φ12(φ23(s1, s2, s3)))

= φ23(φ12(s1,¬(¬s2 ⊙ ¬s3), 0))
= φ23(¬(¬s1 ⊙ ¬¬(¬s2 ⊙ ¬s3), 0, 0)))
= φ23(¬(¬s1 ⊙ (¬s2 ⊙ ¬s3), 0, 0))
= (¬(¬s1 ⊙ (¬s2 ⊙ ¬s3),¬(¬0⊙ ¬0), 0)
= (¬(¬s1 ⊙ (¬s2 ⊙ ¬s3), 0, 0).

Since (L,⊙, 1) is a commutative monoid,

(φ12 ◦ φ23 ◦ φ12)(s1, s2, s3) = (φ23 ◦ φ12 ◦ φ23)(s1, s2, s3) for all (s1, s2, s3) ∈ L3.

Therefore, if the MTL- algebra is an IMTL-algebra then φ(s1, s2) = (¬(¬s1 ⊙
¬s2), 0) is a solution in MTL-algebras. �
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