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ABSORBING MAPPINGS AND
FIXED POINTS IN G-METRIC SPACES

Valeriu Popa and Alina-Mihaela Patriciu

ABSTRACT. In this paper a general fixed point theorem for two pairs of ab-
sorbing mappings satisfying a new type of common limit range property in
G-metric spaces is proved.

1. Introduction

Let (X,d) be a metric space and S, T be two self mappings of X. In [12],
Jungck defined S and T to be compatible if
lim d(STxz,,TSz,) =0,

n— oo

whenever {z,} is a sequence in X such that

lim Sz, = lim Tx, =t
n—oo n—oo
for some t € X.
This concept has been frequently used to prove existence theorems in fixed
point theory.
A point z € X is a coincidence point of S and T if Sx = Tx. The set of all
coincidence points of S and T is denoted by C(S,T).
The study of common fixed points for noncompatible mappings is also inter-
esting. The work in this regard has been initiated by Pant in [18], [19].
Aamri and El-Moutawakil [1] introduced a generalization of noncompatible
mappings.
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DEFINITION 1.1 ([1]). Let S and T be self mappings of a metric space (X, d).
We say that S and T satisfy (E.A)-property if there exists a sequence {z,} in X
such that

lim Sz, = lim Tx, =t
n—oo n—oo

for some t € X.

REMARK 1.1. It is clear that two self mappings S and T of a metric space (X, d)
will be noncompatible if there exists a sequence {x,, } in X such that lim,,_,~ Sz, =
lim,, 00 T, =t for some t € X, but lim,, o, d(STx,,, T'Sx,,) is nonzero or nonex-
istent. Therefore, two noncompatible self mappings of a metric space (X, d) satisfy
(E.A)-property.

There exists a vast literature concerning the study of fixed points for pairs of
mappings satisfying (E.A)-property.
In 2005, Liu et al. [13] defined the notion of common (E.A)-property.

DEFINITION 1.2 ([13]). Two pairs (A, S) and (B, T) of self mappings of a metric
space (X, d) satisfy common (E.A)-property if there exist two sequences {x,,} and
{yn} in X such that

lim Az, = lim Sz, = lim By, = lim Ty, =t

for some t € X.

In 2011, Sintunavarat and Kumam [28] introduced the concept of common
limit range property.

DEFINITION 1.3 ([28]). A pair (A4, S) of mappings of a metric space (X,d) is
said to satisfy common limit range property with respect to S, denoted CLRg) -
property, if there exists a sequence {z,} in X such that

lim Az, = lim Sz, =t
n— oo n— o0

for some t € S (X).

Thus we can infer that a pair (A, S) satisfying (E.A)-property, along with the
closedness of the subspace S (X), always have CLRg) - property.

Recently, Imdad et al. [8] extended the notion of common limit range property
for two pairs of mappings in metric spaces.

DEFINITION 1.4 ([8]). Two pairs (A4,S) and (B, T) of self mappings of a metric
space (X, d) are said to satisfy common limit range property with respect to S and
T, denoted CLR g 7y - property, if there exist two sequences {z,} and {y,} in X
such that

lim Az, = lim Sz, = lim By, = lim Ty, =t
n—oo n—oo n—oo n—oo

for some t € S (X)NT (X).

Some results for pairs of mappings satisfying CLRs)- and CLRg 1)-property
are obtained in [9]-[11] and in other papers.
In [22], the first author introduced a new type of common limit range property.
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DEFINITION 1.5 ([22]). Let A,S and T be self mappings of a metric space
(X, d). The pair (A, S) is said to satisfy common limit range property with respect
to T, denoted C' LR (4 s)p-property, if there exists a sequence {z,} in X such that

lim Az, = lim Sz, =t
n—oo n—oo

for some t € S(X) NT(X).

ExampLE 1.1. Let X = R, be the metric space with the usual metric, and
.2
Ax = ";‘1, Sx = %—17 T = x + %. Then S(X) = [%,oo),T(X) = [%,oo),
S(X)NT(X)=[3,00).
Let {x,} be a sequence in X such that lim, o 2, = 0. Then

. . 1
nh_)rI;OAxn —nh_)rgonn =3 =t teSX)NT(X).

