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ON THE TOTAL IRREGULARITY STRENGTH

OF SOME GRAPHS

P. Jeyanthi and A. Sudha

Abstract. A totally irregular total k-labeling f : V ∪ E → {1, 2, 3, . . . , k} is
a labeling of vertices and edges of G in such a way that for any two different
vertices x and y their vertex-weights wth(x) 6= wth(y) where the vertex-weight

wth(x) = h(x) +
∑

xy∈E

h(xz) and also for every two different edges xy and

x′y′ of G their edge-weights wth(xy) = h(x) + h(xy) + h(y) and wth(x
′y′) =

h(x′) + h(x′y′) + h(y′) are distinct. A total irregularity strength of graph
G, denoted by ts(G) is defined as the minimum k for which a graph G has

a totally irregular total k-labeling. In this paper, we investigate double fan,
double triangular snake, joint-wheel and Pm + Km whose total irregularity

strength equals to the lower bound.

1. Introduction

Let G be a finite, simple and undirected graph with the vertex set V and edge
set E. A labeling of a graph G is a mapping that carries a set of graph elements
into a set of numbers (usually to positive or non-negative integer). If the domain of
mapping is a vertex set, or an edge set or a union of vertex and edge set, then the
labeling is called vertex labeling or edge labeling or total labeling respectively. Bača
et al. [3] introduced an edge irregular total labeling and a vertex irregular total
labeling. They determined the total edge irregular strength (tes) and total vertex
irregular strength(tvs) of some certain graphs. Also, they obtained the exact values
of the tes of path, cycle, star, wheel and friendship graph. Ivancǒ and Jendrǒl [5]
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proved that

(1.1) tes(G) > max

{

⌈

(|E(G)|+ 2)

3

⌉

,

⌈

(∆(G) + 1)

2

⌉

}

.

We found [6, 7, 8, 11, 12] the total edge irregularity strength of closed helm
graph CHn and flower graph Fln, the disjoint union of wheel graphs, double wheel
graphs, armed crown graph, splitting graph, tadpole graph. In [4] Hungund, Akka
determined Total edge irregularity strength of triangular snake and double trian-
gular snake.

(1.2) tes(G
′

p) = 2p+ 1, p > 1.

Nurdin et al. [16] determined the lower bound of tvs for any graph G.

Theorem 1.1 ([16]). Let G be a connected graph having ni vertices of degree

i (i = δ, δ + 1, δ + 2, ...,∆) where δ and ∆ are the minimum and maximum degree

of G, respectively. Then

(1.3) tvs(G) > max



















⌈

δ + nδ

δ + 1

⌉

,

⌈

δ + nδ + nδ+1

δ + 2

⌉

, . . . ,















δ +
∆
∑

i=δ

(ni)

∆ + 1

































.

Ahmad et al. [1] found the total vertex irregularity strength of helm graph
Hn and flower graph Fln. We found [9] the total vertex irregularity strength of
corona product of some graphs. Combining the ideas of vertex irregular total k-
labeling and edge irregular total k-labeling, Marzuki et al. [15] introduced another
irregular total k-labeling called the totally irregular total k-labeling. A labeling
h : V (G) ∪ E(G) → {1, 2, 3, . . . , k} to be a totally irregular totalk-labeling of the
graph G if for every two different vertices x and y the vertex-weights wth(x) 6=
wth(y) where the vertex-weight wth(x) = h(x) +

∑

xz∈E

h(xz) and also for every two

different edges xy and x′y′ of G the edge-weights wth(xy) = h(x) + h(xy) + h(y)
and wth(x

′y′) = h(x′) + h(x′y′) + h(y′) are distinct. The total irregularity strength

ts(G) is defined as the minimum k for which a graph G has a totally irregular total
k-labeling. For the total irregularity strength of a graph G, they observed that

(1.4) ts(G) > max {tes(G), tvs(G)} .

