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Abstract. Consider a simple connected graph G(V,E), a set S is a dominat-
ing set if for every vertex u ∈ V − S, there exists a vertex v ∈ S such that u
is adjacent to v. i.e. for every vertex u ∈ V − S, d(u, S) = 1. A dominating

set D in G is a minimal dominating set if no proper subset of D is a dominat-
ing set. The minimum cardinality among all the minimal dominating sets is
called domination number of the graphG denoted by γ(G). LetG1

(
VG1 , EG1

)
,

G2

(
VG2 , EG2

)
, G3

(
VG3 , EG3

)
be three simple non trivial connected graph.

The Cartesian product of three graphs G1, G2, G3 is denoted by G1×G2×G3

is a graph with vertex set VG1×G2×G3 = VG1 ×VG2 ×VG3 . Such that two ver-
tices a = (u1, v1, w1) and b = (u2, v2, w2) are said to be adjacent if u1 = u2

where v1, v2 ∈ EG2 and w1w2 ∈ EG3 or v1 = v2 where u1, u2 ∈ EG1 and

w1w2 ∈ EG3 or w1 = w2 where u1, u2 ∈ EG1 and v1, v2 ∈ EG2 . In this paper
we explore the various possibilities of connecting the vertices in three graphs
and also obtaining dominating set in Cartesian product of three graphs

1. Introduction

The theory of domination was introduced by Claude Berge in 1958. The inspi-
ration for this concept was drawn from the classical problem of covering chessboard
with minimum number of chess pieces. A set S is a dominating set if for every vertex
u ∈ V − S, there exists a vertex v ∈ S such that u is adjacent to v.

A dominating set D in G is a minimal dominating set if no proper subset of D
is a dominating set. The minimum cardinality among all the minimal dominating
sets is called domination number of the graph G denoted by γ(G).

Recalling the definition of cartesian product of two graphs, Let G1 (VG1 , EG1),
G2 (VG2 , EG2) be two simple connected graph. The cartesian product of G1 and
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G2 denoted by G1 × G2 is a graph with vertex set VG1 × VG2 , where two vertices
(u1, v1) and (u2, v2) are adjacent if u1 = u2 and v1, v2 ∈ EG2 or v1 = v2 and
u1, u2 ∈ EG1 . This definition was further extended as 2nd and 3rd dimensional
product of vertex measurable graphs in [7, 1], i.e., let G1 (VG1 , EG1), G2 (VG2 , EG2)
and G3 (VG3 , EG3) be three simple connected graph. The 3rd dimensional product
of vertex measurable graphs of G1, G2 and G3 denoted by G1×G2×G3 is a graph
with vertex set VG1 ×VG2 ×VG3 , where two vertices (u1, v1, w1) and (u2, v2, w2) are
adjacent if u1 = u2 and v1, v2 ∈ EG2 and w1w2 ∈ EG3 or v1 = v2 and u1, u2 ∈ EG1

and w1w2 ∈ EG3 or w1 = w2 and u1, u2 ∈ EG1 and v1, v2 ∈ EG2 . Also if u1 ̸= u2

and v1, v2 ∈ EG2 and w1w2 ∈ EG3 or v1 ̸= v2 and u1, u2 ∈ EG1 and w1w2 ∈ EG3 or
w1 ̸= w2 and u1, u2 ∈ EG1 and v1, v2 ∈ EG2 . The above definitions do not cover
all the possibilities of connecting the vertices. Hence in this paper we cover all the
possibilities of connecting the vertices using the concept of Cartesian product of
three graphs. Dominating set has been widely studied from different perspectives
in [2, 6, 1, 4]. The applications of Cartesian product can be found in coding
theory. Throughout this paper, by a graph G we mean a finite, undirected graph
without multiple edges or loops. Also Kn, Pn, Cn represents complete graph, paths
and cycles with n vertices respectively.

2. Definition of Cartesian product of three graphs

The Cartesian product of three graphs G1 (U,E1), G2 (V,E2) and G3 (W,E3)
is denoted by G1 ×G2 ×G3 is a graph with vertex set VG1 ×VG2 ×VG3 , where two
vertices (u1, v1, w1) and (u2, v2, w2) are adjacent as follows:

Case 1. if u1 = u2 and v1, v2 ∈ EG2 and w1w2 ∈ EG3 or v1 = v2 and u1, u2 ∈ EG1

and w1w2 ∈ EG3 or w1 = w2 and u1, u2 ∈ EG1 and v1, v2 ∈ EG2 .

