ON THE TOTAL IRREGULARITY STRENGTH OF SOME GRAPHS

P. Jeyanthi and A. Sudha

Abstract

A totally irregular total k-labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, k\}$ is a labeling of vertices and edges of G in such a way that for any two different vertices x and y their vertex-weights $w t_{h}(x) \neq w t_{h}(y)$ where the vertex-weight $w t_{h}(x)=h(x)+\sum_{x y \in E} h(x z)$ and also for every two different edges $x y$ and $x^{\prime} y^{\prime}$ of G their edge-weights $w t_{h}(x y)=h(x)+h(x y)+h(y)$ and $w t_{h}\left(x^{\prime} y^{\prime}\right)=$ $h\left(x^{\prime}\right)+h\left(x^{\prime} y^{\prime}\right)+h\left(y^{\prime}\right)$ are distinct. A total irregularity strength of graph G, denoted by $\operatorname{ts}(G)$ is defined as the minimum k for which a graph G has a totally irregular total k-labeling. In this paper, we investigate double fan, double triangular snake, joint-wheel and $P_{m}+\overline{K_{m}}$ whose total irregularity strength equals to the lower bound.

1. Introduction

Let G be a finite, simple and undirected graph with the vertex set V and edge set E. A labeling of a graph G is a mapping that carries a set of graph elements into a set of numbers (usually to positive or non-negative integer). If the domain of mapping is a vertex set, or an edge set or a union of vertex and edge set, then the labeling is called vertex labeling or edge labeling or total labeling respectively. Bača et al. [3] introduced an edge irregular total labeling and a vertex irregular total labeling. They determined the total edge irregular strength (tes) and total vertex irregular strength $(t v s)$ of some certain graphs. Also, they obtained the exact values of the tes of path, cycle, star, wheel and friendship graph. Ivancǒ and Jendrol̆ [5]

[^0]proved that
\[

$$
\begin{equation*}
\operatorname{tes}(G) \geqslant \max \left\{\left\lceil\frac{(|E(G)|+2)}{3}\right\rceil,\left\lceil\frac{(\Delta(G)+1)}{2}\right\rceil\right\} \tag{1.1}
\end{equation*}
$$

\]

We found $[\mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{1 1}, \mathbf{1 2}]$ the total edge irregularity strength of closed helm graph $C H_{n}$ and flower graph $F l_{n}$, the disjoint union of wheel graphs, double wheel graphs, armed crown graph, splitting graph, tadpole graph. In [4] Hungund, Akka determined Total edge irregularity strength of triangular snake and double triangular snake.

$$
\begin{equation*}
\operatorname{tes}\left(G_{p}^{\prime}\right)=2 p+1, p \geqslant 1 \tag{1.2}
\end{equation*}
$$

Nurdin et al. [16] determined the lower bound of tos for any graph G.
Theorem 1.1 ([16]). Let G be a connected graph having n_{i} vertices of degree $i(i=\delta, \delta+1, \delta+2, \ldots, \Delta)$ where δ and Δ are the minimum and maximum degree of G, respectively. Then

$$
\begin{equation*}
\operatorname{tvs}(G) \geqslant \max \left\{\left\lceil\frac{\delta+n_{\delta}}{\delta+1}\right\rceil,\left\lceil\frac{\delta+n_{\delta}+n_{\delta+1}}{\delta+2}\right\rceil, \ldots,\left\lceil\frac{\delta+\sum_{i=\delta}^{\Delta}\left(n_{i}\right)}{\Delta+1}\right\rceil\right\} \tag{1.3}
\end{equation*}
$$

Ahmad et al. [1] found the total vertex irregularity strength of helm graph H_{n} and flower graph $F l_{n}$. We found [9] the total vertex irregularity strength of corona product of some graphs. Combining the ideas of vertex irregular total k labeling and edge irregular total k-labeling, Marzuki et al. [15] introduced another irregular total k-labeling called the totally irregular total k-labeling. A labeling $h: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, k\}$ to be a totally irregular totalk-labeling of the graph G if for every two different vertices x and y the vertex-weights $w t_{h}(x) \neq$ $w t_{h}(y)$ where the vertex-weight $w t_{h}(x)=h(x)+\sum_{x z \in E} h(x z)$ and also for every two different edges $x y$ and $x^{\prime} y^{\prime}$ of G the edge-weights $w t_{h}(x y)=h(x)+h(x y)+h(y)$ and $w t_{h}\left(x^{\prime} y^{\prime}\right)=h\left(x^{\prime}\right)+h\left(x^{\prime} y^{\prime}\right)+h\left(y^{\prime}\right)$ are distinct. The total irregularity strength $t s(G)$ is defined as the minimum k for which a graph G has a totally irregular total k-labeling. For the total irregularity strength of a graph G, they observed that

$$
\begin{equation*}
t s(G) \geqslant \max \{\operatorname{tes}(G), \operatorname{tvs}(G)\} \tag{1.4}
\end{equation*}
$$

