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SOME PROPERTIES OF MULTIVALUED FUNCTIONS

IN DIGITAL TOPOLOGY

Ismet Cinar and Ismet Karaca

Abstract. In this paper, we define the approximate fixed point property
between digital multivalued functions. We also give the definition of universal

digital multivalued functions. We introduce some properties of the smash

product of digital multivalued functions. Finally, we give some results on
morphological operators.

1. Introduction

Digital topology has dealt with developing image processing and computer
graphics for several decades. The properties of digital objects are characterized
with tools from topology by many researchers [9, 14, 15, 17, 18, 19, 26]. The
notion of digital topology has been introduced by Rosenfeld [28] at the end of
1970s. He gives the concept of continuity of functions from a digital image to
another digital image. Boxer [2, 3] expands the results of Rosenfeld by presenting
digital versions of continuous functions, retractions and homotopies.

Digital continuous multivalued functions are introduced by Escribano et al.
[21]. They state how the multivalued approach provides a better framework to
define topological notions in a rather more realistic way than by using just single-
valued digitally continuous functions. They define the notion of subdivision of a
topological space. This notion is used to define continuity for multivalued functions.
They show that the deletion of simple points can be completely characterized in
terms of digitally continuous multivalued functions.
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554 CINAR AND KARACA

Escribano et al. [22] show that the basic morphological operations of dila-
tion and closing are continuous multivalued functions. Besides, they characterize
thinning algorithms in terms of digitally continuous multivalued functions.

Boxer [6] studies uses of digitally continuous functions for enlarging and stretch-
ing digital images. Also, he indicates links between shy maps and digitally contin-
uous multivalued functions.

Giraldo and Sastre [23] prove that the composition does not always preserve
continuity among digitally continuous multivalued functions.

Boxer and Staecker [7] present connectivity preserving multivalued functions
between digital images and demonstrate that these offer some advantages over con-
tinuous multivalued functions. One of these advantages is that the composition of
connectivity preserving multivalued functions between digital images is connectiv-
ity preserving. Another advantage is that the concept of connectivity preservation
of a function on a digital image can be defined without any restrictions on subsets
of Zn. In addition, Tsaur and Smyth [32] describe weak and strong continuity for
multivalued functions between digital images.

Boxer [10] studies properties of multivalued functions between digital images.
He deals with properties of multivalued functions between digital images that are
characterized by continuity, weak continuity, strong continuity and connectivity
preservation.

In this paper, we construct the approximate fixed point property for digital
multivalued functions. Moreover, we state the definition of a universal digital mul-
tivalued function. We develop some properties of the smash product of digital
multivalued functions. Finally, we characterize some morphological operators such
as dilation, erosion, opening, and closing.

2. Preliminaries

Let Zn be the set of lattice points in the n-dimensional Euclidean space where
Z is the set of integers. A (binary) digital image is a pair (X,κ), where X ⊂ Zn for
some positive integer n and κ represents certain adjacency relations in the study
of digital images.

Let u be a positive integer, 1 6 u 6 n. Let p, q ∈ Zn, p 6= q. We say that p
and q are cu-adjacent [4] if
• there are at most l indices i for which |pi − qi| = 1, and
• for all indices j such that |pj − qj | 6= 1, we have pj = qj .
The notation cu is sometimes also understood as the number of points q ∈ Zn

that are cu-adjacent to given point p ∈ Zn. E.g.,
• in Z1, c1-adjacency is 2-adjacency;
• in Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency;
• in Z3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency, and

c3-adjacency is 26-adjacency.
More general adjacency relations appear in [24].

