ON GENERALIZED FUZZY GENERALIZED FUZZY BI-IDEALS OF TERNARY SEMIGROUPS

Gnanasigamani Mohanraj and M. Vela

Abstract. We introduce the notion of S-fuzzy generalized bi-ideal. We introduce ternary S and ternary T-products of fuzzy sets of ternary semigroup. We find interrelationship between ternary S-product and ternary T-product. We redefine S-fuzzy generalized bi-ideal by using ternary S-product and ternary T-product of ternary semigroup. We introduce the notion of S-union of fuzzy sets. We establish that S-union of S-fuzzy bi-ideal is again a S-fuzzy bi-ideal.

1. Introduction

2. Preliminaries

A non-empty set R is called a ternary semigroup if there exists a mapping $R \times R \times R \to R$ denoted by juxtaposition that satisfies: $(abc)de = a(bcd)e = ab(cde)$ for all $a, b, c, d, e \in R$. A non-empty set B of R is called generalized bi-ideal if $BRBRB \subseteq B$. The generalized bi-ideal B of R is called bi-ideal if $BBB \subseteq B$. A mapping $\mu : X \to [0, 1]$ is called a fuzzy set of X. The fuzzy set μ of R is called generalized fuzzy bi-ideal if $\mu(xwyvz) \geq \min\{\mu(x), \mu(y), \mu(z)\}$ for all $x, y, z \in R$.

2010 Mathematics Subject Classification. 03E72, 20N25.

Key words and phrases. Ternary semigroup, bi-ideal, generalized fuzzy bi-ideal.
R. The generalized fuzzy bi-ideal μ of R is called a fuzzy bi-ideal if $\mu(xyz) \geq \min\{\mu(x), \mu(y), \mu(z)\}$ for all $x, y, z \in R$. The fuzzy set μ of R is called generalized anti fuzzy bi-ideals if $\mu(xwyz) \leq \max\{\mu(x), \mu(y), \mu(z)\}$, for all $x, y, z, u, v \in R$. The generalized anti fuzzy bi-ideals μ of R is called anti fuzzy bi-ideal if $\mu(xyz) \leq \max\{\mu(x), \mu(y), \mu(z)\}$, for all $x, y, z \in R$.

3. S-fuzzy bi-ideals

Definition 3.1. The binary operation S on $[0,1]$ is called a S-norm on $[0,1]$ if satisfies the following conditions:

1. $(S1)$ $S(x,0) = S(0,x) = x$ (boundary condition)
2. $(S2)$ $S(x,y) = S(y,x)$ (commutativity)
3. $(S3)$ $S(S(x,y), z) = S(x, S(y,z))$ (associativity)
4. $(S4)$ If $x^* \leq x$ and $y^* \leq y$ then $S(x^*, y^*) \leq S(x,y)$ (monotonicity)

for all $x, y, z, x^*, y^* \in [0,1]$.

Definition 3.2. (6) The binary operation T on $[0,1]$ is called a triangular norm [T-norm] on $[0,1]$ which satisfies $S2$ to $S4$ and $T(x,1) = T(1,x) = x$.

Theorem 3.1. (3) The function $S : [0,1] \times [0,1] \rightarrow [0,1]$ is a S-norm (T-conorm) if and only if there exist a T-norm (S-conorm) such that $S(x,y)=1-T(1-x,1-y)(1)$ for all $x, y \in [0,1]$.

Remark 3.1. (1) By above Theorem 3.1, for each S-norm S, there exists T-norm satisfying Equation (1) and that T-norm is a called S-conorm.

(2) For each T-norm T, Theorem 3.1, there exists S-norm S satisfying $T(x,y) = 1-S(1-x,1-y)$ and that S-norm S is called T-conorm.

(3) Various S-norms and corresponding S-conorms are tabulated as follows

<table>
<thead>
<tr>
<th>S-norm</th>
<th>T-norm (S-conorm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_M(x,y) = \max{x,y}$</td>
<td>$T_M(x,y) = \min{x,y}$</td>
</tr>
<tr>
<td>$S_P(x,y) = x + y - x \cdot y$</td>
<td>$T_P(x,y) = x \cdot y$</td>
</tr>
<tr>
<td>$S_L(x,y) = \min{x+y,1}$</td>
<td>$T_L(x,y) = \max{x+y-1,0}$</td>
</tr>
<tr>
<td></td>
<td>$S_D(x,y) = \begin{cases} 1 \quad & \text{if } x,y \in [0,1) \ \max{x,y} & \text{otherwise,} \end{cases}$</td>
</tr>
<tr>
<td></td>
<td>$T_D(x,y) = \begin{cases} 0 \quad & \text{if } x,y \in [0,1) \ \min{x,y} & \text{otherwise,} \end{cases}$</td>
</tr>
<tr>
<td>Hamacher class S-norm for $\lambda \in [0,\infty]$</td>
<td>Hamacher class T-norm for $\lambda \in [0,\infty]$</td>
</tr>
<tr>
<td>$(S'_\lambda)(x,y) = \begin{cases} S_D(x,y) \quad & \text{if } \lambda = 0 \ 1 \quad & \text{if } x = y = 1 \ \frac{x+y-xy-(1-\lambda)xy}{1-(\lambda)x+y} & \text{otherwise.} \end{cases}$</td>
<td>$(T'_\lambda)(x,y) = \begin{cases} T_D(x,y) \quad & \text{if } \lambda = \infty \ 0 \quad & \text{if } \lambda = x = y = 0 \ \frac{xy}{x+(1-\lambda)(x+y-xy)} & \text{otherwise.} \end{cases}$</td>
</tr>
</tbody>
</table>

