BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 9(2019), 475-486 DOI: 10.7251/BIMVI1903475V

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

FURTHER RESULTS ON ODD LABELING OF SOME SPLITTING GRAPHS

R. Vasuki, S. Suganthi and G. Pooranam

ABSTRACT. Let G = (V, E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow \{0, 1, 2, \ldots, 2q - 1\}$ satisfying f is 1 - 1 and the induced map $f^*: E(G) \rightarrow \{1, 3, 5, \ldots, 2q - 1\}$ defined by

 $f^*(uv) = \begin{cases} \frac{f(u)+f(v)}{2} & \text{if } f(u)+f(v) \text{ is even} \\ \frac{f(u)+f(v)+1}{2} & \text{if } f(u)+f(v) \text{ is odd} \end{cases}$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph. In this paper, we have studied the odd mean labeling of some splitting graphs.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) be a graph with p vertices and q edges. For notations and terminology we follow [3].

Path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n . $K_{1,m}$ is called a star and it is denoted by S_m . The bistar $B_{m,n}$ is the graph obtained from K_2 by identifying the center vertices of $K_{1,m}$ and $K_{1,n}$ at the end vertices of K_2 respectively. $B_{m,m}$ is often denoted by B(m). The H-graph denoted by H_n , is the graph obtained from two copies of P_n with vertices v_1, v_2, \ldots, v_n and u_1, u_2, \ldots, u_n by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even. If m number of pendant vertices are attached at each vertex of G, then the resultant graph obtained from G is the graph $G \odot mK_1$. When $m = 1, G \odot K_1$ is the corona of G.

²⁰¹⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. labeling, odd mean labeling, odd mean graph.

⁴⁷⁵

The graph obtained by attaching m pendant vertices to each vertex of a path of length 2n-1 is denoted by $B(m)_{(n)}$. The slanting ladder SL_n is a graph obtained from two paths $u_1u_2u_3\ldots u_n$ and $v_1v_2v_3\ldots v_n$ by joining each u_i with $v_{i+1}, 1 \leq i \leq n-1$.

The splitting graph S(G) was introduced by Sampathkumar and Walikar [7]. For each vertex v of a graph G, take a new vertex v' and join v' to all the vertices of G adjacent to v. The resulting graph is the splitting graph of G, denoted by S(G).

The graceful labeling of graphs was first introduced by Rosa in 1961 [1] and R. B. Gnanajothi introduced odd graceful graphs [2]. The concept of mean labeling was first introduced and studied by S. Somasundaram and R. ponraj [8]. Further some more results on mean graphs are discussed in [5, 6, 9, 10]. The concept of odd mean labeling was introduced and studied by K. Manickam and M. Marudai [4]. Also, odd mean property for some graphs are discussed in [11, 12].

A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow \{0, 1, 2, \dots, 2q - 1\}$ satisfying f is 1 - 1 and the induced map $f^*: E(G) \rightarrow \{1, 3, 5, \dots, 2q - 1\}$ defined by

$$f^{*}(uv) = \begin{cases} \frac{f(u)+f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u)+f(v)+1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph.

For example, an odd mean labeling of SL_5 is shown in Figure 1.

In this paper, we prove that the splitting graph of *H*-graph, $H_n \odot K_1$ for $n \ge 2$ and $B(m)_{(n)}$ for $m \ge 1, n \ge 1$ are odd mean graphs.

2. Odd Mean Graphs

THEOREM 2.1. $S'(H_n)$ is an odd mean graph.

