FURTHER RESULTS ON ODD LABELING OF SOME SPLITTING GRAPHS

R. Vasuki, S. Suganthi and G. Pooranam

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow$ $\{0,1,2, \ldots, 2 q-1\}$ satisfying f is $1-1$ and the induced map $f^{*}: E(G) \rightarrow$ $\{1,3,5, \ldots, 2 q-1\}$ defined by $$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph. In this paper, we have studied the odd mean labeling of some splitting graphs.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology we follow [3].

Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by $C_{n} . K_{1, m}$ is called a star and it is denoted by S_{m}. The bistar $B_{m, n}$ is the graph obtained from K_{2} by identifying the center vertices of $K_{1, m}$ and $K_{1, n}$ at the end vertices of K_{2} respectively. $B_{m, m}$ is often denoted by $B(m)$. The H-graph denoted by H_{n}, is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even. If m number of pendant vertices are attached at each vertex of G, then the resultant graph obtained from G is the graph $G \odot m K_{1}$. When $m=1, G \odot K_{1}$ is the corona of G.

[^0]The graph obtained by attaching m pendant vertices to each vertex of a path of length $2 n-1$ is denoted by $B(m)_{(n)}$. The slanting ladder $S L_{n}$ is a graph obtained from two paths $u_{1} u_{2} u_{3} \ldots u_{n}$ and $v_{1} v_{2} v_{3} \ldots v_{n}$ by joining each u_{i} with $v_{i+1}, 1 \leqslant i \leqslant$ $n-1$.

The splitting graph $S(G)$ was introduced by Sampathkumar and Walikar [7]. For each vertex v of a graph G, take a new vertex v^{\prime} and join v^{\prime} to all the vertices of G adjacent to v. The resulting graph is the splitting graph of G, denoted by $S(G)$.

The graceful labeling of graphs was first introduced by Rosa in 1961 [$\mathbf{1}]$ and R . B. Gnanajothi introduced odd graceful graphs [2]. The concept of mean labeling was first introduced and studied by S. Somasundaram and R. ponraj [8]. Further some more results on mean graphs are discussed in $[\mathbf{5}, \mathbf{6}, \mathbf{9}, \mathbf{1 0}]$. The concept of odd mean labeling was introduced and studied by K. Manickam and M. Marudai [4]. Also, odd mean property for some graphs are discussed in $[\mathbf{1 1}, \mathbf{1 2}]$.

A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ satisfying f is $1-1$ and the induced map f^{*} : $E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ defined by

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph.

For example, an odd mean labeling of $S L_{5}$ is shown in Figure 1.

Figure 1.
In this paper, we prove that the splitting graph of H-graph, $H_{n} \odot K_{1}$ for $n \geqslant 2$ and $B(m)_{(n)}$ for $m \geqslant 1, n \geqslant 1$ are odd mean graphs.

2. Odd Mean Graphs

Theorem 2.1. $S^{\prime}\left(H_{n}\right)$ is an odd mean graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the H-graph H_{n}. Let $V\left(H_{n}\right)$ together with $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ form the vertex set of $S^{\prime}\left(H_{n}\right)$ and the edge set of $S^{\prime}\left(H_{n}\right)$ is $E\left(H_{n}\right)$ together with $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i}^{\prime} u_{i+1}\right.$, $\left.v_{i}^{\prime} v_{i+1}, u_{i} u_{i+1}^{\prime}, v_{i} v_{i+1}^{\prime}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}, u_{\frac{n+1}{2}}^{\prime} v_{\frac{n+1}{2}}, u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}^{\prime}\right.$ $\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}, u_{\frac{n}{2}+1}^{\prime} v_{\frac{n}{2}}, u_{\frac{n}{2}+1} v_{\frac{n}{2}}^{\prime}\right): n$ is odd (even) \}.

Case (i). n is odd.