They also determined the total irregularity strength of cycles and paths.
Ramdani and Salman [17] obtained the total irregularity strength of some Cartesian product graphs. Ramdani et al. [18] determined the total irregularity strength of gear graph $G_{n}, n \geqslant 3$, fungus graph $F g_{n}, n \geqslant 3$ and disjoint union of star $m S_{n}, n, m \geqslant 2$. Ali Ahmad et al. [2] obtained the total irregularity strength of generalized Petersen graph. Also, we found $[\mathbf{1 3}, \mathbf{1 4}]$ the total irregularity strength of wheel related graphs and disjoint union of crossed prism and necklace graphs. We use the following definitions in the subsequent section.

Definition 1.1. The graph $P_{n}+2 K_{1}$ is called a double fan $D F_{n}$.

Definition 1.2. A double triangular snake $D T_{p}$ is a graph formed by two triangular snake having a common path, that is a double triangular snake with p blocks is obtained from a path $v_{0}, v_{1}, \ldots, v_{p}$ by joining v_{i} and v_{i+1} to two new vertices v_{p+1+i} and $v_{2 p+1+i}$ for $i=0,1, . ., p-1$.

Definition 1.3. A Joint-wheel graph $W H_{n}$ consists of two disjoint copies of wheel which are joined by an edge between two rim vertices. $W H_{n}$ has $2 n+2$ vertices and $4 n+1$ edges, where n is the number of rim vertices in one copy of the wheel graph.

2. Main Results

In this section, we determine the total irregularity strength of double fan graph $D F_{n}$ for $n \geqslant 3$, double triangular snake $D T_{p}$ for $p \geqslant 3$, joint-wheel graph $W H_{n}$ for $n \geqslant 3$ and $P_{m}+\overline{K_{m}}, m \geqslant 3$ whose total irregularity strength equals to the lower bound. In addition, we show that these graphs admit totally irregular total k-labeling. Further we determine the exact value of their $t s$.

Theorem 2.1. Let $n \geqslant 3$ and $D F_{n}$ be a double fan graph with $n+2$ vertices and 3n-1 edges. Then $t s\left(D F_{n}\right)=n+1$.

Proof. Since $\left|V\left(D F_{n}\right)\right|=n+2$ and $\left|E\left(D F_{n}\right)\right|=3 n-1$. The vertex set $V\left(D F_{n}\right)=\left\{v_{i}, a, b: 1 \leqslant i \leqslant n\right\}$ and edge set $E\left(D F_{n}\right)=\left\{a v_{i}, b v_{i}: 1 \leqslant i \leqslant\right.$ $n-1\} \cup\left\{v_{i} v_{i+1}: 1 \leqslant i \leqslant n\right\}$, by (1.1), (1.3) and (1.4) we have $\operatorname{ts}\left(D F_{n}\right) \geqslant n+1$. For the reverse inequality, we define a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, n+1\}$ by considering the following two cases.

Case(i): $n=5$
$f(b)=6 ; f(a)=1 ; f\left(a v_{1}\right)=1 ; f\left(a v_{2}\right)=2 ; f\left(a v_{3}\right)=3 ; f\left(a v_{4}\right)=4 ; f\left(a v_{5}\right)=$ $5 ; f\left(b v_{1}\right)=f\left(b v_{2}\right)=f\left(b v_{3}\right)=f\left(b v_{4}\right)=5 ; f\left(b v_{5}\right)=6 ; f\left(v_{1} v_{2}\right)=f\left(v_{2} v_{3}\right)=$ $f\left(v_{3} v_{4}\right)=f\left(v_{4} v_{5}\right)=1$.