Case 2. if u1 = u2 and v1 = v2 and w1w2 ∈ EG3 or v1 = v2 and w1 = w2 and
u1, u2 ∈ EG1 or w1 = w2 and u1 = u2 and v1, v2 ∈ EG2 .

Case 3. if u1 ̸= u2 and v1, v2 ∈ EG2 and w1w2 ∈ EG3 or v1 ̸= v2 and u1, u2 ∈ EG1

and w1w2 ∈ EG3 or w1 ̸= w2 and u1, u2 ∈ EG1 and v1, v2 ∈ EG2 .

Case 4. if u1 ̸= u2 and v1 ̸= v2 and w1w2 ∈ EG3 or v1 ̸= v2 and w1 ̸= w2 and
u1, u2 ∈ EG1 or w1 ̸= w2 and u1 ̸= u2 and v1v2 ∈ EG2 .

Case 5. Union of case 1 and case 2.

Case 6. Union of case 1 and case 3.

Case 7. Union of case 2 and case 3.

Case 8. Union of case 3 and case 4.

Case 9. Union of case1, case 2 and case 3.

It was also found that in the above definitions the conjunction can be replaced
by disjunction with respect to the adjacency of vertices. The graphs so obtained as
isomorphic to any one of the above cases. Also the compliment of graphs in each
of the following case is also isomorphic to any one of the above cases.
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Case 10. if u1 = u2 and v1 = v2 or w1w2 ∈ EG3 or v1 = v2 and w1 = w2 or
u1, u2 ∈ EG1 or w1 = w2 and u1 = u2 or v1, v2 ∈ EG2 is isomorphic to
case 5.

Case 20. if u1 ̸= u2 and v1, v2 ∈ EG2 or w1w2 ∈ EG3 or v1 ̸= v2 and u1, u2 ∈ EG1 or
w1w2 ∈ EG3 or w1 ̸= w2 and u1, u2 ∈ EG1 or v1, v2 ∈ EG2 is isomorphic
to case 6.

Case 30. if u1 = u2 or v1 = v2 and w1w2 ∈ EG3 or v1 = v2 or u1 = u2 and
w1w2 ∈ EG3 or w1 = w2 or u1 = u2 and v1, v2 ∈ EG2 is isomorphic to
case 5.

Case 40. if u1 ̸= u2 or v1 ̸= v2 or w1w2 ∈ EG3 or v1 ̸= v2 or u1 ̸= u2 or w1w2 ∈ EG3

or w1 ̸= w2 or u1 ̸= u2 or v1, v2 ∈ EG2 is isomorphic to case 6.

Case 50. if u1 = u2 and v1 ̸= v2 and w1w2 ∈ EG3 or v1 = v2 and w1 ̸= w2 and
u1, u2 ∈ EG1 or w1 = w2 and u1 ̸= u2 and v1, v2 ∈ EG2 is isomorphic to
case 1.

Compliment of case 1 is isomorphic to case 7, Compliment of case 2 is iso-
morphic to case 6, Compliment of case 3 is isomorphic to case 5, Compliment of
case 5 is isomorphic to case 3, Compliment of case 6 is isomorphic to case 2 and
Compliment of case 7 is isomorphic to case 1.

3. Examples

Consider the graphs G1 = G2 = G3 = K2. Then the Cartesian product of
three graphs G1, G2 and G3 is given by the following cases:

Case 1:
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Case 2:

Case 3 and Case 4:

Case 5: The graph obtained is not a complete graph.
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Case 6:

Case 7:

Case 9: The graph obtained is a complete graph.

The graphs obtained in the above cases are non-isomorphic in nature. This
shows that each case is a unique way of connecting the vertices given graphs
G1, G2, G3.

4. Main Results

It would be enough to find the domination number for the graph obtained in
case 1 and case 2. As case 3 and case 4 are not considered due to disconnectedness
in graph. In remaining cases the graph contains more number of edges hence the
domination number obtained will be less than or equal to the domination number
obtained in case 1 or case 2.
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Notation 4.1. The following terminologies will be used through the rest of
this paper. The domination number obtained for G1×G2×G3 in case 1 is denoted
by γ1(G). The domination number obtained for G1 ×G2 ×G3 in case 2 is denoted
by γ2(G).

Example 4.1. G1 = K2, G2 = K3, G3 = K3.