REMARK 1.2 ([22]). Let A, B,S and T be self mappings of a metric space
(X,d). If (A,S) and (B,T) satisfy CLRg r)-property, then A, S and T satisfy
CLR(a,s)r - property.

The notion of absorbing mappings in metric spaces is introduced in [5], [6].
Other results are obtained in [7], [14] and in other papers.

2. Preliminaries

In [3], [4] Dhage introduced a new class of generalized metric spaces named D
- metric spaces. Mustafa and Sims [15], [16] proved that most of claims concerning
the fundamental topological structures are incorrect and introduced appropriate
notion of generalized metric spaces, named G-metric spaces. In fact, Mustafa,
Sims and other authors proved many fixed point results for self mappings under
certain conditions in [15]-[17], [27] and in other papers.

DEFINITION 2.1 ([16]). Let X be a nonempty set and G : X3 — R, be a
function satisfying the following properties:

(G1) : G(z,y,2) =0ifx =y = 2,

(G2) : 0 < G(z,z,y) for all x,y € X with z # y,

(Gs) : G(z,y,y) < G(z,y, 2) for all z,y,z € X with z # y,

(G4) : G(z,y,2) = Gy, z,x) = ... (symmetry in all three variables),

(Gs) : G(z,y,2) < G(z,a,a) + G(a,y, z) for all z,y, z,a € X (triangle inequality).

The function G is called a G-metric on X and (X, G) is called a G-metric space.

REMARK 2.1. Let (X,G) be a G-metric space. If y = z, then G (x,y,y) is a
quasi-metric on X. Hence, (X, @), where Q(z,y) = G(z,y,y) is a quasi-metric and
since every metric space is a particular case of quasi-metric space it follows that
the notion of G-metric space is a generalization of a metric space.

LEMMA 2.1 ([16]). Let (X, G) be a G-metric space. Then the function G(z,y, z)
is jointly continuous in all three of its variables.
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DEFINITION 2.2 ([16]). Let (X,G) be a G-metric space. A sequence {x,} in
X is G-convergent if for € > 0, there exists * € X and k£ € N such that for all
m,n 2k, G(x,Tn, Tm) < €.

LEMMA 2.2 ([16]). Let (X,G) be a G-metric space. Then the following condi-
tions are equivalent:

1) {zn} is G-convergent to z,
2) G (xp,Tn,x) = 0 as n — oo,
3) G(xp,z,2) =0 as n — oo,

4) G (Tp,Tm,x) = 0 asn,m — oo.

Quite recently, in [26], a general fixed point theorem for two pairs of mappings
satisfying C LR s 1)-property is proved.

Let (A, S) and T be self mappings of a G-metric space. The notion of common
limit range property with respect to T' in G-metric space is similar to the definition
of metric spaces (Definition 1.5).

We introduce the notion of absorbing mapping in G-metric spaces.

DEFINITION 2.3. Let A and S be self mappings of a G-metric space.

1) A is called S absorbing if there exists R > 0 such that
G (Sz,SAx,SAz) < RG (Sx, Az, Ax) , Vz € X.
Similarly, S is A absorbing.

2) A is called pointwise S absorbing if for given x € X, there exists R > 0
such that for given x € X,

G (Sz,SAz,SAz) < RG (Sz, Az, Ax) .
Similarly, S is pointwise A absorbing.
EXAMPLE 2.1. Let [0, 00) with
G (2,y,2) = max{lz —y|, |z — 2], |y — [}

Then (X, G) is a G-metric space.
Let Az =0 and Sx = . Then

o+l
G (Sx,SAz, SAz) = 75 and G (S, Az, Ar) = 15
Hence,
G (Sz,SAx,SAx) < RG (Sz, Az, Ax)
for R > 1.

Other examples are in Example 4.1.

3. Implicit relations in G-metric spaces

Several fixed point theorems and common fixed point theorems have been uni-
fied considering a general condition by an implicit relation in [20], [21] and in other
papers. The study of fixed points for mappings satisfying an implicit relation in
G-metric spaces is initiated in [23]. The study of fixed points for a pair of mappings
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with common limit range property in metric spaces satisfying implicit relations is
initiated in [9]. The study of fixed points for pairs of mappings with common limit
range property in G-metric spaces is initiated in [25] and [26].

