PERIPHERAL WIENER INDEX
 OF GRAPH OPERATIONS

Afework Kahsay and Kishori Narayankar

Abstract

Peripheral Wiener index of a graph is the sum of the distance of the peripheral vertices of a graph. In this paper the peripheral Wiener index of graph operations is investigated.

1. Introduction

Throughout this paper we consider only simple connected graphs. For a graph G, the sets $V(G)$ and $E(G)$ denote the vertex set and the edge set, respectively. The distance between two vertices of a graph G is denoted by $d_{G}(u, v)$ (or simply $d(u, v)$, if there is no ambiguity), which is defined as the length of a shortest path between vertex u and vertex v in G.

A graph invariant is a real number related to a graph G which is invariant under graph isomorphism. In chemistry, graph invariants are known as topological indices. Topological indices have many applications as tools for modelling chemical and other properties of molecules $[\mathbf{6}, \mathbf{4}, \mathbf{1 2}]$. The Wiener index is one of the first and most studied topological indices, both from theoretical point of view and applications in chemistry. The Wiener index of a graph G, denoted by $W(G)$, was introduced in 1947 by chemist Harold Wiener [14] as the sum of distances between all vertices of G :

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) .
$$

The peripheral Wiener index is also defined in [11] as the sum of the distances of unordered pair of peripheral vertices of a graph. That is

$$
P W(G)=\sum_{\{u, v\} \subseteq P V(G)} d(u, v)
$$

where, $P V(G)$ is the set of peripheral vertices of graph G.

[^0]Computing topological indices of graph operations has been the object of some papers. For instance, Yeh and Gutman in [13] computed the Wiener index in the case of graphs that are obtained by means of certain binary operations (such as product, join, and composition) on pairs of graphs. In this paper the peripheral Wiener index of some graph operations is investigated. Throughout this paper our notations are taken mainly from $[\mathbf{2}, \mathbf{3}]$.

The Cartesian product $G \square H$ of graphs G and H has the vertex set $V(G \square H)=$ $V(G) \times V(H)$ and $(a, x)(b, y)$ is an edge of $G \square H$ if $a=b$ and $x y \in E(H)$, or $a b \in E(G)$ and $x=y[\mathbf{7}]$.

Cartesian product of graphs has interesting properties.
Proposition $1.1([\mathbf{9}])$. The Cartesian product of two graphs is connected if and only if both factors are connected.

Another property of Cartesian product is:
Corollary $1.1([\mathbf{9}])$. Let (u, v) and (x, y) be arbitrary vertices of the Cartesian product $G \square H$. Then

$$
\begin{equation*}
d_{G \square H}((u, v),(x, y))=d_{G}(u, x)+d_{H}(v, y) . \tag{1.1}
\end{equation*}
$$

Moreover, if Q is the shortest path between (u, v) and (x, y), then the projection $p_{1} Q$ is a shortest path in G from u to x and the projection $p_{2} Q$ is a shortest path in H from v to y.

By restricting the distance of vertices to the diameters of each factor graphs, and number of peripheral vertices in each vertices sets in equation (1.1) of Corollary 1.1, we have the following corollary.

Corollary 1.2. If diameters of G and H are d_{1} and d_{2}, respectively, then the diameter $\operatorname{diam}(G \square H)=d_{1}+d_{2}$. Moreover, If G and H has peripheral vertices of k_{1} and k_{2}, respectively, then $G \square H$ has $k_{1} \times k_{2}$ number of peripheral vertices.

Another graph operation is the join of two graphs. The join $G_{1}+G_{2}$ of two graphs G_{1} and G_{2} is a graph formed by a vertex set $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u_{1} u_{2} \mid u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)\right\}[8]$.