Cartesian product of three complete graphs, K2 ×K3 ×K3 in case 1 is given
by

Cartesian product of three complete graphs, K2 ×K3 ×K3 in case 2 is given
by
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Theorem 4.1. If G1 = Ka, G2 = Kb, and G3 = Kc for all a, b, c ∈ N, then
γ1 (Ka ×Kb ×Kc ) = min{a, b, c}.

Proof. In Cartesian product of three graphs each vertex will be of the form
(ul, vm, wn), where 1 6 l 6 a, 1 6 m 6 b, 1 6 n 6 c. The dominating set is
given by (ul, vm, wn), where 1 6 l 6 a, m = 1, n = 1 assuming a to be minimum.
The vertex (u1, v1, w1) in the dominating set covers all vertices (ul, vm, wn) with
anyone of l,m, n is equal to 1 and other two variables not equal to 1. The vertex
(u2, v1, w1) covers all vertices (ul, vm, wn), l = 2, 1 < m 6 b, 1 < n 6 c. The vertex
(u3, v1, w1) covers all vertices (ul, vm, wn), l = 3, 1 < m 6 b, 1 < n 6 c Continuing
the process the dominating set is given by (ul, vm, wn), where 1 6 l 6 a, m = 1,
n = 1. i.e., the dominating set is given by {(1, 1, 1), (2, 1, 1), (3, 1, 1), . . . , (a, 1, 1)}.
Similarly the dominating set can be considered for other cases of m,n considering
b and c as minimum. Hence the proof. �

Corollary 4.1. If G1 = G2 = G3 = Kn, for all n ∈ N, then
γ1 (Kn ×Kn ×Kn) = n

.

Theorem 4.2. If G1 = Ka, G2 = Kb and G3 = Kc, for all a, b, c ∈ N, then

γ2 (Ka ×Kb ×Kc) >
⌈

a× b× c

a+ b+ c− 2

⌉
.

Proof. From [5] it is known that
⌈

n
∆+1

⌉
6 γ(G) 6 n − ∆. Using this in-

equality we find the lower bound for the case 2 Cartesian product of three graphs.
The number of vertices for Cartesian product of three graphs given G1 = Ka,
G2 = Kb, G3 = Kc is equal to a × b × c. The construction results in a regu-
lar graph. Using the concept of permutation it can be found that the degree of
each vertex in this regular graph of case 2 Cartesian product of three graphs is
(a− 1) + (b− 1) + (c− 1) = (a+ b+ c− 3). Therefore ∆ = a+ b+ c− 3.

Hence the result. �

Corollary 4.2. If G1 = G2 = G3 = Kn, for all n ∈ N, then

γ2 (Kn ×Kn ×Kn) >
⌈

n3

3n− 2

⌉
.

Theorem 4.3. If G1 = Pa, G2 = Pb, and G3 = Pc, ll a, b, c ∈ N, a 6 b 6 c,
then

γ1 (Pa × Pb × pc) 6
⌈a
3

⌉
×min

(⌈
b

3

⌉
× c

⌈ c
3

⌉
× b

)
.

Proof. Without loss of generality the Cartesian product of three path graphs
Pa, Pb, and Pc will have a × b rows and c columns. All the vertices will be of
the form (ui, vj , wk) where 1 6 i 6 a, 1 6 j 6 b, 1 6 k 6 c. In a × b with c

columns,
⌈
b
3

⌉
rows or

⌈
c
3

⌉
columns are dominant. If

⌈
b
3

⌉
rows are dominant then

out of a× b rows
⌈
a
3

⌉
×
⌈
b
3

⌉
× c vertices will be the dominating set. If

⌈
c
3

⌉
columns
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are dominant then out of a × b rows with c columns
⌈
a
3

⌉
×

⌈
c
3

⌉
× b vertices will

be the dominating set. Hence by definition the minimum cardinality among all
the dominating get is the domination number hence domination number is given
γ1 6

⌈
a
3

⌉
×min

(⌈
b
3

⌉
× c

⌈
c
3

⌉
× b

)
. �

Corollary 4.3. If G1 = G2 = G3 = Pn, ll n ∈ N, then

γ1 (Pn × Pn × Pn) 6 n
(⌈n

3

⌉)2

.

Theorem 4.4. If G1 = Pa, G2 = Pb and G3 = Pc, ll a, b, c ∈ N, then

γ2 (Pa × Pb × pc) >
⌈
a× b× c

7

⌉
.