They also determined the total irregularity strength of cycles and paths.
Ramdani and Salman [17] obtained the total irregularity strength of some

Cartesian product graphs. Ramdani et al. [18] determined the total irregularity
strength of gear graph Gn, n > 3, fungus graph Fgn, n > 3 and disjoint union of
star mSn, n,m > 2. Ali Ahmad et al. [2] obtained the total irregularity strength of
generalized Petersen graph. Also, we found [13, 14] the total irregularity strength
of wheel related graphs and disjoint union of crossed prism and necklace graphs.
We use the following definitions in the subsequent section.

Definition 1.1. The graph Pn + 2K1 is called a double fan DFn.
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Definition 1.2. A double triangular snake DTp is a graph formed by two
triangular snake having a common path, that is a double triangular snake with
p blocks is obtained from a path v0, v1, ..., vp by joining vi and vi+1 to two new
vertices vp+1+i and v2p+1+i for i = 0, 1, .., p− 1.

Definition 1.3. A Joint-wheel graph WHn consists of two disjoint copies of
wheel which are joined by an edge between two rim vertices. WHn has 2n + 2
vertices and 4n+1 edges, where n is the number of rim vertices in one copy of the
wheel graph.

2. Main Results

In this section,we determine the total irregularity strength of double fan graph
DFn for n > 3, double triangular snake DTp for p > 3, joint-wheel graph WHn

for n > 3 and Pm + Km,m > 3 whose total irregularity strength equals to the
lower bound. In addition, we show that these graphs admit totally irregular total
k-labeling. Further we determine the exact value of their ts.

Theorem 2.1. Let n > 3 and DFn be a double fan graph with n+2 vertices

and 3n-1 edges. Then ts(DFn) = n+ 1.

Proof. Since |V (DFn)| = n + 2 and |E(DFn)| = 3n − 1. The vertex set
V (DFn) = {vi, a, b : 1 6 i 6 n} and edge set E(DFn) = {avi, bvi : 1 6 i 6

n − 1} ∪ {vivi+1 : 1 6 i 6 n}, by (1.1), (1.3) and (1.4) we have ts(DFn) > n + 1.
For the reverse inequality, we define a total labeling f : V ∪E → {1, 2, 3, . . . , n+1}
by considering the following two cases.

Case(i): n = 5
f(b) = 6; f(a) = 1; f(av1) = 1; f(av2) = 2; f(av3) = 3; f(av4) = 4; f(av5) =
5; f(bv1) = f(bv2) = f(bv3) = f(bv4) = 5; f(bv5) = 6; f(v1v2) = f(v2v3) =
f(v3v4) = f(v4v5) = 1.

Case(ii): n > 3;n 6= 5
f(vi) = i, 1 6 i 6 n; f(a) = 1; f(b) = n+ 1; f(vivi+1) = 1, 1 6 i 6 n− 1; f(bvi) =
n, 1 6 i 6 n; f(avi) = i, 1 6 i 6 n.

We see that all the vertex and edge labels are at most n+ 1. Since

wt(avi) = 2i+ 1, 1 6 i 6 n;wt(vivi+1) = 2i+ 2, 1 6 i 6 n− 1;
wt(bvi) = 2n+ 1 + i, 1 6 i 6 n,

the weights of the edges under the labeling f are {3, 4, 5, . . . , 2n + 1, 2n + 2, 2n +
3, . . . , 3n+ 1}. Thus the edge weights are pair-wise distinct.

The vertex weights are

wt(vi) =











n+ 3, if i = 1

n+ 2i+ 2, if 2 6 i 6 n− 1

3n+ 1, if i = n;

wt(a) =
n2 + n+ 2

2
;
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wt(b) = n2 + n+ 1.