Define $f: V(G) \rightarrow\{0,1,2, \ldots, 12 n-7\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & = \begin{cases}6 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
6 i-10, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f\left(u_{i}^{\prime}\right) & =6 i-6, \quad 1 \leqslant i \leqslant n, \\
f\left(v_{i}\right) & = \begin{cases}6 n+6 i-10, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
6 n+6 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is even, } \\
f\left(v_{i}^{\prime}\right) & =6 n+6 i-6, \quad 1 \leqslant i \leqslant n-1\end{cases} \\
\text { and } f\left(v_{n}^{\prime}\right) & =12 n-7 .
\end{aligned}
$$

The induced edge labeling f^{*} is obtained as follows:

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=6 i-3, \quad 1 \leqslant i \leqslant n-1, \\
& f^{*}\left(u_{i}^{\prime} u_{i+1}\right)= \begin{cases}6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even },\end{cases} \\
& f^{*}\left(u_{i} u_{i+1}^{\prime}\right)= \begin{cases}6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even },\end{cases} \\
& f^{*}\left(v_{i} v_{i+1}\right)=6 n+6 i-3, \quad 1 \leqslant i \leqslant n-1, \\
& f^{*}\left(v_{i}^{\prime} v_{i+1}\right)= \begin{cases}6 n+6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 n+6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
& f^{*}\left(v_{i} v_{i+1}^{\prime}\right)= \begin{cases}6 n+6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 n+6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even },\end{cases} \\
& f^{*}\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right)=6 n-3 \text {, } \\
& f^{*}\left(u_{\frac{n+1}{2}}^{\prime} v_{\frac{n+1}{2}}\right)= \begin{cases}6 n-5, & \frac{n+1}{2} \text { is odd } \\
6 n-1, & \frac{n+1}{2} \text { is even }\end{cases} \\
& \text { and } f^{*}\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}^{\prime}\right)= \begin{cases}6 n-1, & \frac{n+1}{2} \text { is odd } \\
6 n-5, & \frac{n+1}{2} \text { is even. }\end{cases}
\end{aligned}
$$

Thus, f is an odd mean labeling of $S^{\prime}\left(H_{n}\right)$. Hence, $S^{\prime}\left(H_{n}\right)$ is an odd mean graph. For example, an odd mean labeling of $S^{\prime}\left(H_{7}\right)$ and $S^{\prime}\left(H_{9}\right)$ are shown in Figure 2.

Figure 2. An odd mean labeling of $S^{\prime}\left(H_{7}\right)$ and $S^{\prime}\left(H_{9}\right)$.

Case (ii). n is even.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, 12 n-7\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & = \begin{cases}6 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
6 i-10, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f\left(u_{i}^{\prime}\right) & =6 i-6, \quad 1 \leqslant i \leqslant n, \\
f\left(v_{i}\right) & = \begin{cases}6 n+6 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
6 n+6 i-10, & 1 \leqslant i \leqslant n \text { and } i \text { is even, } \\
f\left(v_{i}^{\prime}\right) & =6 n+6 i-6, \quad 1 \leqslant i \leqslant n-1\end{cases} \\
\text { and } f\left(v_{n}^{\prime}\right) & =12 n-7 .
\end{aligned}
$$

The induced edge labeling f^{*} is obtained as follows:

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =6 i-3, \quad 1 \leqslant i \leqslant n-1 \\
f^{*}\left(u_{i}^{\prime} u_{i+1}\right) & = \begin{cases}6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even },\end{cases} \\
f^{*}\left(u_{i} u_{i+1}^{\prime}\right) & = \begin{cases}6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even },\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
f^{*}\left(v_{i} v_{i+1}\right) & =6 n+6 i-3, \\
f^{*}\left(v_{i}^{\prime} v_{i+1}\right) & = \begin{cases}6 n+6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 n+6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(v_{i} v_{i+1}^{\prime}\right) & = \begin{cases}6 n+6 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
6 n+6 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}\right) & =6 n-3, \\
f^{*}\left(u_{\frac{n}{2}+1}^{\prime} v_{\frac{n}{2}}\right) & = \begin{cases}6 n-1, & \frac{n}{2} \text { is odd } \\
6 n-5, & \frac{n}{2} \text { is even }\end{cases} \\
\text { and } f^{*}\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}^{\prime}\right) & = \begin{cases}6 n-5, & \frac{n}{2} \text { is odd } \\
6 n-1, & \frac{n}{2} \text { is even. }\end{cases}
\end{aligned}
$$

Thus, f is an odd mean labeling of $S^{\prime}\left(H_{n}\right)$. Hence, $S^{\prime}\left(H_{n}\right)$ is an odd mean graph. For example, an odd mean labeling of $S^{\prime}\left(H_{6}\right)$ and $S^{\prime}\left(H_{8}\right)$ are shown in Figure 3.

