SOME RESULTS ON ANALYTIC ODD MEAN LABELING OF GRAPH

P. Jeyanthi, R.Gomathi, and Gee-Choon Lau

Abstract. Let $G=(V, E)$ be a graph with p vertices and q edges. A graph G is analytic odd mean if there exist an injective function $f: V \rightarrow$ $\{0,1,3,5 \ldots, 2 q-1\}$ with an induce edge labeling $f^{*}: E \rightarrow Z$ such that for each edge $u v$ with $f(u)<f(v)$,

$$
f^{*}(u v)= \begin{cases}\left\lceil\frac{f(v)^{2}-(f(u)+1)^{2}}{2}\right\rceil, & \text { if } f(u) \neq 0 \\ \left\lceil\frac{f(v)^{2}}{2}\right\rceil, & \text { if } f(u)=0\end{cases}
$$

is injective. We say that f is an analytic odd mean labeling of G. In this paper we prove that quadrilateral snake $Q(n)$, double quadrilateral snake $D Q(n)$, coconut tree, fire cracker graph, splitting graph $\operatorname{spl}(G), P_{n}(1,2,3, \ldots, n)$, and the graph $C_{k} \odot \bar{K}_{n}$ are analytic odd mean graphs.

1. Introduction

Throughout this paper by a graph we mean a finite, simple and undirected one.The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively.Terms and notations not defined here are used in the sense of Harary [1]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling. An excellent survey of graph labeling is available in [5]. The concept of analytic mean labeling was introduced in $[\mathbf{6}]$. A (p, q) graph $G(V, E)$ is said to be an analytic mean graph if it is possible to label the vertices in V with distinct elements from $0,1,2, \ldots, p-1$ in such a way that when each edge $e=u v$ is labelled with $f^{*}(u v)=\left|(f(u))^{2}-f(v)^{2}\right| / 2$ if $\left|(f(u))^{2}-f(v)^{2}\right|$ is even and $\left(\left|(f(u))^{2}-f(v)^{2}\right|+1\right) / 2$ if $\left|(f(u))^{2}-f(v)^{2}\right|$ is odd

[^0]and the edge labels are distinct. Motivated by the results in [6], we introduced a new mean labeling called analytic odd mean labeling in [2]. We proved that cycle C_{n}, path P_{n}, n-bistar, comb $P_{n} \odot K_{1}$, graph $L_{n} \odot K_{1}$, wheel graph W_{n}, flower graph $F l_{n}$, some splitting graphs, multiple of graphs, the square graph of P_{n}, C_{n}, $B_{n, n}, H$-graph and $H \odot m K_{1}$ fan F_{n}, double fan $D\left(F_{n}\right)$, double wheel $D\left(W_{n}\right)$, closed helm $C H_{n}$, total graph of cycle $T\left(C_{n}\right)$, total graph of path $T\left(P_{n}\right)$, armed crown $C_{n} \Theta P_{m}$, generalized peterson graph $G P(n, 2)$ are analytic odd mean graphs in [2], [3] and [4].

We use the following definitions in the subsequent section.
Definition 1.1. Let $G(V, E)$ be a graph with p vertices and q edges. We say G is an analytic odd mean graph if there exist an injective function f from the vertex set to $0,1,3,5, \ldots, 2 q-1$ in such a way that when each edge $e=u v$ such that $f(u)<f(v)$ is labeled with $f^{*}(u v)=\left\lceil f(v)^{2}-(f(u)+1)^{2} / 2\right\rceil$ if $f(u) \neq 0$ and $f^{*}(u v)=\left\lceil f(v)^{2} / 2\right\rceil$ if $f(u)=0$ all edge labels are odd and distinct. In this case f is called an analytic odd mean labeling.

Definition 1.2. Let $Q(n)$ be the quadrilateral snake obtained from the path $v_{1}, v_{2}, \ldots, v_{n+1}$ by joining v_{i} and v_{i+1} to the new vertices u_{i} and w_{i} for $1 \leqslant i \leqslant n$. That is, every edge of a path is replaced by a cycle C_{4}.

Definition 1.3. Let $D Q(n)$ be the quadrilateral snake obtained from the path $v_{1}, v_{2}, v_{3}, \ldots, v_{n+1}$. The double quadrilateral snake $D Q(n)$ is obtained from $Q(n)$ by adding the vertices $s_{1}, s_{2}, s_{3}, \ldots, s_{n} ; t_{1}, t_{2}, t_{3}, \ldots, t_{n}$ and the edges $v_{i} s_{i}$, $t_{i} v_{i+1}, s_{i} t_{i}$ for $1 \leqslant i \leqslant n$.