PROOF. Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices of the *H*-graph H_n . Let $V(H_n)$ together with u'_1, u'_2, \ldots, u'_n and v'_1, v'_2, \ldots, v'_n form the vertex set of $S'(H_n)$ and the edge set of $S'(H_n)$ is $E(H_n)$ together with $\{u_i u_{i+1}, v_i v_{i+1}, u'_i u_{i+1}, v_i v_{i+1}, u'_i u_{i+1}, v_i v_{i+1}, u'_i u_{i+1}, v_i v_{i+1}, u'_i u_{i+1}, u'_i u_{i+1},$

Define $f: V(G) \rightarrow \{0, 1, 2, \dots, 12n - 7\}$ as follows:

$$f(u_i) = \begin{cases} 6i - 2, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 6i - 10, & 1 \le i \le n \text{ and } i \text{ is even}, \end{cases}$$

$$f(u'_i) = 6i - 6, & 1 \le i \le n,$$

$$f(v_i) = \begin{cases} 6n + 6i - 10, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 6n + 6i - 2, & 1 \le i \le n \text{ and } i \text{ is even}, \end{cases}$$

$$f(v'_i) = 6n + 6i - 6, & 1 \le i \le n - 1$$
and $f(v'_n) = 12n - 7.$

The induced edge labeling f^* is obtained as follows:

$$\begin{aligned} f^*(u_i u_{i+1}) &= 6i - 3, \quad 1 \leqslant i \leqslant n - 1, \\ f^*(u_i' u_{i+1}) &= \begin{cases} 6i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 6i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is even}, \\ f^*(u_i u_{i+1}') &= \begin{cases} 6i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 6i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i v_{i+1}) &= 6n + 6i - 3, \quad 1 \leqslant i \leqslant n - 1, \\ f^*(v_i' v_{i+1}) &= \begin{cases} 6n + 6i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 6n + 6i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i v_{i+1}') &= \begin{cases} 6n + 6i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 6n + 6i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i v_{i+1}') &= \begin{cases} 6n + 6i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 6n + 6i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is even}, \end{cases} \\ f^*\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) &= 6n - 3, \end{cases} \\ f^*\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) &= \begin{cases} 6n - 5, & \frac{n+1}{2} \text{ is odd} \\ 6n - 1, & \frac{n+1}{2} \text{ is even} \end{cases} \\ \text{and } f^*\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}'\right) &= \begin{cases} 6n - 1, & \frac{n+1}{2} \text{ is odd} \\ 6n - 5, & \frac{n+1}{2} \text{ is even}. \end{cases} \end{aligned}$$

Thus, f is an odd mean labeling of $S'(H_n)$. Hence, $S'(H_n)$ is an odd mean graph. For example, an odd mean labeling of $S'(H_7)$ and $S'(H_9)$ are shown in Figure 2.

Figure 2. An odd mean labeling of $S'(H_7)$ and $S'(H_9)$.

Case (ii). n is even. Define $f: V(G) \to \{0, 1, 2, \dots, 12n - 7\}$ as follows:

$$f(u_i) = \begin{cases} 6i - 2, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 6i - 10, & 1 \le i \le n \text{ and } i \text{ is even}, \end{cases}$$

$$f(u'_i) = 6i - 6, \quad 1 \le i \le n,$$

$$f(v_i) = \begin{cases} 6n + 6i - 2, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 6n + 6i - 10, & 1 \le i \le n \text{ and } i \text{ is even}, \end{cases}$$

$$f(v'_i) = 6n + 6i - 6, \quad 1 \le i \le n - 1$$
and
$$f(v'_n) = 12n - 7.$$

The induced edge labeling f^* is obtained as follows:

$$f^*(u_i u_{i+1}) = 6i - 3, \quad 1 \le i \le n - 1,$$

$$f^*(u_i' u_{i+1}) = \begin{cases} 6i - 5, & 1 \le i \le n - 1 \text{ and } i \text{ is odd} \\ 6i - 1, & 1 \le i \le n - 1 \text{ and } i \text{ is even}, \end{cases}$$

$$f^*(u_i u_{i+1}') = \begin{cases} 6i - 1, & 1 \le i \le n - 1 \text{ and } i \text{ is odd} \\ 6i - 5, & 1 \le i \le n - 1 \text{ and } i \text{ is even}, \end{cases}$$

$$f^{*}(v_{i}v_{i+1}) = 6n + 6i - 3, \quad 1 \leq i \leq n - 1,$$

$$f^{*}(v_{i}'v_{i+1}) = \begin{cases} 6n + 6i - 5, & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 6n + 6i - 1, & 1 \leq i \leq n - 1 \text{ and } i \text{ is even}, \end{cases}$$

