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POSITIVE ALMOST PERIODIC SOLUTIONS

FOR A FISHING MODEL WITH MULTIPLE TIME

VARYING VARIABLE DELAYS ON TIME SCALES

Kapula Rajendra Prasad and Md. Khuddush

Abstract. In this paper we consider fishing model with a multiple time vary-

ing variable delays. Under appropriate conditions, we establish a criterion for
the existence of positive almost periodic solutions by applying the contrac-
tion mapping principle. We also investigate global exponential stability of the
positive almost periodic solution of the system.

1. Introduction

In the study of population dynamics of fisheries, the following differential equa-
tion

(1.1)
u′

u
= f(t, u)− g(t, u)− h(t)

is widely used [1,6–8], where u(t) denotes the population biomass, f(t, u) denotes
the per capita fecundity rate, g(t, u) denotes the per capita mortality rate, and h(t)
is per-capita harvesting rate of the species.

Taking account of the delay and the varying environments, Berezansky and
Idels [2] proposed the following time-lag model based on (1.1),

(1.2) u′(t) = u(t)
[ a(t)

1 +
(u(t−τ(t))

K(t)

)γ − b(t)
]
,
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where r, b,K, τ : R → (0,+∞) are almost periodic functions and parameter γ > 0
and studied the local and global stability of the periodic solutions of equation (1.2).
Later, some more results on the stability and existence of periodic solutions for (1.2)
were established in Wang [15]. In [16], Zhang, Gong and Shao developed a new
criterion to obtain a condition for the global exponential stability of the positive
almost periodic solutions of (1.2) and unveiled exponential convergent rate.

Many authors believe that the discrete time model governed by difference equa-
tions are more appropriate than the continuous ones when the populations have
non-overlapping generations. Discrete time models can also provide efficient com-
putational models of continuous models for numerical simulations. Consequently,
the studies of dynamic systems governed by difference equations have received great
attention from researchers [4,9–11,13,14].

In [18], Zhang, Li and Ye considered the discrete fishing model with feedback
control,

u(n+ 1) = u(n) exp
[ a(t)

1 +
( u(n)
K(n)

)γ − b(n)− c(n)v(n)
]

∆v(n) = −α(n)v(n) + β(n)u(n).

They derived sufficient conditions for the persistence of the system, and also in-
vestigated the existence and uniformly asymptotical stability of an almost periodic
solution of the system.

The study of dynamical systems on time scales is now an active area of research.
This study reveals that the existence of positive periodic solutions of population
models, it is not worthwhile to establish results for differential equations and again
for difference equations separately. One can unify such problems in the frame of
dynamic equations on time scales.

Motivated by the aforementioned facts, in this paper, we consider the general-
ized fishing model with N time varying variable delays on time scales,

(1.3) u∆(t) = −b(t)u(t) +
N∑
r=1

ar(t)

1 +
(

u(t−τr(t))
K(t)

)γr
, t ∈ T,

where T is a time scale, b, ar,K, τr : T → (0,+∞) are almost periodic functions
and parameter γr > 0. Under appropriate conditions, we establish a criterion for
the existence of positive almost periodic solutions of (1.3) by virtue of the contrac-
tion mapping principle and then we investigate global exponential stability of the
positive almost periodic solution of (1.3).

For convenience, we introduce few notations and assumptions:

(H1) For any bounded function f(t), we denote fU = sup
t∈T

f(t), fL = inf
t∈T

f(t).

(H2) We assume that the bounded almost periodic functions b(t), K(s), ar(t),
τr(t) satisfy

0 < bL 6 b(t) 6 bU , 0 < KL 6 K(t) 6 KU , 0 < aLr 6 ar(t) 6 aUr ,

0 < τLr 6 τr(t) 6 τUr
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for r = 1, 2, 3, · · · , N and −b(t) ∈ R+ where R+ is the set of all positively
regressive functions and rd-continuous functions.

(H3) Due to biological realistic of the model (1.3), positive solutions are only
meaningful. So, we restrict our attention to positive solutions of equation
(1.3).

(H4) The initial functions associated with equation (1.3) is given by

u(t;φ) = φ(t) for t ∈ [−τ∗, 0]T, τ∗ = max
16r6N

{τUr }

where φ(·) denotes a real-valued bounded rd-continuous function defined
on [−τ∗, 0]T.