Definition 1.4. The splitting graph $\operatorname{spl}(G)$ is obtained by adding a new vertex v^{\prime} corresponding to each vertex v of G such that $N(v)=N\left(v^{\prime}\right)$.

Definition 1.5. The graph $P_{n}(1,2,3, \ldots, n)$ is a graph obtained from a path of vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ by joining i pendent vertices at each $i^{t h}$ vertex $1 \leqslant i \leqslant n$. The pendent vertices are labeled as $u_{i j}$ for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant i$.

Definition 1.6. The fire cracker is constructed as follows: Let $a_{0}, a_{1}, a_{2}, \ldots$, a_{k-1} be the vertices of the path P_{k} and b_{j} be the vertex adjacent to a_{j} for $1 \leqslant j \leqslant k$. Let $b_{j 1}, b_{j 2}, b_{j 3}, \ldots, b_{j n}$ be the pendent vertices adjacent to b_{j} for $1 \leqslant j \leqslant k$.

Definition 1.7. The coconut tree is having the vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{i}$ of a path $(i \geqslant 1)$ and the pendent vertices $v_{i+1}, v_{i+2}, v_{i+3}, \ldots, v_{i+n}$, being adjacent with v_{0}.

Definition 1.8. The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} (which has p vertices) and p copies of G_{2} and then joining the $i^{t h}$ vertex of G_{1} to every vertex in the the $i^{t h}$ copy of G_{2} for $1 \leqslant i \leqslant p$.

2. Main Results

In this section we prove that quadrilateral snake $Q(n)$, double quadrilateral snake $D Q(n)$, coconut tree, fire cracker graph and some special star graphs, splitting graph $\operatorname{spl}(G), P_{n}(1,2,3, \cdots n)$ and the graph $C_{k} \odot \bar{K}_{n}$ are analytic odd mean graphs.

Theorem 2.1. The splitting graph $\operatorname{spl}\left(P_{n}\right)$ is an analytic odd mean graph.
Proof. Let $V(G)=\left\{v_{i}, v_{i}^{\prime}: 0 \leqslant i \leqslant n-1\right\}$ and

$$
E(G)=\left\{v_{i-1} v_{i}, v_{i-1}^{\prime} v_{i}, v_{i-1} v_{i}^{\prime}: 1 \leqslant i \leqslant n-1\right\} .
$$

Now $|V(G)|=2 n$ and $|E(G)|=3 n-3$. We define an injective map $f: V(G) \rightarrow$ $\{0,1,3,5, \ldots, 6 n-7\}$ by
$f\left(v_{0}\right)=0, f\left(v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n-1$ and $f\left(v_{i-1}^{\prime}\right)=2 n-3+2 i$ for $1 \leqslant i \leqslant n$.
Let f^{*} be the induced edge labeling of f. The induced edge labels are as follows:
$f^{*}\left(v_{i-1} v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n-1$
$f^{*}\left(v_{i-1}^{\prime} v_{i}\right)=2 n(n-3)+2 i(2 n-3)+5$ for $1 \leqslant i \leqslant n-1$
$f^{*}\left(v_{i} v_{i+1}^{\prime}\right)=2 n(n+1)+2 i(2 n+1)+1$ for $1 \leqslant i \leqslant n-2$ and
$f^{*}\left(v_{0} v_{1}^{\prime}\right)=2 n^{2}+2 n+1$.
Clearly all the edge labels are odd. We observe that the edge labels $v_{i-1} v_{i}$ increase by 2 from 1 to $2 \mathrm{n}-3$ as i increases from 0 to $\mathrm{n}-1$. Also the edge labels of $v_{i-1}^{\prime} v_{i}$ increase by $4 \mathrm{n}-6$ from $2 n^{2}-2 n-1$ to $6 n^{2}-16 n+11$ as i increases from 1 to $\mathrm{n}-1$ and the edge labels of $v_{i} v_{i+1}^{\prime}$ increase by $4 n+2$ from $2 n^{2}+2 n+1$ to $6 n^{2}-4 n-3$ as i increases from 1 to $\mathrm{n}-2$. Moreover, $f^{*}\left(v_{i-1}^{\prime} v_{i}\right) \neq f^{*}\left(v_{i} v_{i+1}^{\prime}\right)$ so all the edge labels are distinct. Hence the splitting graph $\operatorname{spl}\left(P_{n}\right)$ admits an analytic odd mean labeling. An analytic odd mean labeling of splitting graph $\operatorname{spl}\left(P_{6}\right)$ is shown in Figure 1.