$$f^{*}(v_{i}v_{i+1}') = \begin{cases} 6n + 6i - 1, & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 6n + 6i - 5, & 1 \leq i \leq n - 1 \text{ and } i \text{ is even}, \end{cases}$$

$$f^{*}\left(u_{\frac{n}{2}+1}v_{\frac{n}{2}}\right) = 6n - 3,$$

$$f^{*}\left(u_{\frac{n}{2}+1}v_{\frac{n}{2}}\right) = \begin{cases} 6n - 1, & \frac{n}{2} \text{ is odd} \\ 6n - 5, & \frac{n}{2} \text{ is even} \end{cases}$$
and
$$f^{*}\left(u_{\frac{n}{2}+1}v_{\frac{n}{2}}'\right) = \begin{cases} 6n - 5, & \frac{n}{2} \text{ is odd} \\ 6n - 1, & \frac{n}{2} \text{ is even}. \end{cases}$$

Thus, f is an odd mean labeling of $S'(H_n)$. Hence, $S'(H_n)$ is an odd mean graph. For example, an odd mean labeling of $S'(H_6)$ and $S'(H_8)$ are shown in Figure 3.

Figure 3. An odd mean labeling of $S'(H_6)$ and $S'(H_8)$.

THEOREM 2.2. The splitting graph of $H_n \odot K_1$ is an odd mean graph for $n \ge 2$.

PROOF. Let $u_i, v_i, x_i, y_i : 1 \leq i \leq n$ be the vertices of $H_n \odot K_1$. Let u'_i, v'_i, x'_i, y'_i $(1 \leq i \leq n)$ be the new vertices corresponding to $u_i, v_i, x_i, y_i (1 \leq i \leq n)$ respectively.

 $\begin{array}{l} \text{Then, } V(S'(H_n \odot K_1)) = V(H_n \odot K_1) \cup \{u'_i, v'_i, x'_i, y'_i : 1 \leqslant i \leqslant n\} \text{ and } E(S'(H_n \odot K_1)) \\ = E(H_n \odot K_1) \cup \{u_i u'_{i+1}, u'_i u_{i+1}, v_i v'_{i+1}, v'_i v_{i+1} : 1 \leqslant i \leqslant n-1\} \cup \{u'_i x_i, u_i x'_i, v'_i y_i, v_i y'_i : 1 \leqslant i \leqslant n\} \cup \left\{u_{\frac{n+1}{2}} v'_{\frac{n+1}{2}}, u'_{\frac{n+1}{2}} v_{\frac{n+1}{2}} \right\} \\ \left(u_{\frac{n+1}{2}} v'_{\frac{n}{2}}, u'_{\frac{n+1}{2}} v_{\frac{n}{2}} \right) : n \ is \ odd \ (n \ is \ even) \\ \right\}. \\ \text{The graph } S'(H_n \odot K_1) \ \text{has } 8n \ \text{vertices and } 12n-3 \ \text{edges.} \end{array}$

The graph $S'(H_n \odot K_1)$ has 8n vertices and 12n - 3 edges. Case (i). n is odd.

Define
$$f: V(S'(H_n \odot K_1)) \to \{0, 1, 2, \dots, 2q - 1 = 24n - 7\}$$
 as follows:

$$f(u_i) = \begin{cases} 16n + 4i - 6, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 4i - 4, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases}$$

$$f(x_i) = \begin{cases} 4i - 4, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 16n + 4i - 6, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases}$$

$$f(u'_i) = \begin{cases} 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 16n + 4i - 8, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases}$$

$$f(x'_i) = \begin{cases} 16n + 4i - 8, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i < n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i < n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i < n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i < n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is odd} \\ 1 \leq i < n \text{ and } i \text{ is$$