For two subsets A,B ⊂ X, we will say that A and B are adjacent when there
exist points a ∈ A and b ∈ B such that these points are adjacent or equal.
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Let κ ∈ {2, 4, 6, 8, 18, 26}. A κ-neighbor [3] of p ∈ Zn is a point of Zn which
is κ-adjacent to p. A digital image X is said to be κ-connected [24] if and only if
for every pair of different points p and q in X, there is a sequence {p0, p1, ..., pr}
of points of X such that p = p0, q = pr and pi and pi+1 are κ-adjacent where
i ∈ {0, 1, ..., r − 1}. Let a, b ∈ Z with a < b. A set of the form

[a, b]Z = {z ∈ Z|a 6 z 6 b}
is called a digital interval [2].

Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0 and κ1-adjacency, respec-
tively. Then a function f : X → Y is called (κ0, κ1)-continuous [2, 29] if for every
κ0-connected subset U of X, f(U) is a κ1-connected subset of Y . We say that such
a function is a digitally continuous.

A digital simple closed curve is a digital image X = {xi}m−1i=0 , with m > 4, such
that the points of X are labeled circularly, i.e., xi and xj are adjacent if and only
if j = (i− 1) (mod m) or j = (i+ 1) (mod m).

Proposition 2.1 ([3]). Let (X,κ), (Y, λ) and (Z, β) be digital images. If
f : X → Y and g : Y → Z are, respectively, a (κ, λ)-continuous function and a
(λ, β)-continuous function, then g ◦ f : X → Z is a (κ, β)-continuous function.

For the cartesian product of two digital images X1 and X2, the normal product
adjacency relation [1] is defined as follows: Given points xi, yi ∈ (Xi, κi), (x0, y0)
and (x1, y1) are k∗(κ1, κ2)-adjacent in X1 ×X2 if and only if one of the following
is satisfied:
• x0 = x1 and y0 and y1 are κ1-adjacent; or
• x0 and x1 are κ0-adjacent and y0 = y1; or
• x0 and x1 are κ0-adjacent and y0 and y1 are κ1-adjacent.

Proposition 2.2 ([8]). Let (A,α), (B, β), (C, γ) and (D, δ) be digital images.
f : (A,α)→ (C, γ) and g : (B, β)→ (D, δ). f and g are digitally continuous if and
only if f × g : (A×B, k∗(α, β))→ (C ×D, k∗(γ, δ)) defined by
(f × g)(a, b) = (f(a), g(b)) is digitally continuous.

Definition 2.1. ([21, 22]) For any positive integer r, the r-subdivision of Zn
is

Znr = {(z1/r, z2/r, ..., zn/r)|(z1, z2, ..., zn) ∈ Zn}.
An adjacency relation κ on Zn naturally induces an adjacency relation on Znr as
follows:
(z1/r, z2/r, ..., zn/r) and (z

′

1/r, z
′

2/r, ..., z
′

n/r) are κ-adjacent in Znr if and only if

(z1, z2, ..., zn) and (z
′

1, z
′

2, ..., z
′

n) are κ-adjacent in Zn.
Given a digital image (X,κ) ⊂ (Zn, κ) the r-subdivision of X is

S(X, r) = {(x1, x2, ..., xn) ∈ Znr |(bx1c, bx2c, ..., bxnc) ∈ X}.
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Figure 1. A digital image X and the corresponding 2-subdivision
S(X, 2) [6]

Given a digital imageX ⊂ Zn, let x ∈ S(X, r) be represented as x = (x1, x2, ..., xn).
Let Er : S(X, r)→ X be defined by Er(x) = (bx1c, bx2c, ..., bxnc).

Remark 2.1. ([21]) Given a digital image (X,κ) ⊂ (Zm, κ), any function
f : S(X, r)→ Y induces a multivalued function F : X ( Y defined by

F (x) =
⋃

x′∈E−1
r (x)

{f(x
′
)}.

The function f is called by a support function for F .

Definition 2.2. ([22]) Given a digital image X ⊂ Zm and Y ⊂ Zn, a digital
multivalued function F : X ( Y is called a continuous if it is induced by a
continuous single-valued function f : S(X, r)→ Y for some integer r > 0.