Figure 1

Theorem 2.2. The splitting graph $\operatorname{spl}\left(C_{n}\right)$ is an analytic odd mean graph.
Proof. Let $V(G)=\left\{v_{i}, v_{i}^{\prime}: 0 \leqslant i \leqslant n-1\right\}$ and

$$
\begin{aligned}
E(G)= & \left\{v_{i-1} v_{i}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{v_{i}^{\prime} v_{i+1}: 1 \leqslant i \leqslant n-2\right\} \\
& \cup\left\{v_{i}^{\prime} v_{i-1}: 1 \leqslant i \leqslant n-1\right\}\left\{v_{n-1}^{\prime} v_{0}, v_{0}^{\prime} v_{n-1}\right\} .
\end{aligned}
$$

Now $|V(G)|=2 n$ and $|E(G)|=3 n$. We define an injective map $f: V(G) \rightarrow$ $\{0,1,3,5, \ldots, 6 n-1\}$ by

$$
\begin{gathered}
f\left(v_{0}\right)=0 \text { and } f\left(v_{i}\right)=2 i-1 \text { for } 1 \leqslant i \leqslant n-1, \\
f\left(v_{i}^{\prime}\right)=2 n+2 i-1 \text { for } 0 \leqslant i \leqslant n-1 .
\end{gathered}
$$

Let f^{*} be the induced edge labeling of f. The induced edge labels are as follows:
$f^{*}\left(v_{i-1} v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n-1$
$f^{*}\left(v_{i}^{\prime} v_{i+1}\right)=2 n(n-1)+2 i(2 n-3)-1$ for $1 \leqslant i \leqslant n-2$
$f^{*}\left(v_{i}^{\prime} v_{i-1}\right)=2 n(n-1)+2 i(2 n+1)-1$ for $1 \leqslant i \leqslant n-1$
$f^{*}\left(v_{n-1}^{\prime} v_{0}\right)=8 n^{2}-12 n+5$ and
$f^{*}\left(v_{n-1} v_{0}^{\prime}\right)=2 n-1$.
It is easy to show that the edge labels are odd and distinct. Hence the splitting graph $\operatorname{spl}\left(C_{n}\right)$ admits an analytic odd mean labeling. An analytic odd mean labeling of splitting graph $\operatorname{spl}\left(C_{8}\right)$ is shown in Figure 2.

Figure 2
Theorem 2.3. The splitting graph $\operatorname{spl}\left(K_{m, n}\right)$ for any integer $n \geqslant m \geqslant 1$ is an analytic odd mean graph.

Proof. Let

$$
\begin{aligned}
& V(G)=\left\{u_{i}, u_{i}^{\prime}, u_{n+j}, u_{n+j}^{\prime}: 0 \leqslant i \leqslant n-1 \text { and } 1 \leqslant j \leqslant m\right\} \text { and } \\
& E(G)=\left\{u_{i} u_{n+j}, u_{i} u_{n+j}^{\prime}, u_{i}^{\prime} u_{n+j}: 0 \leqslant i \leqslant n-1 \text { and } 1 \leqslant j \leqslant m\right\}
\end{aligned}
$$

be the vertex set and edge set of the graph $G=\operatorname{spl}\left(K_{m, n}\right)$. Now $|V(G)|=2(m+n)$ and $|E(G)|=3 m n$. We define an injective map $f: V(G) \rightarrow\{0,1,3,5, \ldots, 6 m n-1\}$ by

$$
\begin{aligned}
& f\left(u_{0}\right)=0 \\
& f\left(u_{i}\right)=2 i-1 \text { for } 1 \leqslant i \leqslant n-1 \text { and } \\
& f\left(u_{i}^{\prime}\right)=2 n+2 i-1 \text { for } 0 \leqslant i \leqslant n-1 .
\end{aligned}
$$

We label m vertices u_{n+j} by $6 \mathrm{mn}-1,6 \mathrm{mn}-3,6 \mathrm{mn}-5,6 \mathrm{mn}-2 \mathrm{~m}+1$. That is $f\left(u_{n+j}\right)=$ $6 m n-2 j+1$ for $1 \leqslant j \leqslant m$.