In 2008 in [2], Ali and Imdad introduced a new class of implicit relation. Let
Fa be the family of lower semi-continuous functions F' : Ri — R satisfying the
following conditions:

(Fy): F(t,0,t,0,0,t) > 0, for all t > 0.

(Fy): F(t,0,0,t,t,0) > 0, for all t > 0,

(F3) : F(t,t,0,0,t,t) >0, for all t > 0.

EXAMPLE 3.1. F(t1,...,tg) = t1 —ato— btz —ctqy—dts —etg, where a, b, ¢, d,e > 0
anda+b+c+d+e<l1.

EXAMPLE 3.2. F(tl, ...,t(j) =t; — kmax {t27t37t47t5,t6}7 where k € [07 1]
EXAMPLE 3.3. F(ti,...,ts) = t1 — kmax {tg,tg,t4, %}, where k € [0, 1].
EXAMPLE 3.4. F(ty,...,t5) = t; — kmax {tg, %, %}, where k € [0, 1].

EXAMPLE 3.5. F(ty,...,ts) = t; — ato — bmax{ts, t4} — cmax{ts,ts}, where
a,b,c20anda+b+c<1.

EXAMPLE 3.6. F(t1,...,ts) = t1 — amax {to, t3,t4} — (1 — &) (at5 + btg), where
a€(0,1),a,b>0and a+b<1.

EXAMPLE 3.7. F(t1,...,tg) = t1 —aty — ?ﬁi:j;’i? where a,b > 0 and a+2b < 1.

EXAMPLE 3.8. F(t1,...,ts) = t1 — max{cta, ct3, ctq, ats + btg}, where a,b,c > 0
anda+b+c< 1.
For other examples see [2].

The purpose of this paper is to prove a general fixed point theorem for two
pairs of absorbing mappings satisfying a new type of common limit range property
in G - metric spaces. As applications we obtain some results for a sequence of
mappings in G-metric spaces and for p-contractive mappings.

4. Main results
THEOREM 4.1. Let A,B,S and T be self mappings of a G-metric space and
such that for all z,y € X
(4.1) I G(Az, By, By),G(Sz, Ty, Ty), G(Sx, Sz, Az),
' G(Ty, By, By), G(Sz, By, By), G(Az, Ty, Ty)

for some G € Fg.
If (A, S) and T satisfy CLR 4 syr-property, then:

1) C(A,8)#0,
2) C(B,T)#0.
Moreover,

a) if A is pointwise S absorbing, then A and S have a common fized point,
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b) if B is pointwise T absorbing, then B and T have a common fized point,

c) if the conditions of a) and b) hold, then A,B,S and T have a unique
common fixed point.

PROOF. Since (4, S) and T satisfy C LR (4, g)r-property, there exists a sequence
{zp} in X such that

lim Az, = lim Sz, =z withz€ S(X)NT(X).