Lemma 1.1.

$$
\begin{aligned}
& \left|V\left(G_{1}+G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right| . \\
& \left|E\left(G_{1}+G_{2}\right)\right|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|+\left|V\left(G_{1}\right)\right| \times\left|V\left(G_{2}\right)\right| .
\end{aligned}
$$

Another well-known graph operation is the composition of two graphs. In [7] the composition $G_{1}\left[G_{2}\right]$ of graphs G_{1} and G_{2} is defined as $V\left(G_{1}\left[G_{2}\right]\right)=V\left(G_{1}\right) \times$ $V\left(G_{2}\right)$ and two vertices $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right)$ of $G_{1}\left[G_{2}\right]$ are adjacent whenever [$u_{1}=v_{1}$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[u_{1} v_{1} \in E\left(G_{1}\right)\right]$.

Lemma 1.2 .

$$
\begin{aligned}
\left|V\left(G_{1}\left[G_{2}\right]\right)\right| & =\left|V\left(G_{1}\right)\right| \times\left|V\left(G_{2}\right)\right| . \\
\left|E\left(G_{1}\left[G_{2}\right]\right)\right| & =\left|V\left(G_{1}\right)\right|\left|E\left(G_{2}\right)\right|+\left|V\left(G_{2}\right)\right|^{2}\left|E\left(G_{1}\right)\right| .
\end{aligned}
$$

In $[\mathbf{7}]$, the strong product $G \boxtimes H$ of G and H is defined as follows:

$$
\begin{aligned}
V(G \boxtimes H)= & V(G) \times V(H) . \\
E(G \boxtimes H)= & \{(u, v)(x, y) \mid u=x, \quad x y \in E(H), \quad \text { or } \quad u x \in E(G), \quad v=y, \\
& \text { or } \quad u x \in E(G), \quad v y \in E(H)\} .
\end{aligned}
$$

Proposition $1.2([\mathbf{7}])$. If (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are vertices of a strong product $G \boxtimes H$, then

$$
\begin{equation*}
d_{G \boxtimes H}\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right)=\max \left\{d_{G}\left(g, g^{\prime}\right), d_{H}\left(h, h^{\prime}\right)\right\} . \tag{1.2}
\end{equation*}
$$

Corollary $1.3([\mathbf{7}])$. (Distance Formula) If $G=G_{1} \boxtimes G_{2} \boxtimes \cdots \boxtimes G_{k}$ and $x, y \in V(G)$, then

$$
d_{G}(x, y)=\max _{1 \leqslant i \leqslant k}\left\{d_{G_{i}}\left(p_{i}(x), p_{i}(y)\right)\right\}
$$

where, p_{i} is the $i^{\text {th }}$ projection.
Corollary $1.4([\mathbf{7}])$. A strong product of graphs is connected if and only if every one of its factors is connected.

Corona product of graphs is also one of the well-studied graph operations. The corona $G_{1} \circ G_{2}$ of graphs G_{1} and G_{2} is obtained by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, and by joining each vertex of the $i^{t h}$ copy of G_{2} to the $i^{\text {th }}$ vertex of $G_{1}, i=1,2, \ldots,\left|V\left(G_{1}\right)\right|[\mathbf{5}]$.

2. Main results

Theorem 2.1. Let G_{1} and G_{2}, be graphs with radius $r_{1} \geqslant 2$, and $r_{2} \geqslant 2$, respectively. Then

$$
P W\left(G_{1}+G_{2}\right)=2\binom{n_{1}}{2}-m_{1}+2\binom{n_{2}}{2}-m_{2}+n_{1} n_{2}
$$

where, n_{i} are number of peripheral vertices and m_{i} are number of edges of $G_{i}, \quad i=$ 1,2 , respectively.

Proof. Note that, since $r_{i} \geqslant 2, \quad i=1,2$ and the diameter of $G_{1}+G_{2}$ is 2 , the graph is a self-centered graph. Consequently, the peripheral vertex set of $G_{1}+G_{2}$ consists of all the vertices $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the peripheral Wiener index is the same as Wiener index of $G_{1}+G_{2}$. Therefore, by Theorem 2 of [13], the assertion holds.