Theorem 3.2. (3) Every T-norm $[0,1]$ satisfies the inequality as follows

$T_D(x,y) \leq T(x,y) \leq T_M(x,y)$, for all $x, y \in [0,1]$.
Theorem 3.3. Every S-norm S satisfies the inequality

\[S_D(x, y) \leq S(x, y) \leq S_M(x, y), \quad \text{for all } x, y \in [0, 1]. \]

Proof. By Theorem 3.2, we have $T_M(x, y) \geq T(x, y) \geq T_D(x, y)$, for all $x, y \in [0, 1]$. By Theorem 3.1, $S_M(x, y) \leq S(x, y) \leq S_D(x, y)$, for all $x, y \in [0, 1]$. \qed

Hereafter, R denotes a ternary semigroup and S denotes S-norm on $[0, 1]$, whereas T denotes a corresponding S-conorm on $[0, 1]$ unless otherwise specified.

Definition 3.3. The fuzzy set μ of R is called generalized S-fuzzy bi-ideal if $\mu(xwyz) \leq S(\mu(x), S(\mu(y), \mu(z)))$, for all $x, y, z, w, v \in R$.

Definition 3.4. The generalized S-fuzzy bi-ideal μ of R is called a S-fuzzy bi-ideal of R if $\mu(xyz) \leq S(\mu(x), S(\mu(y), \mu(z)))$ for all $x, y, z, v \in R$.

Definition 3.5. ([7]) The fuzzy set μ of R is called generalized T-fuzzy bi-ideal if $\mu(xwyz) \geq T(\mu(x), T(\mu(y), \mu(z)))$, for all $x, y, z, w, v \in R$.

Definition 3.6. ([7]) The generalized T-fuzzy bi-ideal μ of R is called T-fuzzy bi-ideal of R if $\mu(xyz) \geq T(\mu(x), T(\mu(y), \mu(z)))$, for all $x, y, z \in R$.

Here, we redefine S-fuzzy bi-ideals by using ternary S-products and ternary T-products.

Definition 3.7. The ternary S-product and the ternary T-product of the fuzzy sets λ, μ, σ of R denoted by $\lambda \circ_S \mu \circ_S \sigma$ and $\lambda \cdot_T \mu \cdot_T \sigma$ are defined as follows:

\[
(\lambda \circ_S \mu \circ_S \sigma)(x) = \begin{cases}
\inf_{x=abc} S(\lambda(a), S(\mu(b), \sigma(c))) & \text{if } x = abc \\
1 & \text{otherwise}
\end{cases}
\]

\[
(\lambda \cdot_T \mu \cdot_T \sigma)(x) = \begin{cases}
\sup_{x=abc} T(\lambda(a), T(\mu(b), \sigma(c))) & \text{if } x = abc \\
0 & \text{otherwise}
\end{cases}
\]

Remark 3.2. (1) By taking S-norm as S_M-norm, then the ternary S-product becomes ternary “\circ” product

\[
(\lambda \circ \mu \circ \sigma)(x) = \begin{cases}
\inf_{x=abc} \{\max\{\lambda(a), \mu(b), \sigma(c)\}\} & \text{if } x = abc \\
1 & \text{otherwise}
\end{cases}
\]

(2) By taking T-norm as T_M-norm, then the ternary T-product becomes ternary “$.$” product

\[
(\lambda \cdot \mu \cdot \sigma)(x) = \begin{cases}
\sup_{x=abc} \{\min\{\lambda(a), \mu(b), \sigma(c)\}\} & \text{if } x = abc \\
0 & \text{otherwise}
\end{cases}
\]

Definition 3.8. The fuzzy sets 0 and 1 of R are defined as follows:

\[
0(x) = 0, 1(x) = 1 \quad \text{for all } x \in R
\]
Theorem 3.4. The fuzzy set μ is a S-fuzzy generalized bi-ideal of R if and only if $\mu \subseteq \mu \circ_S \mu \circ_S \mu$.