Figure 3. An odd mean labeling of $S^{\prime}\left(H_{6}\right)$ and $S^{\prime}\left(H_{8}\right)$.

THEOREM 2.2. The splitting graph of $H_{n} \odot K_{1}$ is an odd mean graph for $n \geqslant 2$.

Proof. Let $u_{i}, v_{i}, x_{i}, y_{i}: 1 \leqslant i \leqslant n$ be the vertices of $H_{n} \odot K_{1}$. Let $u_{i}^{\prime}, v_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}$ $(1 \leqslant i \leqslant n)$ be the new vertices corresponding to $u_{i}, v_{i}, x_{i}, y_{i}(1 \leqslant i \leqslant n)$ respectively.

Then, $V\left(S^{\prime}\left(H_{n} \odot K_{1}\right)\right)=V\left(H_{n} \odot K_{1}\right) \cup\left\{u_{i}^{\prime}, v_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}: 1 \leqslant i \leqslant n\right\}$ and $E\left(S^{\prime}\left(H_{n} \odot\right.\right.$ $\left.\left.K_{1}\right)\right) \quad=\quad E\left(H_{n} \odot K_{1}\right) \cup\left\{u_{i} u_{i+1}^{\prime}, u_{i}^{\prime} u_{i+1}, v_{i} v_{i+1}^{\prime}, v_{i}^{\prime} v_{i+1} \quad:\right.$ $1 \leqslant i \leqslant n-1\} \cup\left\{u_{i}^{\prime} x_{i}, u_{i} x_{i}^{\prime}, v_{i}^{\prime} y_{i}, v_{i} y_{i}^{\prime}: 1 \leqslant i \leqslant n\right\} \cup\left\{u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}^{\prime}, u_{\frac{n+1}{2}}^{\prime} v_{\frac{n+1}{2}}\right.$ $\left(u_{\frac{n+1}{2}} v_{\frac{n}{2}}^{\prime}, u_{\frac{n+1}{2}}^{\prime} v_{\frac{n}{2}}\right): n$ is odd (n is even) $\}$.

The graph $S^{\prime}\left(H_{n} \odot K_{1}\right)$ has $8 n$ vertices and $12 n-3$ edges.
Case (i). n is odd.
Define $f: V\left(S^{\prime}\left(H_{n} \odot K_{1}\right)\right) \rightarrow\{0,1,2, \ldots, 2 q-1=24 n-7\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & = \begin{cases}16 n+4 i-6, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 i-4, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f\left(x_{i}\right) & = \begin{cases}4 i-4, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
16 n+4 i-6, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f\left(u_{i}^{\prime}\right) & = \begin{cases}4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
16 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f\left(x_{i}^{\prime}\right) & = \begin{cases}16 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f\left(v_{i}\right) & = \begin{cases}4 n+4 i-4, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
20 n+4 i-6, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f\left(y_{i}\right) & = \begin{cases}20 n+4 i-6, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
4 n+4 i-4, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
f\left(y_{n}\right) & =24 n-7, \\
f\left(v_{i}^{\prime}\right) & = \begin{cases}20 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 n+4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is even }\end{cases} \\
\text { and } f\left(y_{i}^{\prime}\right) & = \begin{cases}4 n+4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
20 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

The induced edge labeling f^{*} is obtained as follows:

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=8 n+4 i-3, \\
& f^{*}\left(u_{i} u_{i+1}^{\prime}\right)= \begin{cases}16 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even },\end{cases} \\
& f^{*}\left(u_{i}^{\prime} u_{i+1}\right)=\left\{\begin{array}{ll}
4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
16 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even }, \\
f^{*}\left(u_{i} x_{i}\right) & =8 n+4 i-5, \\
f^{*}\left(x_{i} u_{i}^{\prime}\right) & = \begin{cases}4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
16 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is even },\end{cases}
\end{array} .\left\{\begin{array}{l}
1 \leqslant i
\end{array}\right.\right. \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& f^{*}\left(u_{i} x_{i}^{\prime}\right)= \begin{cases}16 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is even },\end{cases} \\
& f^{*}\left(v_{i} v_{i+1}\right)=12 n+4 i-3, \quad 1 \leqslant i \leqslant n-1, \\
& f^{*}\left(v_{i} v_{i+1}^{\prime}\right)= \begin{cases}4 n+4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
20 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
& f^{*}\left(v_{i}^{\prime} v_{i+1}\right)= \begin{cases}20 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
4 n+4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
& f^{*}\left(v_{i} y_{i}\right)=12 n+4 i-5, \quad 1 \leqslant i \leqslant n, \\
& f^{*}\left(v_{i}^{\prime} y_{i}\right)= \begin{cases}20 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 n+4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f^{*}\left(v_{i} y_{i}^{\prime}\right)= \begin{cases}4 n+4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
20 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is even },\end{cases} \\
& f^{*}\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right)=12 n-3 \text {, } \\
& f^{*}\left(u_{\frac{n+1}{2}}^{\prime} v_{\frac{n+1}{2}}\right)= \begin{cases}4 n-1 & \text { if } \frac{n+1}{2} \text { is odd } \\
20 n-5 & \text { if } \frac{n+1}{2} \text { and } i \text { is even }\end{cases} \\
& \text { and } f^{*}\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}^{\prime}\right)= \begin{cases}20 n-5 & \text { if } \frac{n+1}{2} \text { is odd } \\
4 n-1 & \text { if } \frac{n+1}{2} \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

Thus, f is an odd mean labeling of $S^{\prime}\left(H_{n} \odot K_{1}\right)$. Hence, $\left.S^{\prime}\left(H_{n} \odot K_{1}\right)\right)$ is an odd mean graph. For example, an odd mean labeling of $\left.S^{\prime}\left(H_{7} \odot K_{1}\right)\right)$ is shown in Figure 4.

Figure 4. An odd mean labeling of $\left.S^{\prime}\left(H_{7} \odot K_{1}\right)\right)$
Case (ii). n is even.

Define $f: V\left(S^{\prime}\left(H_{n} \odot K_{1}\right)\right) \rightarrow\{0,1,2, \ldots, 2 q-1=24 n-7\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
16 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f\left(x_{i}\right)= \begin{cases}16 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f\left(u_{i}^{\prime}\right)= \begin{cases}16 n+4 i-6, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 i-4, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f\left(x_{i}^{\prime}\right)= \begin{cases}4 i-4, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
16 n+4 i-6, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}4 n+4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
20 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f\left(y_{i}\right)= \begin{cases}20 n+4 i-8, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 n+4 i-2, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{i}^{\prime}\right)= \begin{cases}20 n+4 i-6, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 n+4 i-4, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
& f\left(y_{i}^{\prime}\right)= \begin{cases}4 n+4 i-4, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
20 n+4 i-6, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even }\end{cases}
\end{aligned}
$$

$$
\text { and } f\left(y_{n}^{\prime}\right)=24 n-7
$$

The induced edge labeling f^{*} is obtained as follows:

$$
\left.\begin{array}{rl}
f^{*}\left(u_{i} u_{i+1}\right) & =8 n+4 i-3, \quad 1 \leqslant i \leqslant n-1, \\
f^{*}\left(u_{i} u_{i+1}^{\prime}\right) & = \begin{cases}4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
16 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(u_{i}^{\prime} u_{i+1}\right) & = \begin{cases}16 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(u_{i} x_{i}\right) & =8 n+4 i-5, \quad 1 \leqslant i \leqslant n, \\
f^{*}\left(x_{i} u_{i}^{\prime}\right) & = \begin{cases}16 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(u_{i} x_{i}^{\prime}\right) & = \begin{cases}4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
16 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(v_{i} v_{i+1}\right) & =12 n+4 i-3, \quad 1 \leqslant i \leqslant n-1,
\end{array}\right\} \begin{array}{ll}
4 n+4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
f^{*}\left(v_{i} v_{i+1}^{\prime}\right) & = \begin{cases}20 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(v_{i}^{\prime} v_{i+1}\right) & = \begin{cases}20 n+4 i-5, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is odd } \\
4 n+4 i-1, & 1 \leqslant i \leqslant n-1 \text { and } i \text { is even, }, \\
f^{*}\left(v_{i} y_{i}\right) & =12 n+4 i-5, \\
2 \leqslant i \leqslant n,\end{cases}
\end{array}
$$