That is {n + 3, n + 6, n + 8, ..., 3n, 3n + 1, n2+n+2
2 , n2 + n + 1}. Hence all the ver-

tex weights are distinct .This labeling construction shows that ts(DFn) 6 n + 1.
Combining this with the lower bound, we conclude that ts(DFn) = n + 1. This
completes the proof. �

Figure 1 shows a totally irregular total labeling of double fan graph DF8.
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Figure1. ts(DF8) = 9.

Theorem 2.2. Let p > 2 and DTp be a double triangular graph. Then

ts(DTp) = 2p+ 1.

Proof. Let V (DTp) = {vi : 0 6 i 6 p} ∪ {wi, w
′

i : 0 6 i 6 p − 1} and
E(DTp) = {vivi+1 : 0 6 i 6 p} ∪ {viwi, wivi+1, w

′

ivi, w
′

ivi+1 : 0 6 i 6 p − 1} by
(1.1), (1.3) and (1.4) we have ts(G) > 2p+1. For the reverse inequality, we define
a total labeling f : V ∪ E → {1, 2, 3, . . . , 2p + 1} by considering the following two
cases.

Case(i): p is odd.

f(vi) = i+ 1, 0 6 i 6 p; f(wi) = i+ 2, 0 6 i 6 p− 1; f(viwi) = 1, 0 6 i 6 p− 1;
f(wivi+1) = 1, 0 6 i 6 p − 1; f(w′

ivi+1) = 2p + 1, 0 6 i 6 p − 1; f(w′

ivi) = 2p +
1, 0 6 i 6 p−1; f(w′

i) = p+2+i, 0 6 i 6 p−1; f(vivi+1) = 2p+1−i, 0 6 i 6 p−1.

We see that all the vertex and edge labels are at most 2p+1. The edge weights are

wt(viwi) = 4+ 2i, 1 6 i 6 p− 1; wt(wivi+1) = 5+ 2i, 0 6 i 6 p− 1; wt(w′

ivi+1) =
3p + 5 + 2i, 0 6 i 6 p − 1; wt(w′

ivi) = 3p + 4 + 2i, 0 6 i 6 p − 1; wt(vivi+1) =
2p+ 4 + i, 0 6 i 6 p− 1,

the weights of the edges under the labeling f are {4, 6, 8, . . . , 2p + 2, 5, 7, . . . , 2p +
3, 3p+5, 3p+7, . . . , 5p+3, 3p+4, 3p+6, 3p+8, . . . , 5p+2, 2p+4, 2p+5, . . . , 3p+
2, 3p+ 3}. Thus the edge weights are pair-wise distinct.
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The vertex weights are

wt(wi) = 4 + i, 0 6 i 6 p− 1;

wt(vi) =











4p+ 4, if i = 0

4p+ 5, if i = p

8p+ 8− i, if 1 6 i 6 p− 1;

wt(w′

i) = 5p+ 4 + i.

That is {4, 5, 6, ..., p+3, 4p+4, 4p+5, 8p+7, 8p+6, ..., 7p+9}. Hence all the vertex
weights are distinct.

Case(ii): p is even.

f(vi) = i+ 1, 0 6 i 6 p; f(wi) = 1, 0 6 i 6 p− 1; f(w′

i) = 2p+ 1, 0 6 i 6 p− 1;
f(viwi) = i+ 1, 0 6 i 6 p− 1; f(wivi+1) = i+ 1, 0 6 i 6 p− 1; f(vivi+1) = 2p−
i, 0 6 i 6 p−1; f(w′

ivi+1) = p+1+i, 0 6 i 6 p−1; f(w′

ivi) = p+1+i, 0 6 i 6 p−1.