Proof. For a S-fuzzy generalized bi-ideal μ of R and if x cannot be expressible as $x = awbvc$, then $(\mu \circ_S 0 \circ_S \mu \circ_S 0 \circ_S \mu)(x) = 1 \geq \mu(x)$. Now,

$$(\mu \circ_S 0 \circ_S \mu) \circ_S 0 \circ_S \mu(x) = \inf_{x=awb} S((\mu \circ_S 0 \circ_S \mu)(u), S(0(v), \mu(c)))$$

$$= \inf_{x=awb} S(\inf_{u=awb} S(\mu(a), S(0(w), \mu(b))), \mu(c))$$

$$= \inf_{x=awb} S(\mu(a), S(\mu(b), \mu(c)))$$

Now

$$\mu(awbvc) \leq S(\mu(a), S(\mu(b), \mu(c)))$$

implies $\mu(x) \leq \inf_{x=awb} S(\mu(a), S(\mu(b), \mu(c)))$. Thus

$$\mu(x) \leq \inf_{x=awb} S(\mu(a), S(\mu(b), \mu(c))) \leq \inf_{x=awb} S(\mu(a), S(\mu(b), \mu(c)))$$

$$= (\mu \circ_S 0 \circ_S \mu \circ_S 0 \circ_S \mu)(x)$$

Conversely,

$$\mu(xwyvz) \leq ((\mu \circ_S 0 \circ_S \mu) \circ_S 0 \circ_S \mu)(xwyvz) \leq S(\mu(x), S(\mu(y), \mu(z)))$$

Hence μ is a S-fuzzy generalized bi-ideal of R.

Theorem 3.5. The fuzzy set μ is a S-fuzzy-bi-ideal of R if and only if

(i) $\mu \subseteq \mu \circ_S \mu \circ_S \mu$.

(ii) $\mu \subseteq \mu \circ_S 0 \circ_S \mu \circ_S 0 \circ_S \mu$

Proof. By Theorem 3.4, $\mu \subseteq \mu \circ_S 0 \circ_S \mu \circ_S 0 \circ_S \mu$, when μ is a S-fuzzy bi-ideal. If x cannot be expressible as $x = abc$, then $(\mu \circ_S 0 \circ_S \mu)(x) = 1 \geq \mu(x)$. Now $\mu(abc) \leq S(\mu(a), S(\mu(b), \mu(c)))$. Then,

$$\mu(x) \leq \inf_{x=abc} S(\mu(a), S(\mu(b), \mu(c))) = (\mu \circ_S 0 \circ_S \mu)(x).$$

Conversely, By Theorem 3.4, μ is a S-fuzzy generalized bi-ideal

$$\mu(abc) \leq (\mu \circ_S \mu \circ_S \mu)(abc) \leq S(\mu(0), (\mu(b), \mu(c)))$$

Hence μ is a S fuzzy-bi-ideal of R.

Theorem 3.6. If S is a S-norm and T is it S-conorm (T-norm), then

(i) $1 - (\lambda \circ_S \mu \circ_S \sigma) = (1 - \lambda) \cdot_T (1 - \mu) \cdot_T (1 - \sigma)$

(ii) $1 - (\lambda \cdot_T \mu \cdot_T \sigma) = (1 - \lambda) \circ_S (1 - \mu) \circ_S (1 - \sigma)$,

for any fuzzy set λ, μ and σ of R.
Proof. For the fuzzy sets λ, μ and σ of R,
\[
(\lambda \circ_S \mu \circ_S \sigma)(x) = \inf_{x=abc} S(\lambda(a), S(\mu(b), \sigma(c)))
\]
\[
= \inf_{x=abc} 1 - T(1 - \lambda(a), 1 - S(\mu(b), \sigma(c)))
\]
\[
= \inf_{x=abc} 1 - T(1 - \lambda(a), 1 - (1 - T(1 - \mu(b), 1 - \sigma(c))))
\]
\[
= \inf_{x=abc} 1 - T(1 - \lambda(a), T(1 - \mu(b), 1 - \sigma(c)))
\]
\[
= \inf_{x=abc} 1 - T((1 - \lambda)(a), T((1 - \mu)(b), (1 - \sigma)(c)))
\]
\[
= 1 - \sup_{x=abc} T((1 - \lambda)(a), T((1 - \mu)(b), (1 - \sigma)(c))).
\]

Then,
\[
(1 - (\lambda \circ_S \mu \circ_S \sigma))(x) = \sup_{x=abc} T((1 - \lambda)(a), T((1 - \mu)(b), (1 - \sigma)(c))).
\]

Therefore
\[
1 - (\lambda \circ_S \mu \circ_S \sigma) = (1 - \lambda) \cdot_T (1 - \mu) \cdot_T (1 - \sigma).
\]

Now,
\[
(\lambda \cdot_T \mu \cdot_T \sigma)(x) = \sup_{x=abc} T(\lambda(a), T(\mu(b), \sigma(c)))
\]
\[
= \sup_{x=abc} 1 - S(1 - \lambda(a), 1 - T(\mu(b), \sigma(c)))
\]
\[
= \sup_{x=abc} 1 - S(1 - \lambda(a), 1 - (1 - S(1 - \mu(b), 1 - \sigma(c))))
\]
\[
= \sup_{x=abc} 1 - S(1 - \lambda(a), S(1 - \mu(b), 1 - \sigma(c)))
\]
\[
= \sup_{x=abc} 1 - S((1 - \lambda)(a), S((1 - \mu)(b), (1 - \sigma)(c)))
\]
\[
= 1 - \inf_{x=abc} S((1 - \lambda)(a), S((1 - \mu)(b), (1 - \sigma)(c)))
\]