Definition 2.3. ([7]) Let (X,κ) be a digital image. Let Y ⊂ X. Then Y is a
multivalued retract of X if there is a continuous multivalued function F : X ( Y
such that for all y ∈ Y , F (y) = {y}. The function F is called a multivalued retract.

Proposition 2.3 ([23]). Let (X,κ = 3m − 1) ⊂ Zm, (Y, κ
′
) ⊂ Zn, and

(Z, κ
′′
) ⊂ Zp be digital images. If F : X ( Y is a (κ, κ

′
)-continuous multival-

ued function and G : Y ( Z is a (κ
′
, κ
′′
)-continuous multivalued function, then

G ◦ F : X ( Z is a (κ, κ
′′
)-continuous multivalued function.

Definition 2.4. ([27]) Let (X,κ) and (Y, λ) be two digital images. A digital
multivalued function F : X ( Y is connectivity preserving if F (A) ⊂ Y whenever
A ⊂ X is κ-connected.

Proposition 2.4 ([7]). For a digital image (X,κ) ⊂ (Znκ), if F : X ( Y is
a continuous digital multivalued function, then F is connectivity preserving.

Let (W,κ) be a digital image such that W = X ∪ X ′ , where X ∩ X ′ = {x0}
for some x0 ∈ W . We say W is the wedge of X and X

′
, written W = X ∨X ′ or

(W,κ) = (X,κ) ∨ (X
′
, κ) [31].

Sphere-like digital images are defined as follows [5]:

Sn = [−1, 1]n+1
Z \{0n+1} ⊂ Zn+1,

where 0n is the origin point of Zn. For instance,

S0 = {1,−1}.
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S1 = {c0 = (1, 0), c1 = (1, 1), c2 = (0, 1), c3 = (−1, 1), c4 = (−1, 0), c5 = (−1,−1),

c6 = (0,−1), c7 = (1,−1)} (See Figure 2).

Figure 2. Digital 1-sphere S1

Given two digital images X1 and X2, X1 ∨ X2 is a subset of X1 × X2. Since
the normal product adjacency relation is defined for the cartesian product of two
digital images, the smash product is constructed as follows:

Definition 2.5. ([13]) Let (X,κ1) and (Y, κ2) be two digital images. The
digital smash product (X ∧Y, k∗(κ1, κ2)) is defined to be the quotient digital image
(X × Y )/(X ∨ Y ), where X ∨ Y is a wedge union of X and Y .

Example 2.1. ([13]) If we choose digital images X = S1 and Y = S0, then we
get the following digital images in Figure 3.

Figure 3. S1 × S0 and S1 ∧ S0

Let F : X ( Y be a multivalued function between digital images.
• F has weak continuity [32] if for each pair of adjacent points x, y ∈ X, F (x) and
F (y) are adjacent subsets of Y .
• F has strong continuity [32] if for each pair of adjacent points x, y ∈ X, every
point of F (x) is adjacent or equal to some point of F (y) and every point of F (y) is
adjacent or equal to some point of F (x).

Example 2.2. ([7]) Let [0, 1]Z and [0, 2]Z be two digital intervals. The multi-
valued function

G : [0, 1]Z( [0, 2]Z

0 7→ {0, 2}
1 7→ {1}
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has both weak and strong continuity. In contrast, G is not a continuous multivalued
function since G is not connectivity preserving.

Example 2.3. ([7]) Let G : [0, 1]Z( [0, 2]Z be defined by G(0) = {0, 1},
G(1) = {2}. Then G is continuous and has weak continuity but does not have
strong continuity.

Theorem 2.1 ([10]). Let f : (X,κ) ( (Y, λ) and g : (Y, λ) ( (W,µ) be
multivalued functions between digital images.
• If f and g are both weakly continuous, then g ◦ f is weakly continuous.
• If f and g are both strongly continuous, then g ◦ f is strongly continuous.