Also we label m vertices u_{n+j}^{\prime} by $6 \mathrm{mn}-2 \mathrm{~m}-1,6 \mathrm{mn}-2 \mathrm{~m}-3,6 \mathrm{mn}-2 \mathrm{~m}-5,6 \mathrm{mn}-4 \mathrm{~m}+1$. That is $f\left(u_{n+j}^{\prime}\right)=6 m n-2 m-2 j+1$ for $1 \leqslant j \leqslant m$. Then the induced edge labels are as follows:

$$
f^{*}\left(u_{n+j} u_{i}\right)=\left[(6 m n-2 j+1)^{2}-(2 i)^{2}+1\right] 2=6 m n(3 m n+1)+1-2 j(6 m n+
$$ 1) $+2 j^{2}-2 i^{2}$ for $0 \leqslant i \leqslant n-1$ and $1 \leqslant j \leqslant m$.

$$
f^{*}\left(u_{n+j}^{\prime} u_{i}\right)=\left[(6 m n-2 m-2 j+1)^{2}-(2 i)^{2}+1\right] 2=\left[(6 m n-2 m+1)^{2}+1\right] \div
$$ $\left.2-2 j(6 m n-2 m+1)+2 j^{2}-2 i^{2}\right)$ for $0 \leqslant i \leqslant n-1 \& 1 \leqslant j \leqslant m$.

$f^{*}\left(u_{n+j} u_{i}^{\prime}\right)=\left[(6 m n-2 j+1)^{2}-(2 n+2 i)^{2}+1\right] 2=6 m n(3 m n+1)+1-2 j(6 m n+$ 1) $+2 j^{2}-2 i^{2}-2 n^{2}-4 n i$ for $0 \leqslant i \leqslant n-1$ and $1 \leqslant j \leqslant m$.

We observe that the vertices u_{n+1} to u_{n+m} and $u_{0}, u_{1}, \ldots, u_{n-1}, u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{n-1}^{\prime}$ induce $K_{m, 2 n}$ whereas the vertices u_{0} to u_{n-1} and $u_{n+1}, u_{n+2}, \ldots, u_{n+m}, u_{n+1}^{\prime}, u_{n+2}^{\prime}$ $, \ldots, u_{n+m}^{\prime}$ induced a $K_{n, 2 m}$. By an argument similar to that for $K_{m, n}$, we can see the labeling is analytic odd mean labeling . The analytic odd mean labeling of splitting graph $\operatorname{spl}\left(K_{3,4}\right)$ is shown in Figure 3.

Figure 3
Theorem 2.4. The graph $P_{n}(1,2,3, \ldots, n)$ is an analytic odd mean graph.
Proof. Let $G=P_{n}(1,2,3, \ldots n)$. Let
$V(G)=\left\{v_{i}, v_{i}^{j}: 0 \leqslant i \leqslant n-1\right.$ and $\left.1 \leqslant j \leqslant i+1\right\}$ and

$$
E(G)=\left\{v_{i-1} v_{i}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{v_{i} v_{i}^{j}: 0 \leqslant i \leqslant n-1 \text { and } 1 \leqslant j \leqslant i+1\right\} .
$$

Now $|V(G)|=n+n(n+1) \div 2$ and $|E(G)|=n-1+n(n+1) \div 2$. We define an injective map $f: V(G) \rightarrow\left\{0,1,3,5, \ldots, n^{2}+3 n-3\right\}$ by

$$
\begin{aligned}
& f\left(v_{0}\right)=0, f\left(v_{i}\right)=2 i-1 \text { for } 1 \leqslant i \leqslant n-1, f\left(v_{0}^{1}\right)=2 n-1 \text { and } \\
& f\left(v_{i}^{j}\right)=2 n-3+2(i+j)+\sum_{k=1}^{i-1} 2(i-k) \text { for } 1 \leqslant i \leqslant n-1 \text { and } 1 \leqslant j \leqslant i+1 .
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. The induced edge labels are as follows:

$$
\begin{aligned}
& f^{*}\left(v_{i-1} v_{i}\right)=2 i-1 \text { for } 1 \leqslant i \leqslant n-1 \\
& f^{*}\left(v_{0} v_{0}^{1}\right)=2 n^{2}-2 n+1 \text { and } \\
& f^{*}\left(v_{i} v_{i}^{j}\right)=2\left(n^{2}-i^{2}\right)-6 n+5+2\left[(i+j)+\sum_{k=1}^{i-1}(i-k)\right]\left[(i+j)+\sum_{k=1}^{i-1}(i-k)+2 n-3\right]
\end{aligned}
$$ for $1 \leqslant j \leqslant m$ and $1 \leqslant i \leqslant n-1$.