Then,
\[
1 - (\lambda \cdot_T \mu \cdot_T \sigma)(x) = \inf_{x=abc} S((1 - \lambda)(a), S((1 - \mu)(b), (1 - \sigma)(c)))
\]

Therefore
\[
1 - (\lambda \cdot_T \mu \cdot_T \sigma) = (1 - \lambda) \circ_S (1 - \mu) \circ_S (1 - \sigma).
\]

Theorem 3.7. The fuzzy set μ is a S-fuzzy generalized bi-ideal of R if and only if there exists S-conorm T such that $(1 - \mu) \cdot_T 1 \cdot_T (1 - \mu) \cdot_T 1 \subseteq 1 - \mu$.

Proof. For a S-fuzzy generalized bi-ideal μ of R and by Theorem 3.4, $\mu \subseteq \mu \circ_S 0 \circ_S \mu \circ_S 0 \circ_S \mu$. Then
\[
1 - (\mu \circ_S 0 \circ_S \mu \circ_S 0 \circ_S \mu) \subseteq 1 - \mu.
\]

By Theorem 3.6, we have
\[
(1 - \mu) \cdot_T (1 - 0) \cdot_T (1 - \mu) \cdot_T (1 - 0) \cdot_T (1 - \mu) \subseteq 1 - \mu.
\]

Thus
\[
(1 - \mu) \cdot_T 1 \cdot_T (1 - \mu) \cdot_T 1 \cdot_T (1 - \mu) \subseteq 1 - \mu.
\]

Conversely, by Theorem 3.6, we have
\[
1 - (\mu \circ_S 0 \circ_S \mu \circ_S 0 \circ_S \mu) = (1 - \mu) \cdot_T 1 \cdot_T (1 - \mu) \cdot_T 1 \cdot_T (1 - \mu) \subseteq 1 - \mu.
\]
Thus
\[\mu \subseteq \mu \circ S 0 \circ S \mu \circ S 0 \circ S \mu. \]
By Theorem 3.4, \(\mu \) is a \(S \)-fuzzy generalized bi-ideal of \(R \).

Theorem 3.8. The fuzzy set \(\mu \) is a \(S \)-fuzzy bi-ideal of \(R \) if and only if there exists \(S \)-conorm \(T \) such that
\begin{align*}
(1 - \mu) \cdot T (1 - \mu) \cdot T (1 - \mu) & \subseteq (1 - \mu), \\
(1 - \mu) \cdot T 1 \cdot T 1 \cdot T (1 - \mu) & \subseteq 1 - \mu
\end{align*}

Proof. For a \(S \)-fuzzy bi-ideal \(\mu \) of \(R \) and by Theorem 3.7, there exist \(S \)-conorm \(T \),
\[(1 - \mu) \cdot T (1 - \mu) \cdot T (1 - \mu) \subseteq 1 - \mu. \]
By Theorem 3.5, \(\mu \subseteq \mu \circ S \mu \circ S \mu \) implies \(1 - (\mu \circ S \mu \circ S \mu) \subseteq 1 - \mu \). By Theorem 3.6, there exist \(S \)-conorm \(T \),
\[(1 - \mu) \cdot T (1 - \mu) \cdot T (1 - \mu) = 1 - (\mu \circ S \mu \circ S \mu) \subseteq 1 - \mu. \]
Conversely, by Theorem 3.6, we have that
\[1 - (\mu \circ S \mu \circ S \mu) \subseteq (1 - \mu) \cdot T (1 - \mu) \cdot T (1 - \mu) \subseteq 1 - \mu \]
implies
\[\mu \subseteq \mu \circ S \mu \circ S \mu. \]
Similarly, by Theorem 3.5
\[\mu \subseteq \mu \circ S 0 \circ S \mu \circ S 0 \circ S \mu. \]
Thus \(\mu \) is a \(S \)-fuzzy bi-ideal of \(R \).

Theorem 3.9. The fuzzy set \(\mu(x) = \begin{cases} t & \text{if } x \in B \\ s & \text{otherwise} \end{cases} \)
for \(0 \leq t \leq s \leq 1 \) is a \(S \)-fuzzy generalized bi-ideal of \(R \) for all \(S \)-norms \(S \) if and only if \(B \) is a generalized bi-ideal of \(R \).