The rest of the paper is organized as follows. In Section 2, we present some no-
tations, definitions and lemmas which are useful to establish our main results.
Sufficient conditions for the existence of unique positive almost periodic solution
of system (1.3) are established in Section 3 and in Section 4 we discussed global
exponential stability of unique positive almost periodic solution of the system (1.3).
Finally in Section 5, an example is given to illustrate our results.

2. Preliminaries

In this section, we introduce some definitions and state some preliminary results
which are useful in the sequel.

Definition 2.1. ( [3]) A time scale T is a nonempty closed subset of the real
numbers R. T has the topology that it inherits from the real numbers with the
standard topology. It follows that the jump operators σ, ρ : T → T,

σ(t) = inf{r ∈ T : r > t}, ρ(t) = sup{r ∈ T : r < t}

(supplemented by inf ∅ := supT and sup ∅ := inf T) are well defined. The point
t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) <
t, σ(t) = t, σ(t) > t, respectively. If T has right-scattered minimum m, define
Tk = T − {m}; otherwise set Tk = T. If T has left-scattered maximum M, define
Tk = T− {m}; otherwise let Tk = T.

Definition 2.2. ( [3]) By an interval time scale, we mean the intersection of a
real interval with a given time scale. i.e., [a, b]T = [a, b]∩T. Similarly other intervals
can be defined.

Definition 2.3. ( [3]) A function f : T → R is rd-continuous provided it is
continuous at each right-dense point in T and has a left-sided limit at each left-
dense point in T. The set of rd-continuous functions f : T → R will be denoted by
Crd(T) = Crd(T,R).

Definition 2.4. ( [3]) A function p : T → R is called regressive if 1+µ(t)p(t) ̸=
0 for all t ∈ Tk If p is regressive function, then the generalized exponential function
ep is defined by

ep(t, s) = exp
{∫ t

s

ξµ(x)(p(x))∆x
}
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with the cylinder transformation

ξh(z) =


Log(1 + hz)

h
, h ̸= 0,

z, h = 0.

Definition 2.5. ( [3]) A function p : T → R is called regressive provided
1 + µ(t)p(t) ̸= 0 for all t ∈ Tk; p : T → R is called positively regressive provided
1 + µ(t)p(t) > 0 for all t ∈ Tk The set of all regressive and rd-continuous functions
p : T → R will be denoted by R = R(T,R) and the set of all positively regressive
functions and rd-continuous functions will be denoted by R+ = R+(T,R).

Lemma 2.1 ( [3]). Assume that p, q : T → R are two regressive functions; then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(t, s) = 1/ep(s, t) = e⊖p(s, t);

(iii) ep(t, s)ep(s, r) = ep(t, r);

(iv) (ep(t, s))
∆ = p(t)ep(t, s).

Lemma 2.2 ( [3]). Suppose that p ∈ R+, then

(i) ep(t, s) > 0 for all t, s ∈ T;
(ii) if p(t) 6 q(t) for all t > s, t, s ∈ T, then ep(t, s) 6 eq(t, s) for all t > s.

Lemma 2.3 ( [3]). If p ∈ R and a, b, c ∈ T, then
[ep(c, ·)]∆ = −p[ep(c, ·)]σ,∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Lemma 2.4 ( [3]). Let p : T → R be right-dense continuous and regressive,
a ∈ T and ua ∈ R. Then the unique solution of the initial value problem

u∆(t) = p(t)u(t) + f(t),

u(a) = ua

is given by

u(t) = er(t, a)ua +

∫ t

a

er(t, σ(s))f(s)∆s.

Definition 2.6. ( [12]) A time scale T is called an almost periodic time scale
if

Π := {τ ∈ R : t+ τ ∈ T, ∀t ∈ T} ̸= {0}.

Definition 2.7. ( [12]) Let T be an almost periodic time scale. A function
f ∈ C(T,R) is said to be almost periodic on T, if, for any ε > 0, the set

E(ε, f) = {τ ∈ Π : |f(t+ τ)− f(t)| < ε,∀t ∈ T}
is relatively dense in T; that is, for any ε > 0, there exists a constant l(ε) > 0 such
that each interval of length l(ε) contains at least one τ ∈ E(ε, f) such that

|f(t+ τ)− f(t)| < ε, ∀t ∈ T.
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The set E(ε, f) is called the ε−translation number of f(t). We denote the set of all
such functions by AP (T).