Clearly the edge labels are odd and We observe that the edge labels are increase by 2 as i increases from 0 to $\mathrm{n}-1$. For fix i, the difference of $f^{*}\left(v_{i} v_{i}^{j}\right)$ and $f^{*}\left(v_{i} v_{i}^{j+1}\right)$ is $4\left[i+j+\sum_{k=1}^{i-1}(i-k)+n-1\right]$. So all the edge labels are distinct. Hence the graph G admits an analytic odd mean labeling. An analytic odd mean labeling of $P_{5}(1,2,3, \ldots, 5)$ is shown in Figure 4.

Figure 4
Theorem 2.5. The quadrilateral snake $Q(n)$ is an analytic odd mean graph.
Proof. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{n+1} ; u_{1}, u_{2}, u_{3}, \ldots, u_{n} ; w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ be the vertices of $V\left(Q_{n}\right)$ and $E\left(W_{n}\right)=\left\{v_{i} v_{i+1}, v_{i} u_{i}, u_{i} w_{i}, w_{i} v_{i+1}: 1 \leqslant i \leqslant n\right\}$. Let $G=Q(n)$ and hence $|V(G)|=3 n+1$ and $|E(G)|=4 n$. We define f on the vertex set of Q_{n} as follows:

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i-1 \text { for } 1 \leqslant i \leqslant n+1 \\
& f\left(u_{i}\right)=2 n+1+2 i \text { for } 1 \leqslant i \leqslant n \\
& f\left(w_{i}\right)=4 n+1+2 i \text { for } 1 \leqslant i \leqslant n .
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f. The induced edge labels are as follows :
$f^{*}\left(v_{i} v_{i+1}\right)=2 i+1$ for $1 \leqslant i \leqslant n$
$f^{*}\left(v_{i} u_{i}\right)=2 n(n+1)+2 i(2 n+1)+1$ for $1 \leqslant i \leqslant n$
$f^{*}\left(u_{i} w_{i}\right)=6 n^{2}+2 i(2 n-1)-1$ for $1 \leqslant i \leqslant n$ and
$f^{*}\left(w_{i} v_{i+1}\right)=4 n(2 n+1)+2 i(4 n-1)-1$ for $1 \leqslant i \leqslant n$.
Clearly the edge labels are odd and we observe that the edge labels of path increase by 2 , the edge labels of $v_{i} u_{i}$ increase by $4 \mathrm{n}+2$, the edge labels of $u_{i} w_{i}$ increase by $4 \mathrm{n}-2$ and the edge labels of $w_{i} v_{i+1}$ increase by $8 \mathrm{n}-2$ as i increases. So all the edge
labels are distinct. Therefore f is an analytic odd mean labeling and hence $Q(n)$ is an analytic odd mean graph. An analytic odd mean labeling of $Q(5)$ is shown in Figure 5.

Figure 5

THEOREM 2.6. The double quadrilateral snake $D(Q(n))$ is an analytic odd mean graph.

Proof. Let

$v_{1}, v_{2}, v_{3}, \ldots, v_{n+1} ; u_{1}, u_{2}, u_{3}, \ldots, u_{n} ; w_{1}, w_{2}, w_{3}, \ldots, w_{n} ; s_{1}, s_{2}, s_{3}, \ldots, s_{n} ; t_{1}, t_{2}, t_{3}, \ldots, t_{n}$
be the vertices of $V\left(Q_{n}\right)$.Let $G=D(Q(n))$. Hence $|V(G)|=5 n+1$ and $|E(G)|=$
$7 n$. We define an injective map $f: V(G) \rightarrow\{0,1,3,5, \ldots, 14 n-1\}$ by
$f\left(v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n+1$
$f\left(u_{i}\right)=2 n+1+2 i$ for $1 \leqslant i \leqslant n$
$f\left(w_{i}\right)=4 n+1+2 i$ for $1 \leqslant i \leqslant n$
$f\left(s_{i}\right)=6 n+1+2 i$ for $1 \leqslant i \leqslant n$ and
$f\left(t_{i}\right)=8 n+1+2 i$ for $1 \leqslant i \leqslant n$.
Let f^{*} be the induced edge labeling of f. Then the induced edge labels are as follows:

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=2 i+1 \text { for } 1 \leqslant i \leqslant n \\
& f^{*}\left(v_{i} u_{i}\right)=2 n(n+1)+2 i(2 n+1)+1 \text { for } 1 \leqslant i \leqslant n \\
& f^{*}\left(u_{i} w_{i}\right)=6 n^{2}+2 i(n-1)-1 \text { for } 1 \leqslant i \leqslant n \\
& f^{*}\left(u_{i} s_{i}\right)=6 n(3 n+1)+2 i(6 n+1)+1 \text { for } 1 \leqslant i \leqslant n \\
& f^{*}\left(w_{i} v_{i+1}\right)=4 n(2 n+1)+2 i(4 n-1)-1 \text { for } 1 \leqslant i \leqslant n-1 \\
& f^{*}\left(t_{i} v_{i+1}\right)=8 n(4 n+1)+2 i(8 n-1)-1 \text { for } 1 \leqslant i \leqslant n \text { and } \\
& f^{*}\left(s_{i} t_{i}\right)=2 n(7 n-2)+2 i(2 n-1)-1 \text { for } 1 \leqslant i \leqslant n .
\end{aligned}
$$

We observe that the edge labels are odd and distinct. Therefore f is an analytic odd mean labeling and hence $D(Q(n))$ is an analytic odd mean graph. An analytic odd mean labeling of $D(Q(4))$ is shown in Figure 6.

THEOREM 2.7. The graph $C_{k} \odot \bar{K}_{n}$ is an analytic odd mean graph.

Proof. Let $G=C_{k} \odot \bar{K}_{n}$. Let

$$
V(G)=\left\{v_{i}, v_{i}^{j}: 0 \leqslant i \leqslant k-1 \text { and } 1 \leqslant j \leqslant n\right\}
$$

and
$E(G)=\left\{v_{i} v_{i+1}: 0 \leqslant i \leqslant k-2\right\} \cup\left\{v_{i} v_{i}^{j}: 0 \leqslant i \leqslant k-1\right.$ and $\left.1 \leqslant j \leqslant n\right\} \cup\left\{v_{k-1} v_{0}\right\}$.

Then there are $\mathrm{k}(\mathrm{n}+1)$ vertices and $\operatorname{deg}\left(v_{i}\right)=n+2$ for $0 \leqslant i \leqslant k-1$. We define f on the vertex set as follows :

$$
\begin{aligned}
& f\left(v_{0}\right)=0, f\left(v_{i}\right)=2 i-1 \text { for } 1 \leqslant i \leqslant k-1 \text { and } \\
& f\left(v_{i}^{j}\right)=2 k-3+2 j+2 n i \text { for } 0 \leqslant i \leqslant k-1 \text { and } 1 \leqslant j \leqslant n .
\end{aligned}
$$

Let f^{*} be the induced edge labeling of f.Then the induced edge labels are as follows:

$$
f^{*}\left(v_{i} v_{i+1}=2 i-1 \text { for } 1 \leqslant i \leqslant k-2\right.
$$

$$
f^{*}\left(v_{k-1} v_{0}\right)=2 k^{2}-6 k+5
$$

$$
f^{*}\left(v_{i} v_{i}^{j}\right)=2 k(k-3)+2(2 k+n i-3)(n i+j)+2 n i j+5+2\left(j^{2}-i^{2}\right) \text { for } 1 \leqslant i \leqslant k-1
$$ and $1 \leqslant j \leqslant n$ and

$$
f^{*}\left(v_{0} v_{0}^{j}\right)=2(k+j)(k+j-3)+5 \text { for } 1 \leqslant j \leqslant n .
$$

It can be easily verified that f is an analytic odd mean labeling and hence graph $C_{k} \odot \bar{K}_{n}$ is an analytic odd mean graph. An analytic odd mean labeling of $C_{5} \odot \bar{K}_{3}$ is shown in Figure 7.

Figure 7

Theorem 2.8. Let $S_{1}, S_{2}, S_{3}, \ldots S_{k}$ be the disjoint copies of the k-star $K_{1, k}$ with vertex set $V\left(S_{i}\right)=\left\{v_{i}, v_{i, r}: 1 \leqslant r \leqslant k\right\}$ and the edge set $E\left(S_{i}\right)=\left\{v_{i} v_{i, r}: 1 \leqslant\right.$ $r \leqslant k\}$ for $1 \leqslant i \leqslant k$ and G be the graph obtained by joining a new vertex v with $v_{1,1}, v_{2,1}, v_{3,1}, \ldots v_{k, 1}$. Then G is an analytic odd mean graph.

