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NEW GENERALIZED CLOSED SETS IN
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Raghavan Asokan, Ochanan Nethaji and Ilangovan Rajasekaran

Abstract. We have introduce L-nIg-closed subsets, S-nIg-closed subsets, R-
nIg-closed subsets and nI⋆-O-sets in this paper. Also we have discussed their
properties related to other subsets.

1. Introduction

The concept of nanotopology was introduced by Lellis Thivagar et al [9]. which
was defined in terms of approximations and boundary region of a subset of an
universe using an equivalence relation on it. Also nano closed sets, nano-interior
and nano-closure of a subset were defined.

The Concept of an ideal nanotopological space and some of its properties were
introduced by Parimala et al(2017).

In this paper we have introduce nI⋆-O-sets, L-nIg-closed subsets, S-nIg-closed
subsets and R-nIg-closed subsets. Also we have discussed some special properties
of L-nIg, S-nIg and R-nIg-closed subsets.

2. Preliminaries

An ideal I [12] on a topological space (X, τ) is a non-empty collection of subsets
of X which satisfies the following conditions.

(1) A ∈ I and B ⊂ A imply B ∈ I and
(2) A ∈ I and B ∈ I imply A ∪B ∈ I.

Given a topological space (X, τ) with an ideal I on X. If ℘(X) is the family of
all subsets ofX, a set operator (.)⋆ : ℘(X) → ℘(X), called a local function of A with
respect to τ and I is defined as follows: for A ⊂ X, A⋆(I, τ) = {x ∈ X : U ∩A /∈ I
for every U ∈ τ(x)} where τ(x) = {U ∈ τ : x ∈ U} [2]. The closure operator defined
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by cl⋆(A) = A ∪ A⋆(I, τ) [11] is a Kuratowski closure operator which generates a
topology τ⋆(I, τ) called the ⋆-topology finer than τ . The topological space together
with an ideal on X is called an ideal topological space or an ideal space denoted
by (X, τ, I). We will simply write A⋆ for A⋆(I, τ) and τ⋆ for τ⋆(I, τ).

Definition 2.1. ([8]) Let U be a non-empty finite set of objects called the uni-
verse and R be an equivalence relation on U named as the indiscernibility relation.
Elements belonging to the same equivalence class are said to be indiscernible with
one another. The pair (U, R) is said to be the approximation space. Let X ⊆ U .

(1) The lower approximation of X with respect to R is the set of all objects,
which can be for certain classified as X with respect to R and it is denoted by
LR(X). That is, LR(X) =

∪
x∈U{R(x) : R(x) ⊆ X}, where R(x) denotes the

equivalence class determined by x.
(2) The upper approximation of X with respect to R is the set of all objects,

which can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X) =

∪
x∈U{R(x) : R(x) ∩X ̸= ϕ}.

(3) The boundary region of X with respect to R is the set of all objects, which
can be classified neither as X nor as not - X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Definition 2.2. ([9]) Let U be the universe, R be an equivalence relation on U
and τR(X) = {U, ϕ, LR(X), UR(X), BR(X)} where X ⊆ U . Then τR(X) satisfies
the following axioms:

(1) U and ϕ ∈ τR(X),
(2) The union of the elements of any sub collection of τR(X) is in τR(X),
(3) The intersection of the elements of any finite subcollection of τR(X) is in

τR(X).

Thus τR(X) is a topology on U called the nanotopology with respect to X and
(U, τR(X)) is called the nanotopological space. The elements of τR(X) are called
nano-open sets (briefly n-open sets). The complement of a n-open set is called
n-closed. In the rest of the paper, we denote a nanotopological space by (U,N ),
where N = τR(X). The nano-interior and nano-closure of a subset A of U are
denoted by n-int(A) and n-cl(A), respectively.

A nanotopological space (U,N ) with an ideal I on U is called [5] an ideal
nanotopological space and is denoted by (U,N , I). Gn(x) = {Gn |x ∈ Gn, Gn ∈
N}, denotes [5] the family of nano open sets containing x.

In future an ideal nanotopological space (U,N , I) will be simply called a space.

Definition 2.3. ([5]) Let (U,N , I) be a space with an ideal I on U . Let (.)⋆n
be a set operator from ℘(U) to ℘(U) (℘(U) is the set of all subsets of U). For a
subset A ⊆ U , A⋆

n(I,N ) = {x ∈ U : Gn ∩ A /∈ I, for every Gn ∈ Gn(x)} is called
the nano local function (briefly, n-local function) of A with respect to I and N . We
will simply write A⋆

n for A⋆
n(I,N ).