The induced edge labeling f^* is obtained as follows:

$$\begin{aligned} f^*(u_i u_{i+1}) &= 8n + 4i - 3, & 1 \leqslant i \leqslant n - 1, \\ f^*(u_i u_{i+1}') &= \begin{cases} 16n + 4i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is oven}, \\ f^*(u_i' u_{i+1}) &= \begin{cases} 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 16n + 4i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is oven}, \\ f^*(u_i x_i) &= 8n + 4i - 5, & 1 \leqslant i \leqslant n, \\ f^*(x_i u_i') &= \begin{cases} 4i - 3, & 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 16n + 4i - 7, & 1 \leqslant i \leqslant n \text{ and } i \text{ is oven}, \end{cases} \end{aligned}$$

$$\begin{aligned} f^*(u_i x_i') &= \begin{cases} 16n + 4i - 7, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 4i - 3, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i v_{i+1}) &= 12n + 4i - 3, & 1 \leq i \leq n - 1, \\ f^*(v_i v_{i+1}') &= \begin{cases} 4n + 4i - 1, & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 20n + 4i - 5, & 1 \leq i \leq n - 1 \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i' v_{i+1}) &= \begin{cases} 20n + 4i - 5, & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 4n + 4i - 1, & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \end{cases} \\ f^*(v_i y_i) &= 12n + 4i - 5, & 1 \leq i \leq n - 1 \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i y_i) &= 12n + 4i - 5, & 1 \leq i \leq n \text{ and } i \text{ is odd} \end{cases} \\ f^*(v_i y_i) &= \begin{cases} 20n + 4i - 7, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i y_i) &= \begin{cases} 20n + 4i - 7, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i y_i') &= \begin{cases} 4n + 4i - 3, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i y_i') &= \begin{cases} 4n + 4i - 3, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases} \\ f^*(v_i y_i') &= \begin{cases} 4n - 1, & \text{if } \frac{n+1}{2} \text{ on and } i \text{ is even}, \end{cases} \\ f^*\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) &= 12n - 3, \end{cases} \\ f^*\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) &= \begin{cases} 20n - 5, & \text{if } \frac{n+1}{2} \text{ and } i \text{ is even}, \end{cases} \\ 4n - 1, & \text{if } \frac{n+1}{2} \text{ and } i \text{ is even}. \end{cases} \end{aligned}$$

Thus, f is an odd mean labeling of $S'(H_n \odot K_1)$. Hence, $S'(H_n \odot K_1)$) is an odd mean graph. For example, an odd mean labeling of $S'(H_7 \odot K_1)$) is shown in Figure 4.

Figure 4. An odd mean labeling of $S'(H_7 \odot K_1)$)

Case (ii). n is even.

Define $f: V(S'(H_n \odot K_1)) \to \{0, 1, 2, \dots, 2q - 1 = 24n - 7\}$ as follows:

$$f(u_i) = \begin{cases} 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 16n + 4i - 8, & 1 \leq i \leq n \text{ and } i \text{ is oven}, \end{cases}$$

$$f(x_i) = \begin{cases} 16n + 4i - 8, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is oven}, \end{cases}$$

$$f(u'_i) = \begin{cases} 4i - 4, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 16n + 4i - 6, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 16n + 4i - 6, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 16n + 4i - 8, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 20n + 4i - 8, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq n + 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq n + 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq n + 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq n + 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n \text{ and } i \text{ is odd} & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq n + 4i - 4, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq n + 4i - 4, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} & 1 \leq i \leq n - 1 \text{ and } i \text{ is odd} \\ 1 \leq i \leq n - 1$$

The induced edge labeling f^* is obtained as follows:

$$\begin{aligned} f^*(u_i u_{i+1}) &= 8n + 4i - 3, \quad 1 \leqslant i \leqslant n - 1, \\ f^*(u_i u_{i+1}') &= \begin{cases} 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 16n + 4i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 1 \leqslant n + 4i - 7, & 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 1 \leqslant n + 4i - 7, & 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 1 \leqslant n + 4i - 7, & 1 \leqslant i \leqslant n \text{ and } i \text{ is odd} \\ 1 \leqslant n + 4i - 1, & 1 \leqslant i \leqslant n - 1, \end{cases} \\ f^*(v_i v_{i+1}') &= \begin{cases} 4n + 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 20n + 4i - 5, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant n + 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant n + 4i - 1, & 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \\ 1 \leqslant i \leqslant n - 1 \text{ and } i \text{ is odd} \end{cases} \end{cases}$$