Lemma 2.5 ( [12]). If f ∈ C(T,R) is an almost periodic function, then f is
bounded on T.

Lemma 2.6 ( [12]). If f, g ∈ C(T,R) are almost periodic functions, then f +
g, fg are also almost periodic.

Lemma 2.7 ( [12]). If f ∈ C(T,R) is almost periodic, then F (t) =
∫ t

0
f(s)∆s

is almost periodic if and only if F (t) is bounded.

Lemma 2.8 ( [12]). If f ∈ C(T,R) is almost periodic and F (·) is uniformly
continuous on the value field of f(t), then F ◦ f is almost periodic.

Definition 2.8. ( [17]) Let x ∈ Rm and A(t) be an m × m rd-continuous
matrix on T; the linear system

(2.1) x∆(t) = A(t)x(t), t ∈ T,

is said to admit an exponential dichotomy on T if there exist positive constants
k, α, projection P , and the fundamental solution matrix x(t) of (2.1) satisfying

|x(t)Px−1(σ(s))|0 6 ke⊖α(t, σ(s)), s, t ∈ T, t > s,

|x(t)(I − P )x−1(σ(s))|0 6 ke⊖α(σ(s), t), s, t ∈ T, t 6 s,

where | · |0 is a matrix norm on T; that is, if A = (aij)m×m, then we can take

|A|0 = (
∑m

i=1

∑m
j=1 |aij |2)1/2.

Lemma 2.9 ( [12]). If the linear system (2.1) admits an exponential dichotomy,
then the following system x∆(t) = A(t)x(t)+ f(t), t ∈ T, has a solution as follows:

x(t) =

∫ t

−∞
x(t)Px−1(σ(s))f(s)∆s−

∫ +∞

t

x(t)(I − P )x−1(σ(s))f(s)∆s,

where x(t) is the fundamental solution matrix of (2.1).

Lemma 2.10 ( [12]). Let A(t) be a regressive n× n matrix-valued function on
T. Let t0 ∈ T and x0 ∈ Rn, then the initial value problem

x∆(t) = A(t)x(t), x(t0) = x0

has a unique solution x(t) as follows

x(t) = eA(t, t0)x0.

Lemma 2.11 ( [12]). Let di(t) > 0 be a function on T such that −di(t) ∈ R+

for all t ∈ T and min
16i6m

{
inf
t∈T

di(t)
}
> 0. Then the linear system

x∆(t) = diag
(
− d1(t),−d2(t), · · · ,−dm(t)

)
x(t)

admits an exponential dichotomy on T.
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3. Existence of the unique positive almost periodic solution

Let X = {u(t) : u ∈ C(T,R), u(t) is almost periodic function } with norm
∥u∥ = supt∈T |u(t)|. Then X is Banach space.

For w ∈ X, consider the equation

(3.1) u∆(t) = −b(t)u(t) +
N∑
r=1

ar(t)

1 +
(

w(t−τr(t))
K(t)

)γr
.

Since inft∈T b(t) = bL > 0, then from Lemma 2.11 the linear equation u∆(t) =
−b(t)u(t) admits exponential dichotomy on T.

Hence, by Lemma 2.9, the equation (3.1) has exactly one almost periodic so-
lution,

uω(t) =

∫ t

−∞
e−b(t, σ(s))

N∑
r=1

ar(s)

1 +
(

ω(s−τr(s))
K(s)

)γr
∆s.

Define the operator F : X → X,

(Fω)(t) =

∫ t

−∞
e−b(t, σ(s))

N∑
r=1

ar(s)

1 +
(

ω(s−τr(s))
K(s)

)γr
∆s.

It is clear that, ω(t) is the almost periodic solution of equation (1.3) if and only if
ω is the fixed point of the operator F.

We assume the following:

(H5) There exist two positive constants M > m > 0 such that

1

bL

N∑
r=1

aUr 6M and m 6 1

bU

N∑
r=1

aLr

1 +
(

M
KL

)γr
.