Theorem 2.2. Let G_{1} be a graph with k_{1} number of peripheral vertices. For any graph G_{2} of order n_{2} and size m_{2}, the peripheral Wiener index of the composition $G_{1}\left[G_{2}\right]$ is

$$
P W\left(G_{1}\left[G_{2}\right]\right)=n_{2}^{2} P W\left(G_{1}\right)+k_{1}\left[2\binom{n_{2}}{2}-m_{2}\right]
$$

Proof. Let G_{1} be a graph of order n_{1}, with k_{1} peripheral vertices. Let G_{2} be any graph of order n_{2} and size m_{2}. Observe that the composition $G_{1}\left[G_{2}\right]$ can be obtained by taking n_{1} copies of G_{2} and by joining all the vertices of the $i^{t h}$ and the
$j^{\text {th }}$ copy of G_{2} if and only if the $i^{t h}$ and the $j^{t h}$ vertices of G_{1} are adjacent. Hence the vertices in each copy of G_{2} of $G_{1}\left[G_{2}\right]$ are either adjacent (if they were adjacent in G_{2}) or are at a distance two (if they were non-adjacent in G_{2}). Moreover, the number of peripheral vertices of $G_{1}\left[G_{2}\right]$ is $k_{1} n_{2}$. A pair of vertices of $G_{1}\left[G_{2}\right]$ belonging to different copies of G_{2} has the same distance as the corresponding two vertices of G_{1}. That is, the diameter of $G_{1}\left[G_{2}\right]$ is equal to the diameter of G_{1}. Next we calculate the sum of the distances between all pairs of peripheral vertices by considering the following two cases: Case 1 , within one copy of G_{2} and case 2, within different copies of G_{2}.

Case 1: If u, v are peripheral vertices within one copy of G_{2}, then

$$
\sum d_{G_{1}\left[G_{2}\right]}(u, v)=2\left[\binom{n_{2}}{2}-m_{2}\right]+m_{2}=2\binom{n_{2}}{2}-m_{2}
$$

Since we have k_{1} number of copies of G_{2} in the peripheral vertex set of $G_{1}\left[G_{2}\right]$, this sum should be multiplied k_{1} times.

Case 2: If u, v are taken from different copies of G_{2} in the peripheral vertices set of $G_{1}\left[G_{2}\right]$,

$$
\begin{aligned}
\sum_{G_{1}\left[G_{2}\right]} d(u, v) & =n_{2}^{2} \sum_{\{u, v\} \in P V\left(G_{1}\right)} d_{G_{1}}(u, v) \\
& =n_{2}^{2} P W\left(G_{1}\right) .
\end{aligned}
$$

Thus,

$$
P W\left(G_{1}\left[G_{2}\right]\right)=\sum_{\{u, v\} \subseteq P V\left(G_{1}\left[G_{2}\right]\right)} d_{G_{1}\left[G_{2}\right]}(u, v)=n_{2}^{2} P W\left(G_{1}\right)+k_{1}\left[2\binom{n_{2}}{2}-m_{2}\right] .
$$

Theorem 2.3. The peripheral Wiener index of strong product $G \boxtimes H$ of graphs G and H is

$$
P W(G \boxtimes H)=n_{2}^{2} P W(G)+k_{1} W(H)
$$

where, n_{1} and n_{2} are the orders of G and H, respectively.
Proof. Let G and H be two graphs with k_{1} and k_{2} peripheral vertices, respectively. Without loss of generality, assume $\operatorname{diam}(G) \geqslant \operatorname{diam}(H)$. By definition of \boxtimes, the peripheral vertices of $G \boxtimes H$ is $k_{1} \times k_{2}$. By equation (1.2), the diameter of $G \boxtimes H$ is $\max \{\operatorname{diam}(G), \operatorname{diam}(H)\}$. Thus, if we denote $u=\left(u_{i}, u_{j}\right)$ and $v=\left(v_{k}, v_{r}\right)$ arbitrary vertices from peripheral vertex set of $G \boxtimes H$, by simple counting, we have

$$
\begin{aligned}
P W(G \boxtimes H) & =\sum_{\{u . v\} \subseteq P V(G \boxtimes H)} d_{G \boxtimes H}(u, v) \\
& =n_{2}^{2} \sum_{\left\{u_{i}, v_{k}\right\} \subseteq P V(G)} d_{G}\left(u_{i}, v_{k}\right)+k_{1} \sum_{\left(u_{j}, v_{r}\right) \in V(H)} d_{H}\left(u_{j}, v_{r}\right) \\
& =n_{2}^{2} P W(G)+k_{1} W(H) .
\end{aligned}
$$