We see that all the vertex and edge labels are at most 2p+ 1. Since

wt(viwi) = 3 + 2i, 1 6 i 6 p− 1; wt(wivi+1) = 4 + 2i, 0 6 i 6 p− 1; wt(vivi+1) =
2p + 3 + i, 0 6 i 6 p − 1; wt(w′

ivi) = 3p + 3 + 2i, 0 6 i 6 p − 1; wt(w′

ivi+1) =
3p+ 4 + 2i, 0 6 i 6 p− 1,

the weights of the edges under the labeling f are {3, 5, . . . , 2p + 1, 4, 6, 8, . . . , 2p +
2, 2p+3, 2p+4, . . . , 3p+2, 3p+3, 3p+5, . . . , 5p+1, 3p+4, 3p+6, 3p+8, . . . , 5p+2}.
Thus the edge weights are pair-wise distinct.

The vertex weights are

wt(wi) = 3 + 2i, 0 6 i 6 p− 1;

wt(vi) =











3p+ 3, if i = 0

5p+ 2, if i = p

6p+ 4 + 3i, if 1 6 i 6 p− 1;

wt(w′

i) = 4p+ 3 + 2i; 0 6 i 6 p− 1.

That is {3, 5, 7, . . . , 2p+1, 3p+3, 5p+2, 4p+3, 4p+5, 4p+7, . . . , 6p+1, 6p+4, 6p+
7, . . . , 9p+1}. Hence all the vertex weights are distinct. This labeling construction
shows that ts(DTp) 6 2p+ 1.

Combining this with the lower bound, we conclude that ts(DTp) = 2p+1. This
completes the proof. �

Figure 2 shows a totally irregular total labeling of double triangular DT6.
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Figure 2. ts(DT6) = 13.

Theorem 2.3. Let n > 3 and WHn be a joint-wheel graph. Then

ts(WHn) =

⌈

4n+ 3

3

⌉

.

Proof. Let V (WHn) = {vi, ui, c1, c2 : 1 6 i 6 n} and

E(WHn) = {vivi+1, uiui+1, c1vi, c2ui, vnun : 1 6 i 6 n}

with indices taken modulo n by (1.1), (1.3) and (1.4) we have ts(WHn) >
⌈

4n+3
3

⌉

.

Let k =
⌈

4n+3
3

⌉

. For the reverse inequality, we define a total labeling f as follows:

f(vi) = i, 1 6 i 6 n; f(c1) = 1, f(c1vi) = 1, 1 6 i 6 n; f(vivi+1) = n+ 1− i, 1 6

i 6 n− 1; f(vnv1) = n+1; f(ui) = k+1− i, 1 6 i 6 n; f(uiui+1) = 3n+2− 2k+
i, 1 6 i 6 n; f(c2) = k, f(c2ui) = k, 1 6 i 6 n; f(vnun) = 2n+ 2− k.

We see that all the vertex and edge labels are at most k.
We have

wt(c1vi) = 2+ i, 1 6 i 6 n; wt(vivi+1) = n+ 2+ i, 1 6 i 6 n; wt(vnun) = 2n+ 3;

wt(uiui+1) =

{

3n+ 3− i, if 1 6 i 6 n− 1

3n+ 3, if i = n;
wt(c2ui) = 3k + 1− i, 1 6 i 6 n,

the weights of the edges under the labeling f are {3, 4, . . . , n+2, n+3, n+4, . . . , 2n+
2, 2n+3, 3n+2, 3n+1, 3n, . . . , 2n+4, 3n+3, 3k, 3k− 1, . . . , 3k+1−n}. Thus the
edge weights are pair-wise distinct.

The vertex weights are

wt(c1) = n + 1, 1 6 i 6 n; wt(vi) =

{

2n+ 4− i, if 1 6 i 6 n− 1

4n+ 6− k, if i = n;
wt(ui) =











7n+ 5− 2k, if i = 1

6n+ 4− 2k + i, if 2 6 i 6 n− 1

9n+ 6− 3k, if i = n;

wt(c2) = k(1 + n).

That is {n+1, 2n+3, 2n+2, 2n+1, . . . , n+6, n+5, 4n+6−k, 7n+5−2k, . . . , 6n+
6− 2k, 6n+ 7− 2k, . . . , 7n+ 2− 2k, 7n+ 3− 2k, 9n+ 6− 3k, k(1 + n)}.