Proof. Let $V(G)=\left\{v, v_{i}, v_{i, r}: 1 \leqslant i, r \leqslant k\right\}$ and $E(G)=\left\{v v_{i, 1}, v_{i} v_{i, r}: 1 \leqslant\right.$ $i, r \leqslant k\}$. We define an injective map $f: V(G) \rightarrow\left\{0,1,3,5, \ldots, 2 k^{2}+2 k-1\right\}$ by $f(v)=0, f\left(v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant k$ and $f\left(v_{i, r}\right)=2 k i+2 r-1$ for $1 \leqslant i, r \leqslant k$.
Then the induced edge labeling of f are

$$
\begin{aligned}
& f^{*}\left(v v_{i, 1}\right)=2 k^{2} i^{2}+2 k i+1 \text { for } 1 \leqslant i \leqslant k \\
& f^{*}\left(v_{i} v_{i, r}\right)=2 i\left(i\left(k^{2}-1\right)+k r\right)+2(r-1)(k i+r)+1 \text { for } 1 \leqslant i, r \leqslant k
\end{aligned}
$$

Clearly the edge labels are odd and distinct. Hence the graph admits G an analytic odd mean labeling. An analytic odd mean labelling of the above graph G with $k=6$ is shown in Figure 8.

Figure 8
Theorem 2.9. Let $S_{1}, S_{2}, S_{3}, \ldots, S_{k+1}$ be the disjoint copies of the k-star $K_{1, k}$ with vertex set $V\left(S_{i}\right)=\left\{v_{i}, v_{i}^{r}: 1 \leqslant r \leqslant k\right\}$ and the edge set $E\left(S_{i}\right)=\left\{v_{i} v_{i}^{r}: 1 \leqslant\right.$ $r \leqslant k\}$ for $1 \leqslant i \leqslant k+1$. Let G be the graph obtained by joining a new vertex v to the centre of each $k+1$ stars. Then G is an analytic odd mean graph.

Proof. Let $V(G)=\left\{v, v_{i}, v_{i}^{r}: 1 \leqslant i \leqslant k+1\right.$ and $\left.1 \leqslant r \leqslant k\right\}$ and $E(G)=$ $\left\{v v_{i}, v_{i} v_{i}^{r}: 1 \leqslant i \leqslant k+1\right.$ and $\left.1 \leqslant r \leqslant k\right\}$. We define an injective map $f: V(G) \rightarrow$ $\left\{0,1,3,5, \ldots, 2 k^{2}+4 k+1\right\}$ by
$f(v)=0, f\left(v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant k+1$ and
$f\left(v_{i}^{r}\right)=2 k i+2 r+1$ for $1 \leqslant i \leqslant k+1$ and $1 \leqslant r \leqslant k$.
Then the induced edge labeling of f are
$f^{*}\left(v v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant k+1$ and
$f^{*}\left(v_{i} v_{i}^{r}\right)=2 i\left(i\left(k^{2}-1\right)+k r\right)+2(r-1)(k i+r)+1$ for $1 \leqslant i \leqslant k+1$ and $1 \leqslant r \leqslant k$.
Clearly the edge labels are odd and distinct. Hence the graph admits G an analytic odd mean labeling. An analytic odd mean labeling of the graph G with $k=4$ is shown in Figure 9.