Proof. Let \(B \) be a generalized bi-ideal of \(R \) and let \(\mu \) be the fuzzy set defined as above for \(0 \leq t \leq s \leq 1 \). If \(t = s \), then \(\mu \) is constant. Thus \(\mu \) is \(S \)-fuzzy generalized bi-ideal. Otherwise if \(xuyz \in B \), then for all \(u, v \in R \) holds
\[\mu(xuyvz) = \begin{cases} t & \text{if } x \in B \\ s & \text{otherwise} \end{cases} \]
If \(xuyvz \notin B \), then either \(x \notin B \) or \(y \notin B \) or \(z \notin B \). Now,
\[\mu(xuyvz) = s = S_M(\mu(x), S_M(\mu(y), \mu(z))) \]
and by Theorem 3.3,
\[\mu(xuyvz) \leq S_M(\mu(x), S_M(\mu(y), \mu(z))) \leq S(\mu(x), S(\mu(y), \mu(z))) \]
for any \(S \)-norms and for \(x, y, z \in B \). \(u, v \in R \). Therefore \(\mu \) is a \(S \)-fuzzy generalized bi-ideal, for all \(S \)-norms \(S \).

Conversely, for \(u, v \in R \) and \(x, y, z \in B \),
\[t = S_M(\mu(x), S_M(\mu(y), \mu(z))) \geq \mu(xuyvz), \text{ implies } xuyvz \in B \]. Thus \(B \) is a generalized bi-ideal of \(R \).
Theorem 3 is an anti fuzzy generalized bi-ideal of \(R \) for \(0 \leq x, y, z, w, v \leq 1 \). Therefore \(S \) is a bi-ideal of \(R \). Consequently, by Theorem 3, \(S \) is a fuzzy generalized bi-ideal of \(R \). Therefore \(S \) is a bi-ideal of \(R \).

Proof. By taking \(S \)-norm as \(S_M \) in Theorem 3.9, we get the result. \(\square \)

Theorem 3.10. The fuzzy set
\[
\mu(x) = \begin{cases}
 t & \text{if } x \in B, \\
 s & \text{otherwise}
\end{cases}
\]
for \(0 \leq t \leq s \leq 1 \) is a \(S \)-fuzzy bi-ideal of \(R \) for all \(S \)-norms \(S \) if and only if \(B \) is a bi-ideal of \(R \).

Proof. Let \(B \) be a bi-ideal of \(R \) and let \(\mu \) be the fuzzy set defined as above for \(0 \leq t \leq s \leq 1 \). If \(t = s \), then \(\mu \) is constant. Thus \(\mu \) is \(S \)-fuzzy bi-ideal. By Theorem 3.9, \(\mu \) is a \(S \)-fuzzy generalized bi-ideal of \(R \). If \(x, y, z \in B \), then \(xyz \in B \) implies
\[
\mu(xyz) = t \leq S_M(\mu(x), S_M(\mu(y), \mu(z))) \leq S(\mu(x), S(\mu(y), \mu(z)))
\]
If \(xyz \notin B \), then \(x \notin B \) or \(y \notin B \) or \(z \notin B \). Thus
\[
\mu(xyz) = s = S_M(\mu(x), S_M(\mu(y), \mu(z))) \leq S(\mu(x), S(\mu(y), \mu(z))).
\]
Therefore \(\mu \) is a \(S \)-fuzzy bi-ideal for all \(S \)-norms.

Conversely, by Theorem 3.9, \(B \) is generalized bi-ideal. If \(x, y, z \in B \), then \(t = S_M(\mu(x), S_M(\mu(y), \mu(z))) \geq \mu(xyz) \) implies \(xyz \in B \). Thus \(B \) is a bi-ideal of \(R \). \(\square \)

4. \(T \)-fuzzy bi-ideals

Theorem 4.1. The fuzzy set \(\mu \) is a \(S \)-fuzzy generalized bi-ideal of \(R \) if and only if there exists \(S \)-conorm \(T \) such that \(1 - \mu \) is a \(T \)-fuzzy generalized bi-ideal of \(R \).

Proof. If \(\mu \) is a \(S \)-fuzzy generalized bi-ideal of \(R \), then by Theorem 3.1, there exists \(S \)-conorm \(T \) such that \(S(x, y) = 1 - T(1 - x, 1 - y) \) for all \(x, y \in [0, 1] \). For \(x, y, z, w, v \in R \),
\[
\mu(xwyz) \leq S(\mu(x), S(\mu(y), \mu(z)))
\]
\[
= 1 - T(1 - \mu(x), 1 - S(\mu(y), \mu(z)))
\]
\[
= 1 - T(1 - \mu(x), 1 - (1 - T(1 - \mu(y), 1 - \mu(z))))
\]
\[
= 1 - T(1 - \mu(x), T(1 - \mu(y), 1 - \mu(z)))
\]
\[
= 1 - T((1 - \mu)(x), T((1 - \mu)(y), (1 - \mu)(z)))
\]
Therefore
\[
-\mu(xwyz) \geq -1 + T((1 - \mu(x), T((1 - \mu)(y), (1 - \mu)(z))))
\]
Then, \((1 - \mu)(xwyvz) \geq T((1 - \mu)(x), T((1 - \mu)(y), (1 - \mu)(z)))\) and \(1 - \mu\) is a \(T\)-fuzzy generalized bi-ideal of \(R\).