Theorem 2.1 ([5]). Let (U,N , I) be a space and A and B be subsets of U .
Then
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(1) A ⊆ B ⇒ A⋆
n ⊆ B⋆

n,
(2) A⋆

n = n-cl(A⋆
n) ⊆ n-cl(A) (A⋆

n is a n-closed subset of n-cl(A)),
(3) (A⋆

n)
⋆
n ⊆ A⋆

n,
(4) (A ∪B)⋆n = A⋆

n ∪B⋆
n,

(5) V ∈ N ⇒ V ∩A⋆
n = V ∩ (V ∩A)⋆n ⊆ (V ∩A)⋆n,

(6) J ∈ I ⇒ (A ∪ J)⋆n = A⋆
n = (A− J)⋆n.

Theorem 2.2 ([5]). Let (U,N , I) be a space with an ideal I and A be a subset
of U . If A ⊆ A⋆

n, then A⋆
n = n-cl(A⋆

n) = n-cl(A).

Definition 2.4. ([5]) Let (U,N , I) be a space. The set operator n-cl⋆ called
a nano ⋆-closure is defined by n-cl⋆(A) = A ∪A⋆

n for A ⊆ U .
It can be easily observed that n-cl⋆(A) ⊆ n-cl(A).

Theorem 2.3 ([7]). In a space (U,N , I), if A and B are subsets of U , then
the following results are true for the set operator n-cl⋆.

(1) A ⊆ n-cl⋆(A),
(2) n-cl⋆(ϕ) = ϕ and n-cl⋆(U) = U ,
(3) IfA ⊂ B, then n-cl⋆(A) ⊆ n-cl⋆(B),
(4) n-cl⋆(A) ∪ n-cl⋆(B) = n-cl⋆(A ∪B).
(5) n-cl⋆(n-cl⋆(A)) = n-cl⋆(A).

Definition 2.5. ([6]) A subset A of a space (U,N , I) is called n⋆-dense in
itself (resp. n⋆-perfect and n⋆-closed) if A ⊆ A⋆

n (resp. A = A⋆
n and A⋆

n ⊆ A).

Definition 2.6. A subset A of a nanotopological space (U,N ) is called nano
nowhere dense (briefly, n-nowhere dense) [10] if n-int(n-cl(A)) = ϕ.

Definition 2.7. A subset A of a space (U,N , I) is called

(1) nano g-closed (briefly, ng-closed) [1] if n-cl(A) ⊆ B, whenever A ⊆ B and
B is n-open. The complement of a ng-closed set is said to be ng-open.

(2) nano Ig-closed (briefly, nIg-closed) [6] if A
⋆
n ⊆ B whenever A ⊆ B and B

is n-open. The complement of a nIg-closed set is said to be nIg-open.
(3) nano pre⋆-I-closed (briefly, pre⋆-nI-closed) [3] if n-cl⋆(n-int(A)) ⊆ A.

The complement of a pre⋆-nI-closed set is said to be pre⋆-nI-open.
(4) nano Q-I-closed (briefly, Q-nI-closed) [4] if A = n-cl⋆(n-int(A)). The

complement of a Q-nI-closed set is said to be Q-nI-open.

Theorem 2.4 ([6]). In a space (U,N , I), each n⋆-closed set is nIg-closed.

3. New generalized closed subsets of (U,N , I)

Definition 3.1. A subset A of a space (U,N , I), is called
(1) lightly nano Ig-closed (briefly L-nIg-closed) if (n-int(A))⋆n ⊆ B whenever

A ⊆ B and B is n-open. The complement of a L-nIg-closed set is said to be
L-nIg-open.

(2) softly nano Ig-closed (briefly S-nIg-closed) if (n-int(A))⋆n ⊆ B whenever
A ⊆ B and B is ng-open. The complement of a S-nIg-closed set is said to be
S-nIg-open.
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(3) robustly nano Ig-closed (briefly R-nIg-closed) if A
⋆
n ⊆ B whenever A ⊆ B

and B is ng-open. The complement of a R-nIg-closed set is said to be R-nIg-open.

Theorem 3.1. In a space (U,N , I) the following results hold for a subset A of
U . A is R-nIg-closed ⇒ A is S-nIg-closed ⇒ A is L-nIg-closed.

Proof. A is R-nIg-closed ⇒ A is S-nIg-closed.
Let A be R-nIg-closed and A ⊆ B where B is ng-open. Since A is R-nIg-closed

A⋆
n ⊆ B. But (n-int(A))⋆n ⊆ A⋆

n. Thus (n-int(A))⋆n ⊆ B which proves that A is
S-nIg-closed.