Figure 9
THEOREM 2.10. The fire cracker is an analytic odd mean graph.
Proof. Let
$V(G)=\left\{a_{i}, b_{j}, b_{j}^{k}: 0 \leqslant i \leqslant n-1,1 \leqslant j \leqslant n\right.$ and $\left.1 \leqslant k \leqslant m\right\}$ and
$E(G)=\left\{a_{i} a_{i+1}: 0 \leqslant i \leqslant n-2\right\} \cup\left\{a_{i} b_{j}: 0 \leqslant i \leqslant n-21 \leqslant j \leqslant n\right\} \cup\left\{b_{j} b_{j}^{k}: 1 \leqslant\right.$ $j \leqslant n$ and $1 \leqslant k \leqslant m\}$.
We define an injective map $f: V(G) \rightarrow\{0,1,3,5, \ldots, 2 n+n m-1\}$ by
$f\left(a_{0}\right)=0, f\left(a_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n-1$
$f\left(b_{j}\right)=2 n-3+2 j$ for $1 \leqslant j \leqslant n$ and
$f\left(b_{j}^{k}\right)=4 n-3+2 m(j-1)+2 k$ for $1 \leqslant j \leqslant n$ and $1 \leqslant k \leqslant m$.
Let f^{*} be the induced edge labeling of f.Then the induced edge labels are as follow:
$f^{*}\left(a_{i-1} a_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n$
$f^{*}\left(a_{0} b_{1}\right)=2 n^{2}-2 n+1$
$f^{*}\left(a_{i} b_{j}\right)=2(n-1)(n+i)+2 n i+1$ for $0 \leqslant i<j \leqslant n f^{*}\left(b_{j} b_{j}^{k}\right)=2\left(3 n^{2}+\right.$
$\left.k^{2}-j^{2}\right)-4 n(j+2)+2 k(4 n-3)+2 m(j-1)[m(j-1)+4 n-3+2 k]+4 j+3$ for $1 \leqslant j \leqslant n$ and $1 \leqslant k \leqslant m$.
Clearly the edge labels are odd and distinct. Hence the fire cracker admits analytic odd mean labeling. An analytic odd mean labeling of fire cracker for $n, m=3$ is
shown in Figure 10.

Figure 10
Theorem 2.11. The coconut tree G is an analytic odd mean graph.
Proof. Let
$V(G)=\left\{v_{i}, v_{n+j}: 1 \leqslant i \leqslant n\right.$ and $\left.1 \leqslant j \leqslant m\right\}$ and
$E(G)=\left\{v_{i-1} v_{i}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{v_{0} v_{n+j}: 1 \leqslant j \leqslant m\right\}$.
Now $|V(G)|=n+m$ and $|E(G)|=m+n-1$. We define an injective map $f: V(G) \rightarrow\{0,1,3,5, \ldots, 2(m+n)-3\}$ by
$f\left(v_{0}\right)=0, f\left(v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n-1$ and
$f\left(v_{n+j}\right)=2 n-3+2 j$ for $1 \leqslant j \leqslant m$.
Let f^{*} be the induced edge labeling of f. The induced edge labels are as follows:
$f^{*}\left(v_{i-1} v_{i}\right)=2 i-1$ for $1 \leqslant i \leqslant n-1$ and
$f^{*}\left(v_{0} v_{n+j}\right)=2 n(n-3)+2 j(2 n-3)+2 j^{2}+5$ for $1 \leqslant j \leqslant m$.
Clearly the edge labels are odd and we observe that the edge labels of path increase by 2 as i increases and the pendent edge labels increase by

$$
4 n, 4(n+1), 4(n+2), 4(n+3), \ldots
$$

as j increases from 1 to m . So all the edge labels are distinct. Hence the coconut tree admits an analytic odd mean labeling. An analytic odd mean labeling of coconut tree with $n=6, m=9$ is shown in Figure 11.

Figure 11

References

[1] F. Harary. Graph Theory Addison-Wesley, Reading, Massachusetts, 1972.
[2] P. Jeyanthi, R.Gomathi and Gee-Choon Lau. Analytic odd mean labeling of square and H-graphs. International J. Math. Combinatorics, Special issue 1(2018), 61-67.
[3] P. Jeyanthi, R. Gomathi and Gee-Choon Lau. Analytic odd mean labeling of some standard graphs, In: Proceedings of the International Conference on Algebra and Discrete Mathematics-2018 (ICADM-2018), (pp. 62-68). Madurai, India, 2018.
[4] P. Jeyanthi, R. Gomathi and Gee-Choon Lau. Analytic odd mean labeling of some graphs. Palestine Journal of Mathematics, to appear.
[5] J. A. Gallian. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, (2016), \# DS6.
[6] T. Tharmaraj and P. B. Sarasija. Analytic mean labelled graphs. International Journal of Mathematical Archive, 5(6)(2014), 136-146.

Receibed by editors 18.09.2018; Revised version 27.03.2019; Available online 08.04.2019.
Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur 628215, Tamilnadu, India.

E-mail address: jeyajeyanthi@rediffimail.com
Research Scholar,Reg.No.:11825, Research Centre, Govindammal Aditanar College for Women, Tiruchendur-628 215, Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India.

E-mail address: gomathikarthi97@gmail.com
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), 85009, Johor, Malaysia., Abishekapatti, Tirunelveli-627 012, Tamilnadu, India.

E-mail address: geeclau@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 05C78.
 Key words and phrases. mean labeling, analytic mean labeling, analytic odd mean labeling, analytic odd mean graph.