$$
\begin{aligned}
f^{*}\left(v_{i}^{\prime} y_{i}\right) & = \begin{cases}20 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
4 n+4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(v_{i} y_{i}^{\prime}\right) & = \begin{cases}4 n+4 i-3, & 1 \leqslant i \leqslant n \text { and } i \text { is odd } \\
20 n+4 i-7, & 1 \leqslant i \leqslant n \text { and } i \text { is even, }\end{cases} \\
f^{*}\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}\right) & =12 n-3, \\
f^{*}\left(u_{\frac{n}{2}+1}^{\prime} v_{\frac{n}{2}}\right) & = \begin{cases}4 n-1 & \text { if } \frac{n}{2} \text { is odd } \\
20 n-5 & \text { if } \frac{n}{2} \text { and } i \text { is even }\end{cases} \\
\text { and } f^{*}\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}^{\prime}\right) & = \begin{cases}20 n-5 & \text { if } \frac{n}{2} \text { is odd } \\
4 n-1 & \text { if } \frac{n}{2} \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

Thus, f is an odd mean labeling of $S^{\prime}\left(H_{n} \odot K_{1}\right)$. Hence, $\left.S^{\prime}\left(H_{n} \odot K_{1}\right)\right)$ is an odd mean graph. For example, an odd mean labeling of $\left.S^{\prime}\left(H_{6} \odot K_{1}\right)\right)$ is shown in Figure 5.

Figure 5. An odd mean labeling of $\left.S^{\prime}\left(H_{6} \odot K_{1}\right)\right)$.

THEOREM 2.3. The graph $S^{\prime}\left(B(m)_{(n)}\right)$ is an odd mean graph.
Proof. Let $u_{i}, v_{i}, u_{i j}, v_{i j}: 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$ be the vertices of $B(m)_{(n)}$ and $u_{i}^{\prime}, v_{i}^{\prime}, u_{i j}^{\prime}, v_{i j}^{\prime}: 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$ be the vertices corresponding to $u_{i}, v_{i}, u_{i j}, v_{i j}$ of $B(m)_{(n)}$ which are added to obtain $S^{\prime}\left(B(m)_{(n)}\right)$.

Then $V\left(S^{\prime}\left(B(m)_{(n)}\right)=\left\{u_{i}, v_{i}, u_{i j}, v_{i j}, u_{i}^{\prime}, v_{i}^{\prime}, u_{i j}^{\prime} v_{i j}^{\prime}: 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant\right.\right.$ $m\}$ and $E\left(S^{\prime}\left(B(m)_{(n)}\right)=\left\{u_{i} v_{i}, v_{i} u_{i+1}, u_{i} u_{i j}, v_{i} v_{i j}, u_{i} v_{i}^{\prime}, v_{i} u_{i}^{\prime}, u_{i} u_{i j}^{\prime}, v_{i} v_{i j}^{\prime}, v_{i}^{\prime} u_{i+1}\right.\right.$, $\left.v_{i} u_{i+1}^{\prime}, u_{i j} u_{i}^{\prime}, v_{i j} v_{i}^{\prime}: 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m\right\}$.

The graph $S^{\prime}\left(B(m)_{(n)}\right)$ has $4(m+1) n$ vertices and $6(m+1) n-3$ edges.
Define $f: V\left(S^{\prime}\left(B(m)_{(n)}\right) \rightarrow\{0,1,2,3, \ldots, 2 q-1=12(m+1) n-7\}\right.$ as follows:

For $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$,

$$
\begin{aligned}
f\left(u_{i}\right) & =4(m+1) i-2(2 m+1) \\
f\left(v_{i}\right) & =(8 n+4 i)(m+1)-8 \\
f\left(u_{i j}\right) & =(8 n+4 i-4)(m+1)+4(j-2) \\
f\left(v_{i j}\right) & =4(i-1)(m-1)+8 i-2+4(j-1) \\
f\left(u_{i}^{\prime}\right) & =(8 n+4 i-4)(m+1)-2 \\
f\left(v_{i}^{\prime}\right) & =4 i(m+1)-4 \\
f\left(u_{i j}^{\prime}\right) & =(4 i-4)(m+1)+4(j-1) \\
f\left(v_{i j}^{\prime}\right) & =(8 n+4 i-4)(m+1)+4(j-1)+2 \text { and } \\
f\left(v_{n m}^{\prime}\right) & =12(m+1) n-7 .
\end{aligned}
$$