A is S-nIg-closed ⇒ A is L-nIg-closed.
Let A be S-nIg-closed and A ⊆ G where G is n-open. Since A is S-nIg-closed

and G is ng-open being n-open, (n-int(A))⋆n ⊆ G. This proves that A is L-nIg-
closed. �

Remark 3.1. None of the implications in 3.1 is reversible as seen from the
following Example.

Example 3.1. Consider

U = {e1, e2, e3, e4, e5}, U/R = {{e1}, {e2, e3}, {e4, e5}} and X = {e1, e2}.
Then N = {ϕ, {e1}, {e2, e3}, {e1, e2, e3}, U}. Let I = {ϕ, {e1}}. In this space
(U,N , I),

(1) L-nIg-closed ; S-nIg-closed. A = {e2, e3, e4} is L-nIg-closed for U is the
only n-open set containing A. Also A is ng-open and A ⊆ A whereas

(n-int(A))⋆n = {e2, e3}⋆n = {e2, e3, e4, e5} * A,

which proves that A is not S-nIg-closed.
(2) S-nIg-closed ; R-nIg-closed. B = {e2, e4} is S-nIg-closed for (n-int(B))⋆n

= ϕ⋆
n = ϕ. Also B is ng-open and B ⊆ B whereas B⋆

n = {e2, e3, e4, e5} * B, which
verifies that B is not R-nIg-closed.

Theorem 3.2. In a space (U,N , I), the following results hold for a subset A
of U .

(1) A is R-nIg-closed ⇒ A is nIg-closed.
(2) A is nIg-closed ⇒ A is L-nIg-closed.
(3) A is n-closed ⇒ A is R-nIg-closed.

Proof. (1) let A ⊆ B where B is n-open. Since B is ng-open and A is R-nIg-
closed, A⋆

n ⊆ B. This proves that A is nIg-closed.
(2) Let A ⊆ B where B is n-open. Since A is nIg-closed, A⋆

n ⊆ B. But
(n-int(A))⋆n ⊆ A⋆

n ⊆ B, which shows that A is L-nIg-closed.
(3) Since A is n-closed, A is n⋆-closed and A⋆

n ⊆ A. Let A ⊆ B where B is
ng-open. then A⋆

n ⊆ A ⊆ B which proves that A is R-nIg-closed. �

Remark 3.2. From Theorem 2.4, 3.1 and 3.2 the results are given in a diagram.

n-closed −→ R-nIg-closed −→ S-nIg-closed
↓ ↓ ↓

n⋆-closed −→ nIg-closed −→ L-nIg-closed.
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Here A −→ B means A implies B.

Remark 3.3. None of the implications is reversible as seen from the following
Example.

Example 3.2. In Example 3.1,
(1) n⋆-closed 9 n-closed. B = {e1} is n⋆-closed for B⋆

n = {e1}⋆n = ϕ ⊆ B. But
B is not n-closed.

(2) R-nIg-closed 9 n-closed. C = {e1} is R-nIg-closed for if C ⊆ K where K
is ng-open then C⋆

n = {e1}⋆n = ϕ ⊆ K. But C is not n-closed.
(3) L-nIg-closed 9 nIg-closed. D = {e2} is L-nIg-closed for (n-int(D))⋆n =

ϕ⋆
n = ϕ. D = {e2} ⊆ {e2, e3} is n-open. But D⋆

n = {e2}⋆n = {e2, e3, e4, e5} *
{e2, e3} which proves that D is not nIg-closed.

(4) nIg-closed 9 n⋆-closed. E = {e5} is nIg-closed for U is the only n-open
set containing E. But E⋆

n = {e5}⋆n = {e4, e5} * E. Thus E is not n⋆-closed.
(5) nIg-closed 9 R-nIg-closed. F = {e5} is nIg-closed . But F is ng-open

and F ⊆ F whereas F ⋆
n = {e5}⋆n = {e4, e5} * F which proves that F is not

R-nIg-closed.

Thus Examples 3.1 and 3.2 verify Remark 3.3.

Definition 3.2. A subset B of a space (U,N , I) is called a nano I⋆-O-set
(briefly nI⋆-O-set) if A = P ∪Q where P is n-closed and Q is pre⋆-nI-open.

Theorem 3.3. In a space (U,N , I) a subset A of U is

(1) pre⋆-nI-open ⇒ A is a nI⋆-O-set.
(2) n-closed ⇒ A is a nI⋆-O-set.

Proof. (1) A = A∪ ϕ where A is pre⋆-nI-open and ϕ is n-closed. Hence A is
a nI⋆-O-set.