Case(ii): $n \geqslant 3 ; n \neq 5$
$f\left(v_{i}\right)=i, 1 \leqslant i \leqslant n ; f(a)=1 ; f(b)=n+1 ; f\left(v_{i} v_{i+1}\right)=1,1 \leqslant i \leqslant n-1 ; f\left(b v_{i}\right)=$ $n, 1 \leqslant i \leqslant n ; f\left(a v_{i}\right)=i, 1 \leqslant i \leqslant n$.
We see that all the vertex and edge labels are at most $n+1$. Since

$$
\begin{gathered}
w t\left(a v_{i}\right)=2 i+1,1 \leqslant i \leqslant n ; w t\left(v_{i} v_{i+1}\right)=2 i+2,1 \leqslant i \leqslant n-1 \\
w t\left(b v_{i}\right)=2 n+1+i, 1 \leqslant i \leqslant n,
\end{gathered}
$$

the weights of the edges under the labeling f are $\{3,4,5, \ldots, 2 n+1,2 n+2,2 n+$ $3, \ldots, 3 n+1\}$. Thus the edge weights are pair-wise distinct.

The vertex weights are

$$
\begin{gathered}
w t\left(v_{i}\right)= \begin{cases}n+3, & \text { if } i=1 \\
n+2 i+2, & \text { if } 2 \leqslant i \leqslant n-1 \\
3 n+1, & \text { if } i=n ;\end{cases} \\
w t(a)=\frac{n^{2}+n+2}{2} ;
\end{gathered}
$$

$$
w t(b)=n^{2}+n+1
$$

That is $\left\{n+3, n+6, n+8, \ldots, 3 n, 3 n+1, \frac{n^{2}+n+2}{2}, n^{2}+n+1\right\}$. Hence all the vertex weights are distinct. This labeling construction shows that $t s\left(D F_{n}\right) \leqslant n+1$. Combining this with the lower bound, we conclude that $\operatorname{ts}\left(D F_{n}\right)=n+1$. This completes the proof.

Figure 1 shows a totally irregular total labeling of double fan graph $D F_{8}$.

Theorem 2.2. Let $p \geqslant 2$ and $D T_{p}$ be a double triangular graph. Then

$$
t s\left(D T_{p}\right)=2 p+1
$$

Proof. Let $V\left(D T_{p}\right)=\left\{v_{i}: 0 \leqslant i \leqslant p\right\} \cup\left\{w_{i}, w_{i}^{\prime}: 0 \leqslant i \leqslant p-1\right\}$ and $E\left(D T_{p}\right)=\left\{v_{i} v_{i+1}: 0 \leqslant i \leqslant p\right\} \cup\left\{v_{i} w_{i}, w_{i} v_{i+1}, w_{i}^{\prime} v_{i}, w_{i}^{\prime} v_{i+1}: 0 \leqslant i \leqslant p-1\right\}$ by (1.1), (1.3) and (1.4) we have $t s(G) \geqslant 2 p+1$. For the reverse inequality, we define a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, 2 p+1\}$ by considering the following two cases.

Case(i): $\quad p$ is odd.
$f\left(v_{i}\right)=i+1,0 \leqslant i \leqslant p ; f\left(w_{i}\right)=i+2,0 \leqslant i \leqslant p-1 ; f\left(v_{i} w_{i}\right)=1,0 \leqslant i \leqslant p-1$; $f\left(w_{i} v_{i+1}\right)=1,0 \leqslant i \leqslant p-1 ; f\left(w_{i}^{\prime} v_{i+1}\right)=2 p+1,0 \leqslant i \leqslant p-1 ; f\left(w_{i}^{\prime} v_{i}\right)=2 p+$ $1,0 \leqslant i \leqslant p-1 ; f\left(w_{i}^{\prime}\right)=p+2+i, 0 \leqslant i \leqslant p-1 ; f\left(v_{i} v_{i+1}\right)=2 p+1-i, 0 \leqslant i \leqslant p-1$.
We see that all the vertex and edge labels are at most $2 p+1$. The edge weights are $w t\left(v_{i} w_{i}\right)=4+2 i, 1 \leqslant i \leqslant p-1 ; w t\left(w_{i} v_{i+1}\right)=5+2 i, 0 \leqslant i \leqslant p-1 ; w t\left(w_{i}^{\prime} v_{i+1}\right)=$ $3 p+5+2 i, 0 \leqslant i \leqslant p-1 ; w t\left(w_{i}^{\prime} v_{i}\right)=3 p+4+2 i, 0 \leqslant i \leqslant p-1 ; w t\left(v_{i} v_{i+1}\right)=$ $2 p+4+i, 0 \leqslant i \leqslant p-1$,
the weights of the edges under the labeling f are $\{4,6,8, \ldots, 2 p+2,5,7, \ldots, 2 p+$ $3,3 p+5,3 p+7, \ldots, 5 p+3,3 p+4,3 p+6,3 p+8, \ldots, 5 p+2,2 p+4,2 p+5, \ldots, 3 p+$ $2,3 p+3\}$. Thus the edge weights are pair-wise distinct.