THEOREM 2.4. Let the diameter of a graph $G_{1}, \operatorname{diam}\left(G_{1}\right)=D \geqslant 2$. Let G_{1} has k_{1} number of peripheral vertices and the order and size of G_{2} are n_{2} and m_{2}, respectively. The peripheral Wiener index of the corona product of $G_{1} \circ G_{2}$ is given by

$$
P W\left(G_{1} \circ G_{2}\right)=k_{1}\left[2\binom{n_{2}}{2}-m_{2}\right]+(D+2) k_{1} n_{2}
$$

Proof. Let G_{1} be a graph of order n_{1}, and $\operatorname{diam}\left(G_{1}\right)=D \geqslant 2$. Since the corona product $G_{1} \circ G_{2}$ is obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} to each vertex of the $i^{\text {th }}$ copy of G_{2}, the vertices in each copy of G_{2} in $G_{1} \circ G_{2}$ are either adjacent (if they were adjacent in G_{2}) or are at a distance two (if they were non-adjacent in G_{2}). Moreover the number of peripheral vertices in $G_{1} \circ G_{2}=k_{1} \times n_{2}$. The diameter of $G_{1} \circ G_{2}=D+2$. Considering the two cases similar to the proof of Theorem 2.2, we arrive at:

$$
P W\left(G_{1} \circ G_{2}\right)=k_{1}\left[m_{2}+2\left[\binom{n_{2}}{2}-m_{2}\right]\right]+(D+2) k_{1} n_{2}
$$

The peripheral Wiener index of Cartesian product of G and H is calculated in [11]. Here we give an alternative proof.

Theorem 2.5. The peripheral Wiener index of the Cartesian product $G \square H$ of two graphs G and H is

$$
P W(G \square H)=k_{2}^{2} P W(G)+k_{1}^{2} P W(H)
$$

where, k_{1} and k_{2} are the orders of $P V(G)$ and $P V(H)$, respectively.
Proof. Let $V_{1} \subseteq V(G)$ and $V_{2} \subseteq V(H)$. Then for $V=V_{1} \times V_{2}$, it follows that

$$
\begin{aligned}
d(V, V) & =d\left(V_{1} \times V_{2}, V_{1} \times V_{2}\right) \\
& =\sum_{\left(u_{1}, u_{2}\right)} \sum_{\left(v_{1}, v_{2}\right)} d\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right) \\
& =\sum_{\left(u_{1}, u_{2}\right)} \sum_{\left(v_{1}, v_{2}\right)}\left(d\left(u_{1}, v_{1}\right)+d\left(u_{2}, v_{2}\right)\right) \quad \text { by Corollary } 1.1 \\
& =\left|V_{2}\right|^{2} \sum_{u_{1}} \sum_{v_{1}} d\left(u_{1}, v_{1}\right)+\left|V_{1}\right|^{2} \sum_{u_{2}} \sum_{v_{2}} d\left(u_{2}, v_{2}\right) \\
& =\left|V_{2}\right|^{2} d\left(V_{1}, V_{1}\right)+\left|V_{1}\right|^{2} d\left(V_{2}, V_{2}\right) .
\end{aligned}
$$