(2) A = ϕ ∪ A where ϕ is pre⋆-nI-open and A is n-closed. Hence A is a
nI⋆-O-set. �

Remark 3.4. The converse of Theorem 3.3 is not true as shown in the following
Example.

Example 3.3. Let U = {a, b, c, d} with U/R = {{b}, {d}, {a, c}} and X =
{c, d}. Then N = {ϕ, {d}, {a, c}, {a, c, d}, U}. Let the ideal be I = {ϕ, {c}}. In
(U,N , I), {a, b} is a nI⋆-O-set for {a, b} = {a} ∪ {b} where {a} is pre⋆-nI-open
and {b} is n-closed. But {a, b} is neither pre⋆-nI-open or n-closed.

Theorem 3.4. In a space (U,N , I), the following properties are equivalent for
a n-open subset A of U .

(1) A is n⋆-closed.
(2) A is Q-nI-closed.
(3) A is L-nIg-closed.

Proof. (1) ⇒ (2): Since A is n⋆-closed and n-open,
A = n-cl⋆(A) = n-cl⋆(n-int(A)).

Hence A is Q-nI-closed.
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(2) ⇒ (3): Since A is Q-nI-closed, A = n-cl⋆(n-int(A)) = n-cl⋆(A). Thus A
is n⋆-closed and hence A⋆

n ⊆ A. If A ⊆ B where B is n-open, then (n-int(A))⋆n ⊆
A⋆

n ⊆ A ⊆ B, which proves that A is L-nIg-closed.
(3)⇒ (1): A ⊆ A where A is n-open. Since A is L-nIg-closed, (n-int(A))⋆n ⊆ A.

This implies A⋆
n ⊆ A for A is n-open. Hence A is n⋆-closed. �

Theorem 3.5. In a space (U,N , I),

(1) a n-nowhere dense subset of U is S-nIg-closed.
(2) a n-nowhere dense subset of U is L-nIg-closed.

Proof. (1) Let A be a n-nowhere dense subset of U . Then n-int(n-cl(A)) = ϕ
and n-int(A) ⊆ n-int(n-cl(A)) = ϕ ⇒ n-int(A) = ϕ. If A ⊆ B where B is ng-open
then (n-int(A))⋆n = ϕ⋆

n = ϕ ⊆ B. Thus A is S-nIg-closed.
(2) If A is n-nowhere dense, by (1) A is S-nIg-closed, which implies A is L-

nIg-closed. �
Remark 3.5. The converses of (1) and (2) in Theorem 3.5 are not true as

shown in the following Example.

Example 3.4. (1) In (2) of Example 3.1, B = {e2, e4} is S-nIg-closed but not
n-nowhere dense for n-int(n-cl(B)) = n-int({e2, e3, e4, e5}) = {e2, e3} ̸= ϕ.

(2) By (1) B is L-nIg-closed but not n-nowhere dense.

Theorem 3.6. In a space (U,N , I) the family of R-nIg-closed subsets and the
family of n-nowhere dense subsets are independent.

Example 3.5. In Example 3.1,

(1) A = {e1} is R-nIg-closed for A⋆
n = {e1}⋆n = ϕ. But A is not n-nowhere

dense for n-int(n-cl(A)) = n-int({e1, e4, e5}) = {e1} ̸= ϕ.
(2) B = {e5} is n-nowhere dense for n-int(n-cl(B)) = n-int({e4, e5}) = ϕ.

But B ⊆ {e2, e5} which is ng-open and B⋆
n = {e4, e5} * {e2, e5}. Hence

B is not R-nIg-closed.

4. Some more properties of L-nIg, S-nIg and R-nIg-closed subsets

Already we have given some properties of these sets related to other subsets in
section 3. Here we discuss some more properties of these sets.

Theorem 4.1. In a space (U,N , I) a subset A of U is R-nIg-closed ⇐⇒
n-cl⋆(A) ⊆ G whenever A ⊆ G and G is ng-open.

Proof. Necessary part. Let A ⊆ G where G is ng-open. A is R-nIg-closed
implies A⋆

n ⊆ G. Thus A ⊆ G and A⋆
n ⊆ G imply n-cl⋆(A) = A ∪ A⋆

n ⊆ G. This
proves the necessary part.

Sufficient part. If A ⊆ G where G is ng-open, then by assumption n-cl⋆(A) ⊆
G. Thus A∪A⋆

n ⊆ G which implies A⋆
n ⊆ G. Hence A is R-nIg-closed which proves

the sufficiency part. �
Theorem 4.2. A subset A of U in a space (U,N , I) is S-nIg-closed ⇐⇒

n-cl⋆(n-int(A)) ⊆ G whenever A ⊆ G and G is ng-open.
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Proof. Similar to the proof of Theorem 4.1. �
Theorem 4.3. Let A be a subset of U in a space (U,N , I). Then A is L-nIg-

closed ⇐⇒ n-cl⋆(n-int(A)) ⊆ G whenever A ⊆ G and G is n-open.