n—oo n—oo

Since z € T (X), there exists u € X such that z = Tu.
By (4.1) for x = x,, and y = u we obtain
I G(Axy, Bu, Bu), G(Sxp, Tu,Tu), G(Sxy, Sy, Ax,), <0
G(Tu, Bu, Bu), G(Sxy, Bu, Bu), G(Ax,, Tu, Tu) =
Letting n tend to infinity we obtain
F (G(z, Bu, Bu),0,0,G(z, Bu, Bu), G(z, Bu, Bu),0) < 0,
a contradiction of (Fy) if G(z, Bu, Bu) > 0. Hence G(z, Bu, Bu) = 0, which implies
z = Bu = Twu. Hence C (B,T) # 0.
Since z € S (X), there exists v € X such that z = Sv. By (4.1) for x = v and
Yy = u we obtain
r G(Av, Bu, Bu), G(Sv, Tu, Tu), G(Sv, Sv, Av), <0
G(Tu, Bu, Bu), G(Sv, Bu, Bu), G(Av, Tu,Tu) }] =7’
F(G(Av,z,2),0,G(z, z, Av),0,0,G(z, z, Av)) < 0,
a contradiction of (Fy) if G(z,z, Av) > 0. Hence G(z, z, Av) = 0, which implies
z = Av = Sv. Therefore C (A4,S) # 0 and z = Av = Sv = Bu=Tu.
a) If A is pointwise S absorbing, there exists R > 0 such that
G (Sv,SAv, SAv) < RG (Sv, Av, Av) =0
Hence Sv = SAv = z. Therefore, z = Sz and z is a fixed point of S.
By (4.1) for x = z and y = u we obtain
P G(Az, Bu, Bu),G(Sz,Tu,Tu),G(Sz, Sz, Az),
G(Tu, Bu, Bu),G(Sz, Bu, Bu), G(Az, Tu, Tu)
F(G(Az,2,2),0,G(Axz,2,2),0,0,G(Az, z,2)) < 0,
a contradiction of (Fy) if G(Az,z,z) > 0. Hence G(Az,z,z) = 0, which implies
z = Az = Sz. Therefore, z is a common fixed point of A and S.
b) If B is pointwise T absorbing, there exists R > 0 such that
G (Tu, TBu,TBu) < RG (z, Bu, Bu).
Then z =Tu =TBu =Tz and z is a fixed point of T'.
By (4.1) for x = v and y = z we obtain
I G(Av, Bz, Bz),G(Sv,Tz,Tz), G(Sv, Sv, Av), <0
G(Tz,Bz,Bz2),G(Sv,Bz,Bz2),G(Av,Tz,Tz) | =7
F (G(z,Bz,Bz),0,0,G(z, Bz, Bz),G(z, Bz, Bz),0) < 0,
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a contradiction of (Fy) if G(z, Bz, Bz) > 0. Hence G(z, Bz, Bz) = 0, which implies
z = Bz =Tz. Hence, z is a common fixed point of B and T'.

c) If the conditions of a) and b) hold, then z is a common fixed point of
A/ B,Sand T.

Suppose that z; is an other fixed point of A, B, S and T. By

(4
I G(Az,Bz,Bz),G(S2,Tz,Tz),G(Sz, 5z, Av),
G(Tz1,Bz,Bz1),G(Sz, Bz, Bz1),G(Az,Tz,Tz)
F(G(Z,Zl,Zl),G(Z,21,21),0,O,G(Z,Zl,Zl)7G(Z,Zl,Zl)) < )

a contradiction of (F3) if G(z,21,21) > 0. Hence, G(z,21,21) = 0, which implies
z = z1. Therefore, z is a unique common fixed point of A, B,.S and T. O

.1) we have

<0,
0

EXAMPLE 4.1. Let X = [0, 00) with G (z,y, 2) = max{|z — y|, |z — 2|, |y — 2|}.
Then (X, Q) is a G-metric space. Let Az = 0, Sx = ﬁ, Bx = 5, Tx = z and
S(X) = [0,00), T(X) = [0,00), S(X)NT(X) = [0,00). Let {z,} be a se-
quence in X such that lim,, o 2, = 0. Then lim,, ., Az, = lim,,_, Sz, =0 =
te S(X)NT(X). (A S) and T satisfy CLR4,syr-property. By Example 2.1,
A is S pointwise absorbing. Since G (Tz,TBz,TBxz) = |Tx — TBx| = %“" and
G (Tz,Bz,Bx) = %, it follows that

G (Tz,TBxz,TBzx) < RG (Tz, Bz, Br)

for R > 1. Therefore, B is T pointwise absorbing.
On the other hand,

G (Az, By, By) = |Az — By| = By = §,
G (Ty, By, By) = |y — §| = %

Hence,
G (Az, By, By) < kG (T'y, By, By)
for k € [%, 1), which implies

G(Ax,By,By)<knnax{ G (Sz,Ty,Ty),G (S, Sz, Az) , G (Ty, By, By), }7

G (Sz, By, By) ,G (Az, Ty, Ty)

for k € [%,1). By Example 3.2 and Theorem 4.1, A, B,S is T have a unique

common fixed point z = 0.

5. Applications

5.1. Fixed points for a sequence of mappings in G-metric spaces.

For a function f : (X,G) — (X, G) we denote
Fiz(f)={z e Xz = fz}.