3. Universal Multivalued Functions

Boxer et al. [12] research universal functions on digital images and their re-
lation to the AFPP. In this section, we introduce universal digital multivalued
functions and prove some properties about these multivalued functions.

Definition 3.1. Let (X,κ) and (Y, λ) be digital images. A (κ, λ)- continuous
multivalued function F : X ( Y is a universal for (X,Y ) if given a (κ, λ)- continu-
ous multivalued function G : X ( Y , there exists x ∈ X such that F (x)↔λ G(x).

Proposition 3.1. Let X and Y be digital images. Suppose Y is finite. Then
the multivalued function F : X ( Y defined by F (x) = Y for all x ∈ X is universal.

Proof. This follows easily from Definition 3.1. �

Theorem 3.1 ([12]). Let (W,κ), (X,λ), and (Y, µ) be digital images. Let
f : W → X be (κ, λ)-continuous and let g : X → Y be (λ, µ)-continuous. If g ◦ f is
universal, then g is also universal.

Theorem 3.1 does not hold for digital multivalued functions:

Example 3.1. Let Cn be a digital simple closed curve of n > 3 points and let
F be the multivalued self-map on Cn defined by F (x) = Cn for all x in Cn. It is
easy to see that F is continuous. Let G be the identity map on Cn. Then G◦F = F
is easily seen to be universal, but G is not since we can take h to be a rotation of
Cn by 2 points so that no x in Cn has h(x) adjacent to G(x) = x.

Theorem 3.2 ([12]). g : (U, µ) → (X,κ) and h : (Y, λ) → (V, ν) are digital
isomorphisms and f : X → Y is (κ, λ)-continuous, then the following are equiva-
lent.

(1) f is a universal function for (X,Y ).
(2) f ◦ g is universal.
(3) h ◦ f is universal.

Theorem 3.3. Let (X,κ) and (Y, λ) be digital images and let U be a subset of
X. If the restriction function F |U : (U, κ)( (Y, λ) is a universal digital multivalued
function for (U, Y ), then F : (X,κ)( (Y, λ) is also a universal digital multivalued
function for (X,Y ).
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Proof. Let H : X ( Y be (κ, λ)-continuous multivalued function. Since the
restriction of F to U is a universal, there exists u ∈ U ⊂ X such that

H(u) = H|U (u)↔λ F |U (u) = F (u).

Therefore, F is a universal for (X,Y ). �

4. Approximate Fixed Points For Digital Multivalued Functions

Boxer et al. [12] introduce approximate fixed points and the Approximate
Fixed Point Property (AFPP). They give examples of digital images that have,
and that don’t have, this property. In this section, we introduce approximate fixed
points for digital multivalued functions.

Given a digital image (X,κ) and a (κ, κ)-continuous multivalued function
F : X ( X, we say p ∈ X is an approximate fixed point of F if

either p ∈ F (p) or {p} ↔ F (p).

We say that a digital (X,κ) has the approximate fixed point property (AFPP) for
multivalued functions if every (κ, κ)-continuous multivalued function F : X ( X
has an approximate fixed point.

Theorem 4.1 ([29]). Let I =
∏n
i=1[ai, bi]Z. Then (I, cn) has the AFPP for

single-valued functions.

Theorem 4.2 ([12]). Let A and B be digital images. Then (A ∨ B, κ) has
the AFPP if and only if both (A, κ) and (B, κ) have the AFPP for single-valued
functions.

A digital multivalued function F : A ( B is injective if F (a) = F (b) implies
a = b, absolutely injective if a 6= b implies F (A)∩F (B) = ∅, and surjective if every
b ∈ B belongs to some F (a) for some a ∈ A. If F is both injective and surjective,
it is said to be bijective. A bijective multivalued function 1A : A( A is said to be
an identity if a ∈ 1A(a) for all a ∈ A.