Conversely,
\[
(1 - \mu)(xwyvz) \geq T((1 - \mu)(x), T((1 - \mu)(y), (1 - \mu)(z)))
\]
\[
= T(1 - \mu(x), T(1 - \mu(y), 1 - \mu(z)))
\]
\[
= 1 - S(1 - (1 - \mu(x), 1 - (1 - \mu(y), 1 - \mu(z))))
\]
\[
= 1 - S(\mu(x), 1 - (1 - S(1 - (1 - \mu(y), 1 - (1 - \mu(z)))))
\]
\[
= 1 - S(\mu(x), S(\mu(y), \mu(z)))
\]

Thus
\[-1 + \mu(xwyvz) \leq -1 + S(\mu(x), S(\mu(y), \mu(z))).\]

Then, \((xwyvz) \leq S(\mu(x), S(\mu(y), \mu(z)))\). Therefore, \(\mu\) is a \(S\)-fuzzy generalized bi-ideal of \(R\).

\textbf{Theorem 4.2.} The fuzzy set \(\mu\) is a \(S\)-fuzzy bi-ideal of \(R\) if and only if there exists \(S\)-conorm \(T\) such that \(1 - \mu\) is a \(T\)-fuzzy bi-ideal of \(R\).

\textbf{Proof.} If \(\mu\) is a \(S\)-fuzzy bi-ideal of \(R\), then by Theorem 4.1, \(1 - \mu\) is a \(T\)-fuzzy generalized bi-ideal. For \(x, y, z \in R\) and by Theorem 3.1,
\[
\mu(xyz) \leq S(\mu(x), S(\mu(y), \mu(z)))
\]
\[
= 1 - T(1 - \mu(x), 1 - S(\mu(y), \mu(z)))
\]
\[
= 1 - T(1 - \mu(x), 1 - (1 - T(1 - \mu(y), 1 - \mu(z))))
\]
\[
= 1 - T(1 - \mu(x), T(1 - \mu(y), 1 - \mu(z)))
\]
\[
= 1 - T((1 - \mu)(x), T((1 - \mu)(y), (1 - \mu)(z))))
\]

Then \((1 - \mu)(xyz) \geq T((1 - \mu)(x), T((1 - \mu)(y), (1 - \mu)(z))))\). Thus \(\mu\) is a \(T\)-fuzzy bi-ideal of \(R\).

Conversely, by Theorem 4.1, \((xwyvz) \leq S(\mu(x), S(\mu(y), \mu(z)))\). Now,
\[
(1 - \mu)(xyz) \geq T((1 - \mu)(x), T((1 - \mu)(y), (1 - \mu)(z))))
\]
\[
= T(1 - \mu(x), T(1 - \mu(y), 1 - \mu(z)))
\]
\[
= 1 - S(1 - (1 - \mu(x), 1 - T(1 - \mu(y), 1 - \mu(z))))
\]
\[
= 1 - S(\mu(x), 1 - (1 - S(1 - (1 - \mu(y), 1 - (1 - \mu(z))))
\]
\[
= 1 - S(\mu(x), S(\mu(y), \mu(z)))
\]

Then
\[
\mu(xyz) \leq S(\mu(x), S(\mu(y), \mu(z)))
\]

Therefore \(\mu\) is a \(S\)-fuzzy bi-ideal of \(R\).

\textbf{Theorem 4.3.} The fuzzy set \(\mu\) is a \(T\)-fuzzy generalized bi-ideal of \(R\) if and only if \(\mu \cdot T \geq T \cdot \mu \leq \mu\)
Thus, Theorem 3.5 holds only if there exists T-conorm S such that $1 - \mu$ is a S-fuzzy generalized bi-ideal. Now, by Theorem 3.7, we have

$$(1 - (1 - \mu)) \ast_T (1 - (1 - \mu)) \ast_T (1 - (1 - \mu)) \subseteq 1 - (1 - \mu).$$

Thus,

$$\mu \ast_T 1 \ast_T \mu \ast_T 1 \ast_T \mu \subseteq \mu.$$

Conversely,

$$\mu(xwyvz) \geq ((\mu \ast_T 1 \ast_T \mu) \ast_T 1 \ast_T \mu)(xwyvz)$$
$$= T((\mu \ast_T 1 \ast_T \mu)(xwy), T(1(v), \mu(z)))$$
$$= T((\mu \ast_T 1 \ast_T \mu)(xwy), \mu(z))$$
$$\geq T(T(\mu(x), T(1(w), \mu(y))), \mu(z))$$
$$= T(T(\mu(x), \mu(y)), \mu(z))$$
$$= T(\mu(x), T(\mu(y), \mu(z))), \text{ for all } x, y, z, w, v \in R$$

Thus μ is a T-fuzzy generalized bi-ideal. \hfill \Box

Theorem 4.4. The fuzzy set μ is a T-fuzzy bi-ideal of R if and only if

(i) $\mu \ast_T 1 \ast_T \mu \subseteq \mu$
(ii) $\mu \ast_T 1 \ast_T \mu \ast_T 1 \ast_T \mu \subseteq \mu$.