By letting $V=V_{1} \times V_{2}=P V(G) \times P V(H)$, we obtain the result of the theorem.
G. Indulala and R. Balakrishnan defined the Indu-Bala product $G_{1} \mathbf{V} G_{2}$ of graphs G_{1} and G_{2} in $[\mathbf{1 0}]$ as a graph obtained from two disjoint copies of the join $G_{1}+G_{2}$ of G_{1} and G_{2} by joining the corresponding vertices in the two copies of G_{2}. Observe that:
(1) $\left|V\left(G_{1} \nabla G_{2}\right)\right|=2\left(n_{1}+n_{2}\right)$, where $n_{i}=V\left(G_{i}\right), \quad i=1,2$.
(2) $\left|E\left(G_{1} \backslash G_{2}\right)\right|=2\left(m_{1}+m_{2}+n_{1} n_{2}\right)+n_{2}$, where, $n_{i}=\left|V\left(G_{i}\right)\right|, \quad m_{i}=$ $\left|E\left(G_{i}\right)\right|, \quad i=1,2$.

Theorem 2.6. Let G_{1} be a graph of order n_{1} and size m_{1}. Then for any graph G_{2}; the peripheral Wiener index of the Indu-Bala product $G_{1} \mathbf{\nabla} G_{2}$ of G_{1} and G_{2} is

$$
P W\left(G_{1} \nabla G_{2}\right)=3 n_{1}^{2}+2 n_{1}\left(n_{1}-1\right)-2 m_{1} .
$$

Proof. Since $G_{1} \mathbf{\nabla} G_{2}$ can be obtained from two disjoint copies of the join $G_{1}+G_{2}$ of G_{1} and G_{2} by joining the corrosponding vertices in the two copies of G_{2}, the maximum distance of vertices occurs between vertices of different copies of G_{1}. Moreover, the maximum distance is 3 . The set of the peripheral vertices of $G_{1} \boxtimes G_{2}$ contains only the vertices of the two copies of $V\left(G_{1}\right)$. Hence, if we denote the peripheral vertex set of $G_{1} \mathbf{\nabla} G_{2}$ by $P V\left(G_{1} \mathbf{\nabla} G_{2}\right)=V_{1}\left(G_{1}\right) \cup V_{2}\left(G_{1}\right)$, where $V_{1}\left(G_{1}\right)$ and $V_{2}\left(G_{1}\right)$ are the two copies of $V\left(G_{1}\right)$, then

$$
\begin{aligned}
P W\left(G_{1}\right. & \left.\nabla G_{2}\right)=\sum_{\{u, v\} \subseteq P V\left(G_{1} \nabla G_{2}\right)} d(u, v) \\
& =\sum_{\left\{u_{i}, v_{i}\right\} \subseteq V_{i}\left(G_{1}\right)} d\left(u_{i}, v_{i}\right)+\sum_{\left\{u_{i}, v_{j}\right\} \subseteq V_{i}\left(G_{1}\right) \cup V_{j}\left(G_{1}\right)} d\left(u_{i}, v_{j}\right), i \neq j, \quad i, j=1,2 \\
& =\left(2\left[\binom{n_{1}}{2}-m_{1}\right]+m_{1}\right) 2+3 n_{1}^{2} \\
& =2 n_{1}\left(n_{1}-1\right)-2 m_{1}+3 n_{1}^{2}
\end{aligned}
$$

A. Arivalagan and et al [1] defined two graph operations . The first one is defined as follows:

Let G be a graph. If we put two similar graphs G side by side, and any vertex of the first graph G is connected by edges with those vertices which are adjacent to the corresponding vertex of the second graph G and the resultant graph is denoted by $K_{2} \bullet G$, then we have $V\left(K_{2} \bullet G\right)=2 V(G)$ and $E\left(K_{2} \bullet G\right)=4 E(G)$. This means that $K_{2} \bullet G$ is the graph of K_{2} and G with the vertex set $V\left(K_{2} \bullet G\right)=V\left(K_{2}\right) \times V(G)$ and $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{r}\right)$ is an edge of $K_{2} \bullet G$ whenever $u_{i}=u_{k}$ and $v_{j} v_{r} \in E(G)$ or $u_{i} \neq u_{k}$ and $v_{j} v_{r} \in E(G)$.