Proposition 4.1. Let (X,κ) be a digital image. Then (X,κ) has the AFPP
for multivalued functions if and only if the identity multivalued function 1X is a
universal for (X,X).

Proof. Let F : X ( X be a multivalued function. Our hypothesis implies
there exists p ∈ X such that {p} ↔ F (p). So 1X is universal for (X,X). Conversely,
suppose 1X is a universal function for (X,X). Then given a continuous multivalued
function F : X ( X there exist p ∈ X such that {p} ∈ 1X(p)↔ F (p). Therefore,
(X,κ) has the AFPP. �

Theorem 4.3. Let (Xi, cni) ⊂ Zni for i = 0, 1, 2, ...,m and s =
∑m
i=0 ni. Given

the digital image X =
∏m
i=0Xi ⊂ Zs, if (X, cs) has the AFPP for multivalued

functions, then each (Xi, cni) has the AFPP for multivalued functions.
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Proof. Suppose that (X, cs) has the AFPP for multivalued functions. Let
Fi : Xi ( Xi be (cni

, cni
)-continuous multivalued function. Then the multivalued

function F : X ( X defined by

F (x1, x2, ..., xm) = (F1(x1), F2(x2), ..., Fm(xm))

is (cs, cs)-continuous. This claim follows from [11] (Proposition 3.1) and [9] (Propo-
sition 3.4 and Theorem 11.4). From Proposition 4.1, 1X is a universal for (X,X).
Hence there is a point x∗ = (x1,∗, x2,∗, ..., xm,∗) ∈ X with xi,∗ ∈ Xi such that

{x∗} ↔cs F (x∗).

So xi,∗ ↔cni
Fi(xi,∗) for all i ∈ {0, 1, ...,m}. Since Fi was arbitrarily taken, it

follow that (Xi, cni) has the AFPP for multivalued functions. �

Theorem 4.4. Let (X,κ = 3n − 1) ⊂ Zn be a digital image, and let Y ⊂ X
be a (κ, κ)-multivalued retract of X. If (X,κ) has the AFPP, then (Y, κ) has the
AFPP for multivalued functions.

Proof. Let R : X ( Y be a (κ, κ)-multivalued retraction and let F : Y ( Y
be a (κ, κ)-multivalued continuous function. Let I : Y ( X be the inclusion
function. By Proposition 2.3, G = I ◦ F ◦ R : X ( X is a (κ, κ)-continuous
multivalued function. Hence G has an approximate fixed point x0 ∈ X. Let
x1 ∈ G(x0) such that x1 ↔ x0. Then

x1 ∈ G(x0)↔κ G(x1) = I ◦ F ◦R(x1) = I ◦ F (x1) = F (x1).

As a result, x1 is an approximate fixed point of F . �

5. Some Results on Single Valued Digital Functions

In this section, we deal with some properties on single valued digital functions.

Theorem 5.1. Let (X,κ) and (Y, λ) be digital images. If f : (X,κ) → (Y, λ)
is a (κ, λ)-continuous function and if (A, κ) is a subset of (X,κ), then
f |A : (A, κ)→ (Y, λ) is also a (κ, λ)-continuous function.

Proof. The inclusion function i : (A, κ) → (X,κ) is a (κ, κ)-continuous. By
Proposition 2.1, the composition of two digital continuous functions is also digital
continuous. Thus, the composite function

f ◦ i : (A, κ)→ (Y, λ)

is a (κ, λ)-continuous function. �

Theorem 5.2. Let (X,κ) and (Y, λ) be digital images. If (Z, λ) is a subset of
(Y, λ) and f : (X,κ) → (Y, λ) is a digital continuous function such that f(X) is

a subset of digital image Z, then f := f
′

: (X,κ) → (Z, λ) is a digital continuous
function.

Proof. Since f is a digital continuous function, for every κ-connected subset
A of X, f(A) is a λ-connected subset of (Y, λ). From the hypothesis, we have the
following:

f(A) ⊂ f(X) ⊂ Z ⊂ Y.