Hence all the vertex weights are distinct. This labeling construction shows
that ts(WHn) 6 k. Combining this with the lower bound, we conclude that
ts(WHn) = k. This completes the proof. Figure 3 shows a totally irregular total
labeling of joint-wheel graph WH6. �
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Figure 3. ts(WH6) = 9.

Theorem 2.4. Let m > 3. Then ts(Pm + km) = m+ 1.

Proof. Let V (Pm + km) = {vi, ui : 1 6 i 6 m} and

E(Pm + km) = {v1ui, vmui, 1 6 i 6 m} ∪ {vivi+1 : 1 6 i 6 m− 1}

by (1.1), (1.3) and (1.4) we have ts(Pm+km) > m+1. For the reverse inequality, we
define a total labeling f : V ∪E → {1, 2, 3, . . . ,m+1} by considering the following
two cases.

Case(i): m is odd.

f(vi) =

{

1, if i = 1;

m+ 1, if 2 6 i 6 m.
f(ui) = i, 1 6 i 6 m; f(v1ui) = 1, 1 6 i 6 m;

f(vmui) = 1, 1 6 i 6 m; f(vivi+1) =

{

m+ 1, if i = 1

i, if 2 6 i 6 m− 1.

We see that all the vertex and edge labels are at most m+ 1. We have

wt(v1ui) = 2 + i, 1 6 i 6 m; wt(vmui) = m + 2 + i, 1 6 i 6 m; wt(vivi+1) =
{

2m+ 3, if i = 1

2m+ 2 + i, if 2 6 i 6 m− 1.

the weights of the edges under the labeling f are {3, 4, . . . ,m + 2,m + 3,m +
4, . . . , 2m + 2, 2m + 3, 2m + 4, 2m + 5, . . . , 3m + 1}. Thus the edge weights are
pair-wise distinct.

The vertex weights are

wt(ui) = 2 + i, 1 6 i 6 m; wt(vi) =

{

2m+ 2, if i = 1

3m, if i = m;

That is {3, 4, . . . ,m+ 2, 2m+ 2, 3m}. Hence all the vertex weights are distinct.

Case(ii): m is even.

f(vi) =

{

1, if i = 1

m+ 1, if 2 6 i 6 m;
f(ui) = 1, 1 6 i 6 m; f(v1ui) = f(vmui) =

i, 1 6 i 6 m; f(vivi+1) =

{

m+ 1, if i = 1, 2

m+ 3− i, if 3 6 i 6 m− 1.
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We see that all the vertex and edge labels are at most m+ 1.
We have

wt(v1ui) = 2 + i, 1 6 i 6 m; wt(vmui) = m + 2 + i, 1 6 i 6 m; wt(vivi+1) =










2m+ 3, if i = 1

3m+ 3, if i = 2

3m+ 5− i, if 3 6 i 6 m− 1;

The weights of the edges under the labeling f are {3, 4, . . . ,m + 2,m + 3,m +
4, . . . , 2m + 2, 2m + 3, 3m + 3, 3m + 2, 3m + 1, 3m, . . . , 2m + 6}. Thus the edge
weights are pair-wise distinct.

The vertex weights are

wt(ui) = 2i+ 1, 1 6 i 6 m; wt(vi) =

{

m2+3m+4
2 , if i = 1

m2+3m+10
2 , if i = m.

That is {3, 5, . . . 2m + 1, m2+3m+4
2 , m2+3m+10

2 }. Hence all the vertex weights are

distinct. This labeling construction shows that ts(Pm + km) 6 m+ 1.
Combining this with the lower bound, we conclude that ts(Pm + km) = m+1.

This completes the proof. �

Figure 4 shows a totally irregular total labeling of P5 + k5.
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Figure 4. ts(P5 + k5) = 6.
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