Theorem 3.1. Assume that conditions (H5), γr > 1, (r = 1, 2, 3, · · · , N) and

N∑
r=1

aUr γr < bLKL

are satisfied, then equation (1.3) has a unique almost periodic positive solution.

Proof. Firstly, we prove that F is self map on Ω, where

Ω = {w(t) ∈ X : m 6 w(t) 6M, t ∈ T}.
Let w ∈ Ω. Then,

(3.2)

(Fw)(t) =

∫ t

−∞
e−b(t, σ(s))

N∑
r=1

ar(s)

1 +
(

w(s−τr(s))
K(s)

)γr
∆s

6
∫ t

−∞
e−bL(t, σ(s))

N∑
r=1

aUr

1 +
(

w(s−τr(s))
KU

)γr
∆s.
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The function

fi(x) =
1

1 +
(

x
KU

)ri , ri > 0

is nonincreasing on [0,+∞). So fimax(x) = 1. It follows from (3.2) that

(3.3)

(Fω)(t) 6
N∑
r=1

aUr

∫ t

−∞
e−bL(t, σ(s))∆s

6 1

bL

N∑
r=1

aUr 6M.

On the other hand, we have

(3.4)

(Fω)(t) =

∫ t

−∞
e−b(t, σ(s))

N∑
r=1

ar(s)

1 +
(

ω(s−τr(s))
K(s)

)γr
∆s

>
∫ t

−∞
e−bU (t, σ(s))

N∑
r=1

aLr

1 +
(

ω(s−τr(s))
KL

)γr
∆s.

Since the function

fi(x) =
1

1 +
(

x
KU

)ri , ri > 0

is nonincreasing on [0,+∞) and m 6 ω(t) 6 M, we have fi(ω(t)) > fi(M) for
t ∈ T. Thus by (3.4) we obtain

(3.5)

(Fω)(t) >
∫ t

−∞
e−bU (t, σ(s))

N∑
r=1

aLr

1 +
(

M
KL

)γr
∆s

> 1

bU

N∑
r=1

aLr

1 +
(

M
KL

)γr
> m.

Hence from (3.3) and (3.5), we have

(3.6) m 6 (Fω)(t) 6M.

Next, by Lemma 2.4 for every ω ∈ Ω, the equation (3.1) has exactly one almost
periodic solution

uω(t) =

∫ t

−∞
e−b(t, σ(s))

N∑
r=1

ar(s)

1 +
(

ω(s−τr(s))
K(s)

)γr
∆s.

Since uω(t) is almost periodic, then (Fω)(t) is almost periodic. This, together
with (3.6), implies Fω ∈ Ω. So we have FΩ ⊂ Ω. Finally, we prove that F is a
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contraction mapping on Ω. For u,w ∈ Ω, consider

(3.7)

∥Fu− Fw∥ =sup
t∈T

|(Fu)(t)− (Fw)(t)|

6 sup
t∈T

∫ t

−∞
e−b(t, σ(s))

N∑
r=1

aUr ×∣∣∣∣ 1

1 +
(

u(s−τr(s))
K(s)

)γr
− 1

1 +
(

w(s−τr(s))
K(s)

)γr

∣∣∣∣∆s

By mean value theorem, we have

(3.8)

∣∣∣∣ 1

1 +
(

u(s−τr(s))
K(s)

)γr
− 1

1 +
(

w(s−τr(s))
K(s)

)γr

∣∣∣∣
=

( γr

K(s)

(
ξ

K(s)

)γr−1

(1 + ξ
K(s) )

2

)
|u(s− τr(s))− w(s− τr(s))|

where ξ lies between u(s− τr(s)) and w(s− τr(s)).

Note that the function

fr(x) =

γr

K(s)

(
x

K(s)

)γr−1

(1 + x
K(s) )

2
<

γr
K(s)

<
γr
KL

for x ∈ (0,∞) and γr > 1, (r = 1, 2, 3, · · · , N). Thus, we have

γr

K(s)

(
ξ

K(s)

)γr−1

(1 + ξ
K(s) )

2
<

γr
KL

for γr > 1.