The induced edge labeling f^{*} is obtained as follows:
For $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$,

$$
\begin{aligned}
& f^{*}\left(u_{i} v_{i}\right)=4(n+i-1)(m+1)+2 m-1 \\
& f^{*}\left(u_{i} u_{i j}\right)=4(n+i-1)(m+1)+2(j-1)-1 \\
& f^{*}\left(v_{i} v_{i j}\right)=4(n+i-1)(m+1)+2 m+1+2(j-1) \\
& f^{*}\left(u_{i} v_{i}^{\prime}\right)=4(m+1) i-2(m+2)+1 \\
& f^{*}\left(v_{i} u_{i}^{\prime}\right)=(8 n+4 i-4)(m+1)+2 m-3 \\
& f^{*}\left(u_{i} u_{i j}^{\prime}\right)=4(m+1) i-(4 m+3)+2(j-1) \\
& f^{*}\left(v_{i} v_{i j}^{\prime}\right)=(8 n+4 i-4)(m+1)+2 m-1+2(j-1) \\
& \\
& f^{*}\left(u_{i j} u_{i}^{\prime}\right)=(8 n+4 i-4)(m+1)-3+2(j-1) \\
& f^{*}\left(v_{i j} v_{i}^{\prime}\right)=4(m+1) i-(2 m+1)+2(j-1)
\end{aligned}
$$

For $1 \leqslant i \leqslant n-1,1 \leqslant j \leqslant m$,

$$
\begin{aligned}
& f^{*}\left(v_{i} u_{i+1}\right)=4(n+i-1)(m+1)+4 m+1 \\
& f^{*}\left(v_{i}^{\prime} u_{i+1}\right)=4(i-1)(m+1)+4 m+3 \\
& f^{*}\left(v_{i} u_{i+1}^{\prime}\right)=(8 n+4 i-4)(m+1)+4 m-1 .
\end{aligned}
$$

Thus, f is an odd mean labeling of $S^{\prime}\left(B(m)_{(n)}\right)$. Hence $S^{\prime}\left(B(m)_{(n)}\right)$ is an odd mean graph. For example, an odd mean labeling of $S^{\prime}\left(B(4)_{(3)}\right.$ is shown in Figure 6.

Corollary 2.1. $S^{\prime}(B(m))$ is an odd mean graph.
Proof. It follows from Theorem 2.3.

References

[1] J. A. Gallian. A dynamic survey of graph labeling. The Electronic J. Combin., (2017), \#DS6.
[2] R. B. Gnanajothi. Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, India, 1991.
[3] F. Harary. Graph Theory, Addison-Wesley, Reading Mass., 1972.
[4] K. Manickam and M. Marudai. Odd mean labeling of graphs. Bull. Pure Appl. Sci., 25E(1)(2006), 149-153.
[5] S. Avadayappan and R. Vasuki. Some results on mean graphs. Ultra Scientist of Physical Sciences, 21(1)M (2009), 273-284.
[6] S. Avadayappan and R. Vasuki. New families of mean graphs. Int. J. Math. Combin., 2 (2010), 68-80.
[7] E. Sampathkumar and H.B. Walikar. On splitting graph of a graph. J. Karnatak Univ. Sci., 25(13)(1980), 13-16.
[8] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science Letter, 26(2003), 210-213.
[9] R. Vasuki and A. Nagarajan. Meanness of the graphs $P_{a, b}$ and P_{a}^{b}. Int. J. Appl. Math., 22(4)(2009), 663-675.
[10] R. Vasuki and A. Nagarajan. Further results on mean graphs. Scientia Magna, 6(3)(2010), 1-14.
[11] R. Vasuki and A. Nagarajan. Odd mean labeling of the graphs $P_{a, b}, P_{a}^{b}$ and $P_{<2 a>}^{b}$, Kragujevac J. Math., 36(1) (2012), 141-150.
[12] S. Suganthi, R. Vasuki and G. Pooranam. Some results on odd mean graphs, Int. J. Math. Appl., 3(3-B)(2015), 1-8.

Received by editors 21.12.2018; Revised version 05.03.2019; Available online 01.04.2019.
Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur - 628215 Tamil Nadu, India.,

E-mail address: vasukisehar@gmail.com, vinisuga21@gmail.com,dpooranamg@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C78.
 Key words and phrases. labeling, odd mean labeling, odd mean graph.