The vertex weights are

$$
\begin{gathered}
w t\left(w_{i}\right)=4+i, 0 \leqslant i \leqslant p-1 \\
w t\left(v_{i}\right)= \begin{cases}4 p+4, & \text { if } i=0 \\
4 p+5, & \text { if } i=p \\
8 p+8-i, & \text { if } 1 \leqslant i \leqslant p-1 ;\end{cases} \\
w t\left(w_{i}^{\prime}\right)=5 p+4+i
\end{gathered}
$$

That is $\{4,5,6, \ldots, p+3,4 p+4,4 p+5,8 p+7,8 p+6, \ldots, 7 p+9\}$. Hence all the vertex weights are distinct.

Case(ii): $\quad p$ is even.
$f\left(v_{i}\right)=i+1,0 \leqslant i \leqslant p ; f\left(w_{i}\right)=1,0 \leqslant i \leqslant p-1 ; f\left(w_{i}^{\prime}\right)=2 p+1,0 \leqslant i \leqslant p-1 ;$ $f\left(v_{i} w_{i}\right)=i+1,0 \leqslant i \leqslant p-1 ; f\left(w_{i} v_{i+1}\right)=i+1,0 \leqslant i \leqslant p-1 ; f\left(v_{i} v_{i+1}\right)=2 p-$ $i, 0 \leqslant i \leqslant p-1 ; f\left(w_{i}^{\prime} v_{i+1}\right)=p+1+i, 0 \leqslant i \leqslant p-1 ; f\left(w_{i}^{\prime} v_{i}\right)=p+1+i, 0 \leqslant i \leqslant p-1$.
We see that all the vertex and edge labels are at most $2 p+1$. Since
$w t\left(v_{i} w_{i}\right)=3+2 i, 1 \leqslant i \leqslant p-1 ; w t\left(w_{i} v_{i+1}\right)=4+2 i, 0 \leqslant i \leqslant p-1 ; w t\left(v_{i} v_{i+1}\right)=$ $2 p+3+i, 0 \leqslant i \leqslant p-1 ; w t\left(w_{i}^{\prime} v_{i}\right)=3 p+3+2 i, 0 \leqslant i \leqslant p-1 ; w t\left(w_{i}^{\prime} v_{i+1}\right)=$ $3 p+4+2 i, 0 \leqslant i \leqslant p-1$,
the weights of the edges under the labeling f are $\{3,5, \ldots, 2 p+1,4,6,8, \ldots, 2 p+$ $2,2 p+3,2 p+4, \ldots, 3 p+2,3 p+3,3 p+5, \ldots, 5 p+1,3 p+4,3 p+6,3 p+8, \ldots, 5 p+2\}$. Thus the edge weights are pair-wise distinct.

The vertex weights are

$$
\begin{gathered}
w t\left(w_{i}\right)=3+2 i, 0 \leqslant i \leqslant p-1 ; \\
w t\left(v_{i}\right)= \begin{cases}3 p+3, & \text { if } i=0 \\
5 p+2, & \text { if } i=p \\
6 p+4+3 i, & \text { if } 1 \leqslant i \leqslant p-1 ;\end{cases} \\
w t\left(w_{i}^{\prime}\right)=4 p+3+2 i ; 0 \leqslant i \leqslant p-1 .
\end{gathered}
$$

That is $\{3,5,7, \ldots, 2 p+1,3 p+3,5 p+2,4 p+3,4 p+5,4 p+7, \ldots, 6 p+1,6 p+4,6 p+$ $7, \ldots, 9 p+1\}$. Hence all the vertex weights are distinct. This labeling construction shows that $t s\left(D T_{p}\right) \leqslant 2 p+1$.

Combining this with the lower bound, we conclude that $t s\left(D T_{p}\right)=2 p+1$. This completes the proof.

Figure 2 shows a totally irregular total labeling of double triangular $D T_{6}$.