SOME PROPERTIES OF MULTIVALUED FUNCTIONS IN DIGITAL TOPOLOGY 561

For every κ-connected digital image A in X, f(A) is a λ-connected subset of (Z, λ).
�

6. Smash Product for Digital Multivalued Functions

Cinar et al. [13] construct the smash product for digital images. In this section,
we give some properties of the smash product for digital multivalued functions.

Theorem 6.1. Let (X,κ), (X
′
, κ), (Y, λ), and (Y

′
, λ) be digital images. If

f : S(X, r) → Y and g : S(X
′
, r) → Y

′
are continuous functions which induce

digital continuous multivalued functions F : X ( Y and G : X
′
( Y

′
, respectively

and f × g(S(X, r) ∧ S(X
′
, r)) ⊂ (Y ∧ Y ′), where S(X, r) is an rth-subdivision of

X, then the smash product of the multivalued functions

F ∧G : X ∧X
′
( Y ∧ Y

′

is continuous.

Proof. Let F and G be digital continuous multivalued functions. For r ∈ N,
there exist two digital continuous single-valued function

f : S(X, r)→ Y and g : S(X
′
, r)→ Y

′

such that F and G are induced from f and g, respectively. By Proposition 2.2, we
obtain that the function

f × g : S(X, r)× S(X
′
, r)→ Y × Y

′

is a digital continuous function. From Theorem 5.1, the function

(f × g)|
S(X,r)∧S(X

′
,r)

: S(X, r) ∧ S(X
′
, r)→ Y × Y

′

is also a digital continuous function. In addition,

f × g(S(X, r) ∧ S(X
′
, r)) ⊂ (Y ∧ Y

′
)

and by Theorem 5.2, we have

(f × g)|
S(X,r)∧S(X

′
,r)

: S(X, r) ∧ S(X
′
, r)→ Y ∧ Y

′

is a digital continuous function. We conclude that the digital continuous single-
valued function (f × g)|

S(X,r)∧S(X
′
,r)

induces

F ∧G : X ∧X
′
( Y ∧ Y

′

a digital multivalued function. �

Corollary 6.1. Let (X,κ), (X
′
, κ), (Y, λ), and (Y

′
, λ) be digital images. If

F ∧G : X ∧X
′
( Y ∧ Y

′

is a digital continuous multivalued function, then F ∧G is a connectivity preserving
function.
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Proof. By the fact that F ∧ G is a continuous multivalued function and by
Proposition 2.4, the function

F ∧G : X ∧X
′
( Y ∧ Y

′

is a connectivity preserving function. �

7. Morphological Operations in Digital Multivalued Functions

In this section, we consider the basic operations in mathematical morphology;
dilation, erosion, closing, and opening operators (see [30]). These operators will de-
note, respectively, byDκ, Eκ, Cκ, and Oκ. Escribano, Giraldo, and Sastre [22] show
that these operators can be modeled as digitally continuous multivalued functions.
In addition, Boxer and Steacker also show that these morphological operations can
be modeled as digitally connectivity preserving multivalued functions.

Dilation [30] of a binary image can be regarded as a method of magnifying or
swelling the image. A common method of performing a dilation of a digital image
(X,κ) ⊂ (Zn, κ) is to take the dilation

Dκ(X) =
⋃
x∈X

N∗κ(x).

Theorem 7.1. Given a digital image (X,κ) ⊂ (Zn, κ), the digital multivalued
function

D̃κ : X ( Dκ(X)

x 7→ Nκ(x) ∪ {x}
is a strongly continuous multivalued function.