It follows from (3.8) that

(3.9)

∣∣∣∣ 1

1 +
(

u(s−τr(s))
K(s)

)γr
− 1

1 +
(

w(s−τr(s))
K(s)

)γr

∣∣∣∣ 6 γr
KL

|u(s−τr(s))−w(s−τr(s))|.
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Hence, from (3.7) and (3.9), we get

∥Fu− Fw∥ 6 sup
t∈T

{
1

KL

∫ t

−∞
e−b(t, σ(s))×

N∑
r=1

aUr γr|u(s− τr(s))− w(s− τr(s))|∆s
}

6 sup
t∈T

{
1

KL

∫ t

−∞
e−bL(t, σ(s))×

N∑
r=1

aUr γr|u(s− τr(s))− w(s− τr(s))|∆s
}

6 sup
t∈T

{
1

KL

∫ t

−∞
e−bL(t, σ(s))

N∑
r=1

aUr γr∥u− w∥∆s
}

= sup
t∈T

{
1

KL

N∑
r=1

aUr γr∥u− w∥
∫ t

−∞
e−bL(t, σ(s))∆s

}

= sup
t∈T

{
1

KL

N∑
r=1

aUr γr∥u− w∥ 1

bL

}

=
1

bLKL

N∑
r=1

aUr γr∥u− w∥.

Since
1

bLKL

N∑
r=1

aUr γr < 1, it follows that F is a contraction mapping. Thus, by the

contraction mapping fixed point theorem, the operator F has a unique fixed point
w∗ in Ω. This implies that the equation (1.3) has a unique almost periodic positive
solution w∗(t) and m 6 w∗(t) 6M. �

4. Stability analysis

In this section, we investigate the global exponential stability of the positive
almost periodic solution of (1.3). We recall the Gronwall inequality on time scales,
which can be found in [3].

Theorem 4.1 (Gronwall inequality). Let y ∈ Crd, p ∈ R+, p > 0 and k ∈ R.
Then

y(t) 6 k +

∫ t

t0

y(s)p(s)ds for all t ∈ T

implies
y(t) 6 kep(t, t0) for all t ∈ T.

Theorem 4.2. Assume that conditions (H5), γr > 1, (r = 1, 2, 3, · · · , N),

N∑
r=1

aUr γr < bLKL and bL >
1

KL

N∑
r=1

aUr γr
1− µ(s)b(s)

= δ
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are satisfied. Then equation (1.3) has a unique globally exponentially stable almost
periodic positive solution.

Proof. From Theorem 3.1, equation (1.3) has a unique almost periodic pos-
itive solution w∗(t) such that m 6 w∗(t) 6 M. Let ψ be the initial function of
w∗(t), w∗(t;ψ) = ψ(t) for t ∈ [−τ∗, 0]T. Now we prove that w∗ is globally exponen-
tially stable.

Suppose that u(t) is an arbitrary positive solution of equation (1.3) with the
initial function u(t;φ) = φ(t) > 0, t ∈ [−τ∗, 0]T. Let v(t) = u(t) − w∗(t), then we
have
(4.1)
v∆(t) = (u(t)− w∗(t))∆

=− b(t)(u(t)− w∗(t)) +
N∑
r=1

ar(t)

[
1

1 +
(

u(t−τk(t))
K(s)

)γr

− 1

1 +
(

w∗(t−τk(t))
K(s)

)γr

]
.

Let

p(t) =

N∑
r=1

ar(t)
[ 1

1 +
(

u(t−τk(t))
K(s)

)γr
− 1

1 +
(

w∗(t−τk(t))
K(s)

)γr

]
,

then it follows from (4.1) that

v∆(t) = −b(t)v(t) + p(t).

From Lemma 2.4, v(t) can be expressed as follows

v(t) = e−b(t, t0)v(t0) +

∫ t

t0

e−b(t, σ(s))p(s)∆s, (t > t0), t0 ∈ [−τ∗, 0]T

= e−b(t, t0)v(t0) +

∫ t

t0

1

1− µ(s)b(s)
e−b(t, s)p(s)∆s.

Using initial functions, we obtain

(4.2) v(t) = e−b(t, t0)(φ(t0)− ψ(t0)) +

∫ t

t0

1

1− µ(s)b(s)
e−b(t, s)p(s)∆s.