The second graph operation is defined as a graph formed by putting two copies of graph G side by side, and any vertex of the first copy of G is connected by edges with those vertices which are nonadjacent to the corresponding vertex (including the corresponding vertex itself) of the second copy of G and the resultant graph is denoted by $K_{2} \star G$, then we have $\left|V\left(K_{2} \star G\right)\right|=2|V(G)|$ and $\left|E\left(K_{2} \star G\right)\right|=|V(G)|^{2}$. Moreover, $K_{2} \star G$ is the graph of K_{2} and G with the vertex set $V\left(K_{2} \star G\right)=$ $V\left(K_{2}\right) \times V(G)$ and $\left(u_{i}, v_{j}\right)\left(u_{k}, v_{r}\right)$ is an edge of $K_{2} \star G$ whenever $u_{i}=u_{k}$ and $v_{j} v_{r} \in E(G)$ or $u_{i} \neq u_{k}$ and $v_{j} v_{r} \in E(G)$.

By simple calculation, we have the following two results.
Theorem 2.7. Let G be a graph with k_{1} peripheral vertices and diameter, $D \geqslant 3$. Then,

$$
P W\left(K_{2} \bullet G\right)=4 P W(G)+2 k_{1}
$$

Theorem 2.8. Let G be a graph of order n and size m. Then

$$
P W\left(K_{2} \star G\right)=3 n^{2}-2 n+m .
$$

References

[1] A. Arivalagan, K. Pattabiraman and V. S. A. Subramanian. The Wiener related indices of some graph operations. Int. J. Math. Research, 6(2)(2014), 121-134.
[2] F. Buckley abd F. Harary. Distance in Graphs. Addison-Wesley, Red-wood 1990.
[3] G. Chartrand, L. Lesniak and P. Zhang. Graphs and Digraphs, (6 $6^{\text {th }}$ ed.), CRC Press, Boka Raton 2016.
[4] M.V. Diudea, I. Gutman and L. Jantschi. Molecular Topology. Huntington, New York 2001.
[5] G. H. Fath-Tabar, A. Hamzeh and S. Hossein-Zadeh. $G A_{2}$ index of some graph operations. Filomat, 24(1)(2010), 21-28.
[6] S. Gupta, M. Singh and A. K. Madan. Application of graph theory: Relationship of eccentric connectivity index and Wiener's index with anti-inflammatory activity. J. Math. Anal. Appl., 266(2)(2002), 259-268.
[7] R. Hammack, W. Imrich and S. Klavžar. Handbook of Product Graphs (2 $2^{\text {nd }}$ Ed.), CRC Press, Boka Raton 2011.
[8] F. Harary. Graph Theory. Narosa Publishing House, New Delhi 1969.
[9] W. Imrich and S. Klavžar. Product Graphs Structure and Recognition. John Wiley and Sons Inc., New York 2000.
[10] G. Indulala and R. Balakrishnan. Distance spectrum of InduBala product of graphs. AKCE International Journal of Graphs and Combinatorics, 13(3)(2016), 230-234.
[11] K. Narayankar and S. B. Lokesh. Peripheral Wiener index of a graph. Communications in Combinatorics and Optimization, 2(1)(2017), 43-56.
[12] N. Trinajstić. Chemical Graph Theory. CRC Press, Boca Raton FL, 1992.
[13] Y-N. Yeh and I. Gutman. On the sum of all distances in composite graphs. Discrete Math., 135(1-3)(1994), 359-365.
[14] H. Wiener. Structural determination of the paraffin boiling points. J. Am. Chem. Soc., $69(1)(1947), 17-20$.

Received by editors 03.11.2018; Revised version 06.05.2019; Available online 13.05.2019.
Department of Mathematics, Mangalore University, Mangalore, India
E-mail address: kafew17@gmail.com
Department of Mathematics, Mangalore University, Mangalore, India
E-mail address: kishori_pn@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 05C12, 05C76.
 Key words and phrases. Wiener index, Peripheral Wiener index, Graph operations.