THEOREM 5.1. Let A, B, S and T be self mappings of a G-metric space (X, G).
If inequality (4.1) holds for all x,y € X and F € Fg, then

[Fiz () N Fiz (T)] N Fiz (A) = [Fiz (S) N Fiz (T)] N Fiz (B).
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PROOF. Let x € [Fiz (S)N Fixz (T)] N Fix (A). Then by (4.1) we have
P ( G(Ax, Bz, Bx),G(Sz,Tx,Tx), G(Sz, Sz, Ax), ) <0
G(Tx,Bzx,Bzx),G(Sz, Bx, Bx), G(Azx, Tz, Tx) ) =
F (G(z, Bz, Bz),0,0,G(x, Bz, Bx), G(z, Bz, Bz),0) < 0,
a contradiction of (Fy) if G(z, Bz, Bx) > 0. Hence, G(x, Bz, Bx) = 0 which implies
x = Bx and © € Fiz (B). Therefore
[Fiz (S)N Fix (T)] N Fiz (A) C [Fiz (S)N Fiz (T)] N Fix (B) .
Similarly, by (4.1) and (F}) we obtain
[Fiz (S) N Fiz (T)] N Fiz (B) C [Fiz (S) N Fiz (T)] N Fiz (A).

By Theorems 5.1 and 4.1 we obtain

THEOREM 5.2. Let S,T and {A;}ien+ be self mappings of a G-metric space
such that for all z,y € X
I ( G(Aix, A1y, Aiv1y), G(Sz, Ty, Ty), G(Sz, Sz, A;x), ) <0
G(Ty, A1y, Ai1y), G(Sz, Aiy1y, Aiy1y), G(Aix, Ty, Ty) ) =7
for some F € Fg.
If (A1, 8) and T satisfy CLR 4, sy r-property and Ay is pointwise S absorbing
and Az is pointwise T absorbing, then S, T and {A;} have a unique common
fixed point.

ieN*

5.2. Fixed points for mappings satisfying p-contractive condition in
G-metric spaces.

Let @ be the family of continuous nondecreasing functions ¢ : [0, 00) — [0, c0)
such that:

1) () <tforallt >0,

%) (0)=0.
The following functions F : R} — R satisfy conditions (F1), (F»), (F3).

EXAMPLE 5.1.
F(th ...,tﬁ) = tl — go(max {t27t3,t4,t5,t6}) .

EXAMPLE 5.2.
t t
F(ty,...tg) =t1 —¢ <maX {tz,t&% > ; o }) .
ExXAMPLE 5.3.

t tg 1 t
F(t17...7t6):tl—go(max{tg, 3—; 4, 5;_ 6})

EXAMPLE 5.4.

F (t17 ...7t6) = tl — Y (max {tg, \/t3t4, vV t3t5, vV t4t6, \/t5t6}) .
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EXAMPLE 5.5.
F(tl,...,t(;) =t — <p(at2 + bts + cty + dts + etg),
where a, b, ¢, d,e>0anda+b+c+d+e < 1.

EXAMPLE 5.6.

by/tst
F(t17~~~7t6)=t1—sﬁ<at2+ Skl >7

1+1t3+1,
where a,b > 0 and a +b < 1.

EXAMPLE 5.7.

t: ty t t
F(tl,...7t6):tl—go<at2+bmax{t3,t4}+cmax{ 3;— 47 5;— 6}>7

where a,b,c > 0and a+b+c < 1.

EXAMPLE 5.8.

2t ts 2t te t ts + 1
F(t1,..,t5)=t1 — ¢ atg—i—bmax{ 4t atle fst +6}>,

3 7 3 7 3
where a,b > 0 and a +b < 1.
By Theorem 4.1 and Example 3.1, we obtain

THEOREM 5.3. Let A,B,S and T be self mappings of a G-metric space and
such that for all z,y € X

Glaz, By By) < ¢ (ma"{ {1y, B 19). LS By, )G Ty, ) })
where ¢ € .
If (A, S) and T satisfy CLR 4 syr-property, then:
1) C(A,8)#0,
2) C(B,T)#0.
Moreover,

a) if A is pointwise S absorbing, then A and S have a common fized point,
b) if B is pointwise T absorbing, then B and T have a common fized point,

c) if the conditions of a) and b) hold, then A,B,S and T have a unique
common fixed point.

REMARK 5.1. 1) By Examples 5.2 - 5.8 and Theorem 4.1 we obtain new
particular results.

2) By Examples 5.1 - 5.8 and Theorem 4.1 we obtain particular results for
sequences of mappings satisfying y-contractive conditions.
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