Proof. Let μ be T-fuzzy bi-ideal of R. By Theorem 4.3,

$$\mu \ast_T 1 \ast_T \mu \ast_T 1 \ast_T \mu \subseteq \mu.$$

By Theorem 4.2, $1 - \mu$ is a S-fuzzy bi-ideal, for T-conorm S by Theorem 3.6, we have

$$(1 - \mu) \subseteq (1 - \mu) \circ_S (1 - \mu) \circ_S (1 - \mu)$$

and

$$(1 - \mu) \subseteq 1 - [(1 - (1 - \mu)) \ast_T (1 - (1 - \mu)) \ast_T (1 - (1 - \mu))].$$

Then, $\mu \ast_T 1 \ast_T \mu \subseteq \mu$.

Conversely, By Theorem 4.3, μ is a T-fuzzy generalized bi-ideal.

$$\mu(abc) \geq (\mu \ast_T 1 \ast_T \mu)(abc) \geq T(\mu(a), T(\mu(b), \mu(c))), \text{ for } a, b, c \in R$$

Thus μ is a T-fuzzy bi-ideal. \hfill \Box

Theorem 4.5. The fuzzy set μ is a T-fuzzy generalized bi-ideal of R if and only if $1 - \mu \subseteq (1 - \mu) \circ_S 0 \circ_S (1 - \mu) \circ_S (1 - \mu)$, for T-conorm S.

Proof. Let μ be a T-fuzzy generalized bi-ideal of R. By Theorem 4.1, there exists T-conorm S such that $1 - \mu$ is a S-fuzzy generalized bi-ideal of R. By Theorem 3.5, holds

$$1 - \mu \subseteq (1 - \mu) \circ_S 0 \circ_S (1 - \mu) \circ_S 0 \circ_S (1 - \mu).$$
Conversely, by Theorem 3.6 we have
\[
1 - \mu \subseteq (1 - \mu) \circ_S 0 \circ_S (1 - \mu) \circ_S 0 \circ_S (1 - \mu)
= 1 - (\mu \cdot_T (1 - 0) \cdot_T \mu \cdot_T (1 - 0) \cdot_T \mu)
= 1 - (\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu)
\]
Thus \(\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu \subseteq \mu \). Finally, By Theorem 4.3, we have \(\mu \) is a \(T \)-fuzzy generalized bi-ideal of \(R \).

Theorem 4.6. The fuzzy set \(\mu \) is a \(T \)-fuzzy bi-ideal of \(R \) if and only if
(i) \((1 - \mu) \subseteq (1 - \mu) \circ_S (1 - \mu) \circ_S (1 - \mu)\)
(ii) \(1 - \mu \subseteq (1 - \mu) \circ_S 0 \circ_S (1 - \mu) \circ_S 0 \circ_S (1 - \mu)\), for \(T \)-conorm \(S \).

Proof. Let \(\mu \) be a \(T \)-fuzzy bi-ideal of \(R \). By Theorem 4.1, \(1 - \mu \) is a \(S \)-fuzzy bi-ideal of \(R \). By Theorem 3.5, we have
\[
1 - \mu \subseteq (1 - \mu) \circ_S (1 - \mu) \circ_S (1 - \mu),
1 - \mu \subseteq (1 - \mu) \circ_S 0 \circ_S (1 - \mu) \circ_S 0 \circ_S (1 - \mu)
\]
Conversely, by Theorem 3.6,
\[
1 - \mu \subseteq (1 - \mu) \circ_S (1 - \mu) \circ_S (1 - \mu) = 1 - (\mu \cdot_T 1 \cdot_T \mu).
\]
Thus \(\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu \subseteq \mu \).
Similarly,
\[
\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu \subseteq \mu.
\]
By Theorem 4.4, we have \(\mu \) is a \(T \)-fuzzy bi-ideals of \(R \).

Theorem 4.7. The fuzzy set \(\mu \) defined by
\[
\mu(x) = \begin{cases}
s & \text{if } x \in B \\
t & \text{otherwise} \end{cases}
\]
for \(0 \leq t \leq s \leq 1 \) is a \(T \)-fuzzy bi-ideals of \(R \) for all \(T \)-norms if and only if \(B \) is a bi-ideal of \(R \).