Theorem 2.3. Let $n \geqslant 3$ and $W H_{n}$ be a joint-wheel graph. Then

$$
t s\left(W H_{n}\right)=\left\lceil\frac{4 n+3}{3}\right\rceil .
$$

Proof. Let $V\left(W H_{n}\right)=\left\{v_{i}, u_{i}, c_{1}, c_{2}: 1 \leqslant i \leqslant n\right\}$ and

$$
E\left(W H_{n}\right)=\left\{v_{i} v_{i+1}, u_{i} u_{i+1}, c_{1} v_{i}, c_{2} u_{i}, v_{n} u_{n}: 1 \leqslant i \leqslant n\right\}
$$

with indices taken modulo n by (1.1), (1.3) and (1.4) we have $t s\left(W H_{n}\right) \geqslant\left\lceil\frac{4 n+3}{3}\right\rceil$. Let $k=\left\lceil\frac{4 n+3}{3}\right\rceil$. For the reverse inequality, we define a total labeling f as follows: $f\left(v_{i}\right)=i, 1 \leqslant i \leqslant n ; f\left(c_{1}\right)=1, f\left(c_{1} v_{i}\right)=1,1 \leqslant i \leqslant n ; f\left(v_{i} v_{i+1}\right)=n+1-i, 1 \leqslant$ $i \leqslant n-1 ; f\left(v_{n} v_{1}\right)=n+1 ; f\left(u_{i}\right)=k+1-i, 1 \leqslant i \leqslant n ; f\left(u_{i} u_{i+1}\right)=3 n+2-2 k+$ $i, 1 \leqslant i \leqslant n ; f\left(c_{2}\right)=k, f\left(c_{2} u_{i}\right)=k, 1 \leqslant i \leqslant n ; f\left(v_{n} u_{n}\right)=2 n+2-k$.
We see that all the vertex and edge labels are at most k.
We have
$w t\left(c_{1} v_{i}\right)=2+i, 1 \leqslant i \leqslant n ; w t\left(v_{i} v_{i+1}\right)=n+2+i, 1 \leqslant i \leqslant n ; w t\left(v_{n} u_{n}\right)=2 n+3$; $w t\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{ll}3 n+3-i, & \text { if } 1 \leqslant i \leqslant n-1 \\ 3 n+3, & \text { if } i=n ;\end{array} \quad w t\left(c_{2} u_{i}\right)=3 k+1-i, 1 \leqslant i \leqslant n\right.$,
the weights of the edges under the labeling f are $\{3,4, \ldots, n+2, n+3, n+4, \ldots, 2 n+$ $2,2 n+3,3 n+2,3 n+1,3 n, \ldots, 2 n+4,3 n+3,3 k, 3 k-1, \ldots, 3 k+1-n\}$. Thus the edge weights are pair-wise distinct.

The vertex weights are
$w t\left(c_{1}\right)=n+1,1 \leqslant i \leqslant n ; w t\left(v_{i}\right)=\left\{\begin{array}{ll}2 n+4-i, & \text { if } 1 \leqslant i \leqslant n-1 \\ 4 n+6-k, & \text { if } i=n ;\end{array} \quad w t\left(u_{i}\right)=\right.$ $\begin{cases}7 n+5-2 k, & \text { if } i=1 \\ 6 n+4-2 k+i, & \text { if } 2 \leqslant i \leqslant n-1 \quad w t\left(c_{2}\right)=k(1+n) . \\ 9 n+6-3 k, & \text { if } i=n ;\end{cases}$
That is $\{n+1,2 n+3,2 n+2,2 n+1, \ldots, n+6, n+5,4 n+6-k, 7 n+5-2 k, \ldots, 6 n+$ $6-2 k, 6 n+7-2 k, \ldots, 7 n+2-2 k, 7 n+3-2 k, 9 n+6-3 k, k(1+n)\}$.

Hence all the vertex weights are distinct. This labeling construction shows that $t s\left(W H_{n}\right) \leqslant k$. Combining this with the lower bound, we conclude that $t s\left(W H_{n}\right)=k$. This completes the proof. Figure 3 shows a totally irregular total labeling of joint-wheel graph $W H_{6}$.