Proof. Let x and y be two κ-adjacent points. Each element of D̃κ(y) is equal

or κ-adjacent to y ∈ D̃κ(x). Similarly, because of x ∈ D̃κ(y), every element of

D̃κ(x) is κ-adjacent to x ∈ D̃κ(y). So we get the required result. �

Example 7.1. Let X = {p = (0, 0), q = (1, 0)} ⊂ Z2 be a digital image. The
multivalued function

D̃4 : X ( D4(X)

(0, 0) 7→ N4((0, 0)) ∪ {(0, 0)}
(1, 0) 7→ N4((1, 0)) ∪ {(1, 0)}

is strongly continuous.

There are nonequivalent definitions of the erosion operation in the literature.
We will use the definition of [22]: the κ-erosion of X ⊂ Zn is
Eκ(X) = Zn rDκ(Zn rX).

Theorem 7.2. For a digital image (X,κ) in (Zn, κ), the multivalued function

Ēκ : Zn rX ( Zn

x 7−→ Nκ(x) ∪ {x}

is a strongly continuous multivalued function, where Ēκ is an erosion operator.
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Figure 4. 4-adjacent points of p and q

Proof. The assertion follows as in the proof of Theorem 7.1. �

Like dilation, closing a digital image can be regarded as a way to swell the
image. The closure operator Cκ is the result of a dilation followed by an erosion.
Since we have defined an erosion on X as a dilation on Zn r X, we cannot say
that Cκ is a composition of a dilation and an erosion, since the corresponding
composition Ēκ ◦ D̃κ is not generally defined. The closure operator of X can be
defined as

Cκ(X) = Zn r D̃κ(Zn r
⋃
x∈X

N∗κ(x)).

Given a digital image (X,κ) ⊂ Zn and x ∈ X, the boundary of X in Zn is defined
as follows:

∂κ(X) = {y ∈ X|Nκ(y) rX 6= ∅}.

Theorem 7.3. Given a digital image (X,κ) ⊂ (Zn, κ), the closure operator C̃κ
is weakly continuous.

Proof. We define a digital multivalued function C̃κ : X ( Cκ(X) by

C̃κ(x) =

{
{x}, x ∈ X r ∂κX
({x} ∪Nκ(x)) ∩ Cκ(X), x ∈ ∂κX.

Suppose x↔κ x
′

in X. We consider the following cases.
• x, x′ ∈ X r ∂κX. x ∈ C̃κ(x) and x

′ ∈ C̃κ(x
′
), hence C̃κ(x) and C̃κ(x

′
) are

κ-adjacent sets.
• x ∈ Xr∂κX, x

′ ∈ ∂κX. Then x is an element of C̃κ(x
′
), x ∈ C̃κ(x)∩ C̃κ(x

′
).

Therefore, C̃κ(x) and C̃κ(x
′
) are κ-adjacent sets.

• x ∈ ∂κX, x
′ ∈ X r ∂κX. This is similiar to the previous case.

• x, x′ ∈ ∂κX. From the definition of C̃κ, x ∈ C̃κ(x
′
). Consequently, C̃κ(x)

and C̃κ(x
′
) are κ-adjacent sets.

Thus, C̃κ is weakly continuous. �
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As it happens in the case of the erosion, the opening operation (erosion com-
posed with dilation) cannot be adequately modeled as a digitally continuous multi-
valued function on the set of black pixels. However, since the opening of a set agrees
with the closing of its complement [30], the κ-opening operator can be modeled by
a κ-continuous multivalued function on the set of white pixels. Thus, we define an
opening operator for X as the closure operator on Zn rX.

Theorem 7.4. Let (X,κ) be a digital image in (Zn, κ). The κ-opening op-
eration on X can be modeled as a weakly continuous multivalued function Ōκ :
Zn rX ( Zn.

Proof. The assertion follows from Theorem 7.3. �

8. Conclusion

This paper introduces some notions such as the approximate fixed point prop-
erty for multivalued functions and universal digital multivalued functions. We give
some properties of smash product of digital multivalued functions. Finally, we show
that morphological operators such as dilation and erosion have strong continuity.
Furthermore, opening and closing have weak continuity.
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