$$f^{*}(v_{i}'y_{i}) = \begin{cases} 20n + 4i - 7, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 4n + 4i - 3, & 1 \leq i \leq n \text{ and } i \text{ is even}, \end{cases}$$

$$f^{*}(v_{i}y_{i}') = \begin{cases} 4n + 4i - 3, & 1 \leq i \leq n \text{ and } i \text{ is odd} \\ 20n + 4i - 7, & 1 \leq i \leq n \text{ and } i \text{ is odd} \end{cases}$$

$$f^{*}\left(u_{\frac{n}{2}+1}v_{\frac{n}{2}}\right) = 12n - 3,$$

$$f^{*}\left(u_{\frac{n}{2}+1}v_{\frac{n}{2}}\right) = \begin{cases} 4n - 1 & \text{if } \frac{n}{2} \text{ is odd} \\ 20n - 5 & \text{if } \frac{n}{2} \text{ and } i \text{ is even} \end{cases}$$
and
$$f^{*}\left(u_{\frac{n}{2}+1}v_{\frac{n}{2}}'\right) = \begin{cases} 20n - 5 & \text{if } \frac{n}{2} \text{ is odd} \\ 4n - 1 & \text{if } \frac{n}{2} \text{ and } i \text{ is even} \end{cases}$$

Thus, f is an odd mean labeling of $S'(H_n \odot K_1)$. Hence, $S'(H_n \odot K_1)$) is an odd mean graph. For example, an odd mean labeling of $S'(H_6 \odot K_1)$) is shown in Figure 5.

Figure 5. An odd mean labeling of $S'(H_6 \odot K_1)$).

THEOREM 2.3. The graph $S'(B(m)_{(n)})$ is an odd mean graph.

PROOF. Let $u_i, v_i, u_{ij}, v_{ij} : 1 \leq i \leq n, 1 \leq j \leq m$ be the vertices of $B(m)_{(n)}$ and $u'_i, v'_i, u'_{ij}, v'_{ij} : 1 \leq i \leq n, 1 \leq j \leq m$ be the vertices corresponding to u_i, v_i, u_{ij}, v_{ij} of $B(m)_{(n)}$ which are added to obtain $S'(B(m)_{(n)})$.

Then $V(S'(B(m)_{(n)}) = \{u_i, v_i, u_{ij}, v_{ij}, u'_i, v'_i, u'_{ij}v'_{ij} : 1 \leq i \leq n, 1 \leq j \leq m\}$ and $E(S'(B(m)_{(n)}) = \{u_iv_i, v_iu_{i+1}, u_iu_{ij}, v_iv_{ij}, u_iv'_i, v_iu'_i, u_iu'_{ij}, v_iv'_{ij}, v'_iu_{i+1}, v_iu'_{i+1}, u_iu'_i, v_ijv'_i : 1 \leq i \leq n, 1 \leq j \leq m\}.$

The graph $S'(B(m)_{(n)})$ has 4(m+1)n vertices and 6(m+1)n-3 edges. Define $f: V(S'(B(m)_{(n)}) \to \{0, 1, 2, 3, \dots, 2q-1 = 12(m+1)n-7\}$ as follows: For $1 \le i \le n, 1 \le j \le m$, $\begin{aligned} f(u_i) &= 4(m+1)i - 2(2m+1) \\ f(v_i) &= (8n+4i)(m+1) - 8 \\ f(u_{ij}) &= (8n+4i-4)(m+1) + 4(j-2) \\ f(v_{ij}) &= 4(i-1)(m-1) + 8i - 2 + 4(j-1) \\ f(u'_i) &= (8n+4i-4)(m+1) - 2 \\ f(v'_i) &= 4i(m+1) - 4 \\ f(u'_{ij}) &= (4i-4)(m+1) + 4(j-1) \\ f(v'_{ij}) &= (8n+4i-4)(m+1) + 4(j-1) + 2 \text{ and} \\ f(v'_{nm}) &= 12(m+1)n - 7. \end{aligned}$

The induced edge labeling f^* is obtained as follows:

For
$$1 \leq i \leq n, 1 \leq j \leq m$$
,
 $f^*(x, y) = A(x + i)$

$$f^*(u_i v_i) = 4(n+i-1)(m+1) + 2m - 1$$

$$f^*(u_i u_{ij}) = 4(n+i-1)(m+1) + 2(j-1) - 1$$

$$f^*(v_i v_{ij}) = 4(n+i-1)(m+1) + 2m + 1 + 2(j-1)$$

$$f^*(u_i v'_i) = 4(m+1)i - 2(m+2) + 1$$

$$f^*(v_i u'_i) = (8n + 4i - 4)(m+1) + 2m - 3$$

$$f^*(u_i u'_{ij}) = 4(m+1)i - (4m+3) + 2(j-1)$$

$$f^*(v_i v'_{ij}) = (8n + 4i - 4)(m+1) + 2m - 1 + 2(j-1)$$

$$f^*(u_{ij}u'_i) = (8n+4i-4)(m+1) - 3 + 2(j-1)$$

$$f^*(v_{ij}v'_i) = 4(m+1)i - (2m+1) + 2(j-1)$$

For $1 \leq i \leq n-1, 1 \leq j \leq m$,

$$f^*(v_i u_{i+1}) = 4(n+i-1)(m+1) + 4m + 1$$

$$f^*(v_i' u_{i+1}) = 4(i-1)(m+1) + 4m + 3$$

$$f^*(v_i u_{i+1}') = (8n+4i-4)(m+1) + 4m - 1$$

Thus, f is an odd mean labeling of $S'(B(m)_{(n)})$. Hence $S'(B(m)_{(n)})$ is an odd mean graph. For example, an odd mean labeling of $S'(B(4)_{(3)})$ is shown in Figure 6. \Box

Figure 6. An odd mean labeling of $S^\prime(B(4)_{(3)})$

COROLLARY 2.1. S'(B(m)) is an odd mean graph.

PROOF. It follows from Theorem 2.3.

References

- [1] J. A. Gallian. A dynamic survey of graph labeling. The Electronic J. Combin., (2017), #DS6.
- [2] R. B. Gnanajothi. Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, India, 1991.
- [3] F. Harary. Graph Theory, Addison-Wesley, Reading Mass., 1972.
- [4] K. Manickam and M. Marudai. Odd mean labeling of graphs. Bull. Pure Appl. Sci., 25E(1)(2006), 149–153.
- [5] S. Avadayappan and R. Vasuki. Some results on mean graphs. Ultra Scientist of Physical Sciences, 21(1)M (2009), 273–284.
- [6] S. Avadayappan and R. Vasuki. New families of mean graphs. Int. J. Math. Combin., 2(2010), 68–80.
- [7] E. Sampathkumar and H.B. Walikar. On splitting graph of a graph. J. Karnatak Univ. Sci., 25(13)(1980), 13–16.
- [8] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science Letter, 26(2003), 210–213.
- [9] R. Vasuki and A. Nagarajan. Meanness of the graphs $P_{a,b}$ and P_a^b . Int. J. Appl. Math., **22**(4)(2009), 663–675.
- [10] R. Vasuki and A. Nagarajan. Further results on mean graphs. Scientia Magna, 6(3)(2010), 1–14.
- [11] R. Vasuki and A. Nagarajan. Odd mean labeling of the graphs $P_{a,b}$, P_a^b and $P_{<2a>}^b$, Kragujevac J. Math., **36**(1) (2012), 141–150.
- [12] S. Suganthi, R. Vasuki and G. Pooranam. Some results on odd mean graphs, Int. J. Math. Appl., 3(3-B)(2015), 1–8.

Received by editors 21.12.2018; Revised version 05.03.2019; Available online 01.04.2019.

DEPARTMENT OF MATHEMATICS, DR. SIVANTHI ADITANAR COLLEGE OF ENGINEERING, TIRUCHEN-DUR - 628 215 TAMIL NADU, INDIA.,

E-mail address: vasukisehar@gmail.com, vinisuga21@gmail.com,dpooranamg@gmail.com