Figure 3. $t s\left(W H_{6}\right)=9$.
Theorem 2.4. Let $m \geqslant 3$. Then $t s\left(P_{m}+\overline{k_{m}}\right)=m+1$.
Proof. Let $V\left(P_{m}+\overline{k_{m}}\right)=\left\{v_{i}, u_{i}: 1 \leqslant i \leqslant m\right\}$ and

$$
E\left(P_{m}+\overline{k_{m}}\right)=\left\{v_{1} u_{i}, v_{m} u_{i}, 1 \leqslant i \leqslant m\right\} \cup\left\{v_{i} v_{i+1}: 1 \leqslant i \leqslant m-1\right\}
$$

by (1.1), (1.3) and (1.4) we have $t s\left(P_{m}+\overline{k_{m}}\right) \geqslant m+1$. For the reverse inequality, we define a total labeling $f: V \cup E \rightarrow\{1,2,3, \ldots, m+1\}$ by considering the following two cases.

Case(i): m is odd.
$f\left(v_{i}\right)=\left\{\begin{array}{ll}1, & \text { if } i=1 ; \\ m+1, & \text { if } 2 \leqslant i \leqslant m .\end{array} \quad f\left(u_{i}\right)=i, 1 \leqslant i \leqslant m ; f\left(v_{1} u_{i}\right)=1,1 \leqslant i \leqslant m ;\right.$ $f\left(v_{m} u_{i}\right)=1,1 \leqslant i \leqslant m ; f\left(v_{i} v_{i+1}\right)= \begin{cases}m+1, & \text { if } i=1 \\ i, & \text { if } 2 \leqslant i \leqslant m-1 .\end{cases}$
We see that all the vertex and edge labels are at most $m+1$. We have
$w t\left(v_{1} u_{i}\right)=2+i, 1 \leqslant i \leqslant m ; w t\left(v_{m} u_{i}\right)=m+2+i, 1 \leqslant i \leqslant m ; w t\left(v_{i} v_{i+1}\right)=$ $\begin{cases}2 m+3, & \text { if } i=1 \\ 2 m+2+i, & \text { if } 2 \leqslant i \leqslant m-1 .\end{cases}$
the weights of the edges under the labeling f are $\{3,4, \ldots, m+2, m+3, m+$ $4, \ldots, 2 m+2,2 m+3,2 m+4,2 m+5, \ldots, 3 m+1\}$. Thus the edge weights are pair-wise distinct.

The vertex weights are
$w t\left(u_{i}\right)=2+i, 1 \leqslant i \leqslant m ; w t\left(v_{i}\right)= \begin{cases}2 m+2, & \text { if } i=1 \\ 3 m, & \text { if } i=m ;\end{cases}$
That is $\{3,4, \ldots, m+2,2 m+2,3 m\}$. Hence all the vertex weights are distinct.
Case(ii): m is even.
$f\left(v_{i}\right)=\left\{\begin{array}{ll}1, & \text { if } i=1 \\ m+1, & \text { if } 2 \leqslant i \leqslant m ;\end{array} \quad f\left(u_{i}\right)=1,1 \leqslant i \leqslant m ; f\left(v_{1} u_{i}\right)=f\left(v_{m} u_{i}\right)=\right.$
$i, 1 \leqslant i \leqslant m ; f\left(v_{i} v_{i+1}\right)= \begin{cases}m+1, & \text { if } i=1,2 \\ m+3-i, & \text { if } 3 \leqslant i \leqslant m-1 .\end{cases}$

We see that all the vertex and edge labels are at most $m+1$.
We have
$w t\left(v_{1} u_{i}\right)=2+i, 1 \leqslant i \leqslant m ; w t\left(v_{m} u_{i}\right)=m+2+i, 1 \leqslant i \leqslant m ; w t\left(v_{i} v_{i+1}\right)=$ $\begin{cases}2 m+3, & \text { if } i=1 \\ 3 m+3, & \text { if } i=2 \\ 3 m+5-i, & \text { if } 3 \leqslant i \leqslant m-1 ;\end{cases}$
The weights of the edges under the labeling f are $\{3,4, \ldots, m+2, m+3, m+$ $4, \ldots, 2 m+2,2 m+3,3 m+3,3 m+2,3 m+1,3 m, \ldots, 2 m+6\}$. Thus the edge weights are pair-wise distinct.