Note that, by mean value theorem

(4.3)

|p(t)| 6
N∑
r=1

ar(t)

∣∣∣∣ 1

1 +
(

u(t−τk(t))
K(s)

)γr
− 1

1 +
(

w∗(t−τk(t))
K(s)

)γr

∣∣∣∣
6

N∑
r=1

aUr
γr
KL

|u(s− τr(s))− w∗(s− τr(s))|

6 1

KL

N∑
r=1

aUr γr∥u− w∗∥.
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So that

(4.4) ∥p(t)∥ 6 1

KL

N∑
r=1

aUr γr∥u− w∗∥ =
1

KL

N∑
r=1

aUr γr∥v∥.

Taking norm on both sides of (4.2) and using (4.4), we have

(4.5)

∥v(t)∥ 6 e−b(t, t0)∥φ− ψ∥+
∫ t

t0

e−b(t, s)

1− µ(s)b(s)
∥p(s)∥∆s

6 e−b(t, t0)∥φ− ψ∥+
∫ t

t0

e−b(t, s)

1− µ(s)b(s)

1

KL

N∑
r=1

aUr γr∥v∥∆s.

From (4.5) and Lemma 2.1, we get

∥v(t)∥
e−b(t, t0)

6 ∥φ− ψ∥+
∫ t

t0

∥v∥
e−b(s, t0)

1

KL

N∑
r=1

aUr γr
1− µ(s)b(s)

∆s.

By Gronwall’s inequality,

∥v(t)∥
e−b(t, t0)

6 ∥φ− ψ∥eδ(t, t0),

which implies that

∥v(t)∥ 6 ∥φ− ψ∥eδ(t, t0)e−b(t, t0)

6 ∥φ− ψ∥eδ(t, t0)e−bL(t, t0)

6 ∥φ− ψ∥e−(bL−δ)(t, t0).

That is ∥u(t)−w∗(t)∥ 6 ∥φ−ψ∥e−(bL−δ)(t, t0), b
L > δ, which means that w∗(t) is

globally exponentially stable. The proof is complete. �

5. Examples

In this section we give examples to illustrate our results.

Example 5.1. The first example we consider is the fishing model with multiple
time varying variable delays described by

(5.1)

u∆(t) =− 9u(t) +

(
3 +

1

20
| sin

√
5t|

)
× 1

1 +
(

u(t−cos2(t/40))
3

)2

+

(
2 +

1

10
| cos

√
3t|

)
× 1

1 +
(

u(t−cos2(t/40))
3

)2 .

It is easy to see that all the assumptions of Theorem 3.1 are satisfied. Therefore,
there exists a unique positive almost periodic solution for (5.1).
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Figure 1. Numerical solution u(t) of equation (5.2) for initial
value φ(s) = 2.6, 2.8, 3, 3.2 s ∈ [−3e, 0].

Example 5.2. In this example we show global exponential stability of the
following fishery model with time varying variable delays

(5.2)

u∆(t) =− 0.6u(t) +

(
1

4
+

1

2
| cos

√
5t|

)
× 1

1 +
(

u(t−3esin t)
65

)5

+

(
1

2
+ | sin

√
3t|

)
× 1

1 +
(

u(t−3esin t)
65

)5 .

Here

b(t) = 0.6, K(t) = 65, γr = 5, a1(t) =
1

4
+

1

2
|cos

√
5t|, a2(t) =

1

2
+ |sin

√
3t|.

On simple calculations, we get

aL1 =
1

4
, aU1 =

3

4
, aL2 =

1

2
, aU2 =

3

2
.

Letting m = 1 and M = 4, then (C1), (C2) holds.
If T = R, then µ(t) = 0 and hence

bL = 0.6 > δ =
1

KL

N∑
r=1

aUr γr
1− µ(s)b(s)

= 0.03462.

If T = Z, then µ(t) = 1 and hence

bL = 0.6 > δ =
1

KL

N∑
r=1

aUr γr
1− µ(s)b(s)

= 0.43270.

which implies that (5.2) satisfies the assumptions of Theorem 4.2. Therefore, equa-
tion (5.2) has a unique positive almost periodic solution w∗(t), which is globally
exponentially stable. The numerical simulations in Fig. 1 strongly support the
conclusion.
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