Proof. From [5] it is known that
⌈

n
∆+1

⌉
6 γ(G) 6 n−∆. Using this inequal-

ity we find the lower bound for the case 2 Cartesian product of three graphs. The
number of vertices for Cartesian product of three graphs given G1 = Pa, G2 = Pb,
G3 = Pc is equal to a × b × c. In construction of these graphs, we can use the
concept of permutation and found that the degree of each vertex in the graph of
case 2 has maximum degree 6. Therefore ∆ = 6. Hence the result. �

Corollary 4.4. If G1 = G2 = G3 = Pn, ll n ∈ N, then

γ2 (Pn × Pn × Pn) >
⌈
n3

7

⌉
.

Construction of Cartesian product of three graphs in case 1 and case 2 leads
to complex graphs, investigating the degree of these graphs it can be easily found
that degree of case1 graph is greater than or equal to degree of graphs in case2.
Hence γ1(G) 6 γ2(G).

5. Vizing conjecture

In general, we can show the vizing conjecture

γ (Pa × Pb × Pc) > γ (Pa) γ (Pb) γ (Pc)

satisfies for both Case 1 and Case 2 graphs.
We have γ1 6

⌈
a
3

⌉
×min

(⌈
b
3

⌉
× c

⌈
c
3

⌉
× b

)
, γ (Pa) γ (Pb) γ (Pc) =

⌈
a
3

⌉ ⌈
b
3

⌉ ⌈
c
3

⌉
.

Hence
⌈
a
3

⌉
× min

(⌈
b
3

⌉
× c

⌈
c
3

⌉
× b

)
>

⌈
a
3

⌉ ⌈
b
3

⌉ ⌈
c
3

⌉
. Therefore vizing conjecture

satisfies for the classes of paths in Case 1.

Considering for Case 2 graphs we have

γ2 (Pa × Pb × Pc) >
⌈

abc
∆(Pa×Pb×Pc)+1

⌉
=

⌈
abc
7

⌉
, γ (Pa) γ (Pb) γ (Pc) =

⌈
a
3

⌉ ⌈
b
3

⌉ ⌈
c
3

⌉
.

Hence
⌈
abc
7

⌉
>

⌈
a
3

⌉ ⌈
b
3

⌉ ⌈
c
3

⌉
. Therefore vizing conjecture satisfies for the classes of

paths in Case 2. Therefore γ (Pa × Pb × Pc) > γ (Pa) γ (Pb) γ (Pc) for 3rd dimen-
sional product of vertex measurable graphs given the graphs are paths.

Similarly we can prove the results and vizing conjecture for the classes of cycles
in case 1 and case 2.
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Theorem 5.1. If G1 = Ca, G2 = Cb, and G3 = Cc, ll a, b, c ∈ N, a 6 b 6 c,
then

γ1 (Ca × Cb × Cc) 6
⌈a
3

⌉
×min

(⌈
b

3

⌉
× c

⌈ c
3

⌉
× b

)
.

Corollary 5.1. If G1 = G2 = G3 = Cn, ll n ∈ N, then

γ1 (Cn × Cn × Cn) 6 n
(⌈n

3

⌉)2

.

Theorem 5.2. If G1 = Ca, G2 = Cb and G3 = Cc, ll a, b, c ∈ N, then

γ2 (Ca × Cb × Cc) >
⌈
a× b× c

7

⌉
.

Corollary 5.2. If G1 = G2 = G3 = Cn, for all n ∈ N, then

γ2 (Cn × Cn × Cn) >
⌈
n3

7

⌉
.

Given γ (Ca × Cb × Cc) >
⌈
abc
7

⌉
, γ (Ca) γ (Cb) γ (Cc) =

⌈
a
3

⌉ ⌈
b
3

⌉ ⌈
c
3

⌉
and

⌈
abc
7

⌉
>⌈

a
3

⌉ ⌈
b
3

⌉ ⌈
c
3

⌉
. Therefore γ (Ca × Cb × Cc) > γ (Ca) γ (Cb) γ (Cc).

6. Open Problem

(1) Find the dominating number for Cartesian triple product of various classes
of graphs including arbitrary graph with n vertices.

(2) Analyze the concept of domatically critical with respect to Cartesian prod-
uct of three graphs.

(3) Various graph parameters can be studied on Cartesian product of three
graphs.
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