The vertex weights are
$w t\left(u_{i}\right)=2 i+1,1 \leqslant i \leqslant m ; w t\left(v_{i}\right)= \begin{cases}\frac{m^{2}+3 m+4}{2}, & \text { if } i=1 \\ \frac{m^{2}+3 m+10}{2}, & \text { if } i=m .\end{cases}$
That is $\left\{3,5, \ldots 2 m+1, \frac{m^{2}+3 m+4}{2}, \frac{m^{2}+3 m+10}{2}\right\}$. Hence all the vertex weights are distinct. This labeling construction shows that $t s\left(P_{m}+\overline{k_{m}}\right) \leqslant m+1$.

Combining this with the lower bound, we conclude that $t s\left(P_{m}+\overline{k_{m}}\right)=m+1$. This completes the proof.

Figure 4 shows a totally irregular total labeling of $P_{5}+\overline{k_{5}}$.

References

[1] A. Ahmad and K. M. Awan, I. Javaid and Slamin. Total vertex irregularity strength of wheel related graphs. Australas. J. Combin., 51 (2011), 147-156.
[2] A. Ahmad, M. Ibrahim and M. K. Siddiqui. On the total trregularity strength of generalized Petersen graph. Math. Reports, 18(68)(2)(2016), 197-204.
[3] M. Bača, S. Jendroĺ, M. Miller and J. Ryan. On irregular total labellings. Discrete Math., 307(11-12)(2007), 1378-1388.
[4] N. S. Hungund and D. G. Akka. Total irregularity strength of triangular snake and double triangular snake. International Refereed Research Journal, 3(2011), 67-69.
[5] Ivančo and S. Jendroĺ. Total edge irregularity strength of trees. Discussiones Math. Graph Theory, 26(3)(2006), 449-456.
[6] P. Jeyanthi and A. Sudha. Total edge irregularity strength of wheel related graphs. J. Graph Labeling, 2(1)(2016), 45-57.
[7] P. Jeyanthi and A. Sudha. Total edge irregularity strength of disjoint union of Wheel graphs. El. Notes Dis. Math., 48(2015), 175-182.
[8] P. Jeyanthi and A. Sudha. Total edge trregularity strength of disjoint union of double Wheel graphs. Proyecciones J. Math., 35(3)(2016), 251-262.
[9] P. Jeyanthi and A. Sudha. Total vertex irregularity strength of corona product of some graphs. J. Algorithms and Computation, 48(1)(2016), 127-140.
[10] P. Jeyanthi and A. Sudha. Total vertex irregularity strength of some graphs. Palestine J. Math., 7(2)(2018), 725-733.
[11] P. Jeyanthi and A. Sudha. Total edge irregularity strength of some families of graphs. Utilitas Mathematica, 109(2018), 139-153.
[12] P. Jeyanthi and A. Sudha. Some results on edge irregular total labeling. Bull. Int. Math. Virtual Inst., 9(1)(2019), 73-91.
[13] P. Jeyanthi and A. Sudha. On the total irregularity strength of wheel related graphs. Utilitas Mathematica, to appear.
[14] P. Jeyanthi and A. Sudha. The total irregularity strength of disjoint union of crossed prism and necklace graphs. Utilitas Mathematica, to appear
[15] C. C. Marzuki, A. N. M. Salman and M. Miller. On the total irregularity strength on cycles and paths. Far East J. Math. Sci., 82(1)(2013), 1-21.
[16] Nurdin, E. T. Baskoro, A. N. M. Salman and N. N. Gaos. On the total vertex irregularity strength of trees. Discrete. Math., 310(21)(2010), 3043-3048.
[17] R. Ramdani and A. N. M. Salman. On the total irregularity strength of some Cartesian product graphs. AKCE Int. J. Graphs Comb., 10(2)(2013), 199-209.
[18] R. Ramdani, A. N. M. Salman, H. Assiyatun, A. Semaničová-Fenňovčková and M. Bača. Total irregularity strength of three families of graphs. Math. Comput. Sci., $\mathbf{9}(2)(2015)$, 229-237.

Received by editors 19.07.2018; Revised version 04.02.2019; Available online 11.02.2019.
P. Jeyanthi: Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215, Tamil Nadu, India

E-mail address: jeyajeyanthi@rediffmail.com
A. Sudha: Research Scholar, Reg.No:11824, Research Centre, Department of Mathematics, Govindhammal Aditanar College for Women, Tiruchendur, Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli - 627012, TamilNadu, India

E-mail address: sudhathanalakshmi@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C78.
 Key words and phrases. vertex irregular total k-labeling; edge irregular total k-labeling; total irregularity strength;double fan graph; double triangular snake graph; joint-wheel graph.