Proof. If \(B \) is a bi-ideal of \(R \). Now, \(t \leq s \) implies \(1 - s \leq 1 - t \). Then
\[
(1 - \mu)(x) = \begin{cases}
1 - s & \text{if } x \in B \\
1 - t & \text{otherwise} \end{cases}
\]
By Theorem 3.9, \(1 - \mu \) is a \(S \)-fuzzy bi-ideal for all \(S \)-norms. By Theorem 4.1, \(\mu \) is a \(T \)-fuzzy bi-ideal of all \(T \)-norms.
Conversely, \(\mu \) is a \(T_M \)-fuzzy bi-ideal of \(R \). Let \(x, y, z \in B \). Then \(\mu(xyz) \geq T_M(\mu(x), T_M(\mu(y), \mu(z))) = s \) implies \(xyz \in B \). For \(u, v \in R \), we have
\[
\mu(xuvz) \geq T_M(\mu(x), T_M(\mu(y), \mu(z))) = s.
\]
Then \(xuvz \in B \), for all \(x, y, z \in B \) and for all \(u, v \in R \). Thus \(B \) is a bi-ideal of \(R \).
5. S-Union and T-intersection

Definition 5.1. For the fuzzy sets μ and λ of R and S-norm S, the S-union of μ and λ denoted by $(S(\mu, \lambda))(x)$ is defined as follows: $(S(\mu, \lambda))(x) = S(\mu(x), \lambda(x))$ for all $x \in R$.

Theorem 5.1. If μ and λ are S-fuzzy generalized bi-ideals of R, then $S(\mu, \lambda)$ is a S-fuzzy generalized bi-ideal of R.

Proof. For S-fuzzy generalized bi-ideals μ and λ of R,

$$(S(\mu, \lambda))(xwyvz) = S(\mu(xwyvz), \lambda(xwyvz))$$

$$\leq S\left(S\left[\mu(x), S\left(\mu(y), \mu(z)\right)\right], S\left[\lambda(x), S\left(\lambda(y), \lambda(z)\right)\right]\right)$$

$$= S\left(\mu(x), S\left[\lambda(x), S\left(\lambda(y), \lambda(z)\right)\right], S\left(\mu(y), \mu(z)\right)\right)$$

$$= S\left(S\left[\mu(x), S\left(\lambda(x), S\left(\lambda(y), \lambda(z)\right)\right)\right], S\left(\mu(y), \mu(z)\right)\right)$$

$$= S\left(S\left[S\left(\mu(x), \lambda(x)\right), S\left(\lambda(y), \lambda(z)\right)\right], S\left(\mu(y), \mu(z)\right)\right)$$

Therefore $(S(\mu, \lambda))(xwyvz) \leq S((S(\mu, \lambda))(x), S((S(\mu, \lambda))(y), (S(\mu, \lambda))(z)))$, for all $x, w, y, v, z \in R$. Hence $S(\mu, \lambda)$ is a S-fuzzy generalized bi-ideal of R.

Corollary 5.1. Union of any two anti fuzzy generalized bi-ideals of a ternary semigroup R is an anti fuzzy generalized bi-ideal of R.

Proof. By taking S-norm as S_{M}-norm in Theorem 5.1, we get the result.
THEOREM 5.2. If μ and λ are S-fuzzy bi-ideals of R, then $S(\mu, \lambda)$ is a S-fuzzy bi-ideal of R.

Proof. If μ and λ are S-fuzzy bi-ideals of R, by Theorem 5.1, $S(\mu, \lambda)$ is a S-fuzzy generalized fuzzy bi-ideals of R.

$$(S(\mu, \lambda))(xyz) = S\left(\mu(xyz), \lambda(xyz)\right)$$

$$\leq S\left(S\left[\mu(x), S\left(\mu(y), \mu(z)\right)\right], S\left[\lambda(x), S\left(\lambda(y), \lambda(z)\right)\right]\right)$$

$$= S\left(S\left(S\left(\mu(x), \mu(y)\right), S\left(\mu(z), \mu(y)\right)\right), S\left(S\left(\lambda(x), \lambda(y)\right), S\left(\lambda(y), \lambda(z)\right)\right)\right)$$

$$= S\left(S\left(S\left(\mu(x), \lambda(x)\right), S\left(\lambda(y), \lambda(z)\right), S\left(\lambda(y), \lambda(z)\right)\right), S\left(\mu(y), \mu(z)\right)\right)$$

$$= S\left(S\left(\mu(x), \lambda(x)\right), S\left(\lambda(y), \lambda(z)\right), S\left(\mu(y), \mu(z)\right)\right)$$

Thus $S(\mu, \lambda)(xyz) \leq S(S(\mu, \lambda)(x), S((S(\mu, \lambda)(y), (S(\mu, \lambda)(z)))$, for all $x, y, z \in R$. Therefore $S(\mu, \lambda)$ is a S-fuzzy bi-ideals of R.

Corollary 5.2. (9) If μ and λ are anti fuzzy bi-ideal of a semigroup R, then $\mu \cup \lambda$ is an antifuzzy bi-ideal of R.

Proof. By taking S-norm as S_M-norm in Theorem 5.1, we get the result.

References

Received by editors 24.04.2018; Revised version 05.03.2019; Available online 18.03.2019.

Department of Mathematics, Annamalai University,, Annamalainagar - 608 002,, Tamilnadu, India.

E-mail address: gmohanraj@gmail.com

Department of Mathematics, Annamalai University,, Annamalainagar - 608 002,, Tamilnadu, India.