Proof. Similar to the proof of Theorem 4.1. �
Theorem 4.4. If a subset A of U in a space (U,N , I) is R-nIg-closed and B

is a subset such that A ⊆ B ⊆ A⋆
n, then B is R-nIg-closed.

Proof. Let G be a subset of U such that B ⊆ G. Then A ⊆ B ⊆ A⋆
n implies

A ⊆ G. Since by assumption A is R-nIg-closed, A⋆
n ⊆ G. But A ⊆ B ⊆ A⋆

n

implies B⋆
n ⊆ ((A⋆

n))
⋆
n ⊆ A⋆

n. Thus A
⋆
n ⊆ G implies B⋆

n ⊆ G which proves that B is
R-nIg-closed. �

Theorem 4.5. If A and B are subsets of U in a space (U,N , I) such that A
is L-nIg-closed and A ⊆ B ⊆ (n-int(A))⋆n, then B is L-nIg-closed.

Proof. Let B ⊆ H where H is n-open. By assumption A ⊆ B ⊆ (n-int(A))⋆n
implies A ⊆ H. Since A is L-nIg-closed (n-int(A))⋆n ⊆ H. Again

A ⊆ B ⊆ (n-int(A))⋆n implies B⋆
n ⊆ ((n-int(A))⋆n)

⋆
n ⊆ (n-int(A))⋆n ⊆ H.

Hence (n-int(B))⋆n ⊆ B⋆
n ⊆ H which proves that B is L-nIg-closed. �

Theorem 4.6. If A and B are subsets of U in a space (U,N , I) such that A
is S-nIg-closed and A ⊆ B ⊆ (n-int(A))⋆n, then B is S-nIg-closed.

Proof. Similar to the proof of Theorem 4.5. �
Theorem 4.7. The union of two R-nIg-closed subsets of U in a space (U,N , I)

is R-nIg-closed.

Proof. Let A and B be R-nIg-closed in (U,N , I). If A ∪ B ⊆ G where G
is ng-open, then A ⊆ G and B ⊆ G. Since A and B are R-nIg-closed, A

⋆
n ⊆ G

and B⋆
n ⊆ G. Hence (A ∪ B)⋆n = A⋆

n ∪ B⋆
n ⊆ G which verifies that A ∪ B is

R-nIg-closed. �
Remark 4.1. In a space (U,N , I), the union of two L-nIg-closed subsets of U

is not generally L-nIg-closed as seen in the following Example.

Example 4.1. In Example 3.1, A = {e2} is L-nIg-closed for if K is any n-
open subset such that A ⊆ K, then (n-int(A))⋆n = ϕ⋆

n = ϕ ⊆ K. Similarly
B = {e3} is also L-nIg-closed. A∪B = {e2, e3}is n-open and A∪B ⊆ {e2, e3}. But
(n-int(A∪B))⋆n = {e2, e3}⋆n = {e2, e3, e4, e5} * {e2, e3}. This verifies that A∪B is
not L-nIg-closed.

Remark 4.2. In a space (U,N , I), the union of two S-nIg-closed subsets of U
is not in general S-nIg-closed as illustrated in the following Example.

Example 4.2. In Example 4.1, A = {e2} and B = {e3} are S-nIg-closed for
(n-int(A))⋆n = ϕ = (n-int(B))⋆n. Also A ∪ B = {e2, e3} is ng-open being n-open.
But (n-int(A))⋆n = {e2, e3}⋆n = {e2, e3, e4, e5} * {e2, e3} which proves that A ∪ B
is not S-nIg-closed.
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Remark 4.3. In a space (U,N , I), the intersection of two L-nIg-closed subsets
of U is not generally L-nIg-closed as shown in the following Example.

Example 4.3. In Example 4.2, A = {e2, e3, e4} and B = {e2, e3, e5} are L-
nIg-closed for U is the only n-open set containing A as well as B. A∩B = {e2, e3}
and A ∩B ⊆ {e2, e3} where {e2, e3} is n-open. But (n-int(A ∩B))⋆n = {e2, e3}⋆n =
{e2, e3, e4, e5} * {e2, e3}. Hence A ∩B is not L-nIg-closed.

Acknowledgement. The authors express sincere thanks to Professor Dr. M.
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