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ABSTRACT. In this article, we study the existence and uniqueness of solutions
for a nonlinear boundary value problem of fractional differential equations
with higher order o (n — 1 < a < n) involving Riemann-Liouville fractional
derivative. The solutions are discussed in a weighted Sobolev space using
Banach’s fixed point theorem. An illustrative example is also given to embody
the main results.

1. Introduction

This work is concerned with the existence and uniqueness of solution to the
following initial value problem of the higher-order fractional differential equations
(FDEs) with Riemann-Liouville derivative

(1.1) D%u (t) g(tu®),Du(t)), teI=[0,T], T>0
(1.2) D* g = 0,i=1,....,n, i#n—1and u(T) =0,

wherel<n—1<a<n, 0<B<1, g:IxR?—=Ris given function, D denotes
the Riemann-Liouville’s fractional derivative.

The field of fractional differential equations taken the attention of many re-
searchers, especially in recent decades, because of their importance in exact mod-
eling and the description of several properties of the non stationary or stationary
physical phenomena among them: viscoelasticity, electrotechnics, electrochemistry,
biophysics, biology, engineering, the theory f the signal, image processing, economy.
Therefore, applications of fractional differential equations in modeling of different
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phenomena became broader used than ordinary differential equations. For more
clarifications on this theory and its applications, see the monographs of Hilfer [11],
Kilbas et el. [14] and Podlubny [16]. Majority of the research focused on the
existence and uniqueness of solution for fractional differential equations, where this
side of study for nonlinear FDEs have been extensively developed using mostly
the fixed point theory and other methods as iterative method, measures of non-
compactness technique, Krasnoselskii-Krein and Nagumo uniqueness theorems (see
[4, 19]). However, the fixed point theorems staying the most used method to
study the existence and uniqueness of solutions of nonlinear FDEs and nonlinear
fractional differential systems (see [2, 3, 5, 6, 10, 15, 21]) and the references
therein.

Beside, the mentioned published papers has been devoted to give the existence
and uniqueness of solution of various classes of fractional differential and integral
equations in the space of continuous functions C ([a, b]) or C (R). But the discus-
sion on measurable solutions of differential and integral equations remains relatively
few compared to continuous solutions, we refer to some papers about this side as
[9, 12, 13]. Where LP-solutions of fractional differential equations are discussed in
[9] by Burton and Zhang to show the belonging of solutions to L? (Ry). In [12],
Schauder’s and Darbo’s fixed point theorems are employed to study the existence of
LP? (Ry) —solutions of nonlinear quadratic integral equations. In [13], the authors
give different existence results for L? [a,b] and C ([a,b]) —solutions of some non-
linear integral equations of the Hammerstein and Volterra types using some fixed
point theorems combined with a general version of Gronwall’s inequality. And in
[18], the authors investigated the existence and uniqueness of weak solutions for
a class of initial/boundary-value parabolic problems with nonlinear perturbation
term in weighted Sobolev space. By employing the extending Galerkin’s method,
the authors obtained existence results.

In this paper, motivated by those valuable contributions mentioned above,
we mainly discuss the existence and uniqueness of solution for nonlinear FDEs of
higher order a(n — 1 < & < n) in a measurable weighted fractional Sobolev space
using Banach contraction principle. To this end, we first transform the fractional
differential equation (1.1) with conditions (1.2) into a equivalent integral equa-
tion with Green continuous function by using the technique of Laplace transform
of the Riemann-Liouville fractional derivative and some analytical skills, then we
present the our study space which is based essentially on the classical concepts of
weighted LP —spaces and Sobolev spaces. Furthermore, we investigate the existence
and uniqueness of solution of the system (1.1)-(1.2) by using Banach’s fixed point
theorem.

The rest of this paper is organized as follows: in section 2 we present some
auxiliary definitions and lemmas about fractional calculus theory and measurable
functions theory that will be used to prove our main results, also we show the
completeness of fractional Sobolev space. Section 3 is devoted to the main result.
We present lastly, an illustrate example to show the effectiveness of our main result.
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2. Preliminaries

We start by presenting some necessary definitions and lemmas that we will used
for investigate our main results. For more details see [1, 7, 8, 11, 14, 16, 17, 20].

DEFINITION 2.1 ([11, 14, 16]). The Riemann-Liouville fractional integral of
the function u of order a > 0 is defined by

i L[l
Iu(t)—F(a)/O (t—s)lfad’

where I' () is the Euler gamma function defined by I' (o) = [~ e 5% 'ds.

DEFINITION 2.2 ([11, 14, 16]). The Riemann-Liouville fractional derivative of
the function u of order « € (n — 1,n] is defined by

D%u (t) — # d" /0 (tu(s)ds

T (n—a)dt" — )T

DEFINITION 2.3 ([17]). @ : I x R — R is called a Carathéodory function if
(i) t — @ (t,u) is measurable for every u € R,
(#) uw — @ (t,u) is continuous almost by all ¢ € I.

REMARK 2.1. A first possible definition of solutions of problem (1.1)-(1.2) in
the Lebesgue spaces of measurable function L? (I), is a function w € LP (I) which
fractional derivative DPu, 8 € (0,1) belongs to L? (I). On the other hand, from
definition 1, for some 8 € (0,1), it is obvious that the Riemann-Liouville fractional
derivative of a function u is written in the form: DPfu = (Il_ﬂu)/. That is, if
DPuy exists then the Riemann-Liouville fractional integral I'~#u is differentiable
almost everywhere. Therefore, we use a more convenient definition of the solutions
of (1.1)-(1.2) as the functions u € LP (I), I'"Pu € L? (I) and (Il_ﬁu)/ e LP (1),
which takes the structure of a Sobolev space that we denote him by Wg,f) (1),
defined as follows

WEP (1) = {u € LP (I) and I'Pu e WP (1)} .
Before passing to show the completeness of ng (I), we define the spaces

D' (I): space of distributions.
CL (I): space of C! (I) —functions with compact support.

LEMMA 2.1. (ng (1), ||UHW['3,p(I)) is a Banach space endowed with the norm
RL

1
1— p P
iy = (Il + 172 ally )
PROOF. It is easy to verify that ||.||W[s,p(1) defines a norm so we pass to prove
RL

the completeness. Let (u,,) € ng (I) be a Cauchy sequence, this implies that
(um) and (I'~Pu,,) are Cauchy sequences in LP (I) and WP (I) respectively,
since LP (I) and WP (I) are completes, there exist functions u and ug such that
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Uy, — w in LP (I) and I*=Pu,, — ug in WP (I) [i.e. I'~Pu,, — ug in LP (I) and
(Il_'@um)/ — uj in LP (I)].

We have (Il_ﬁum) is a Cauchy sequence in W1P (I), then (Il_ﬁum) is a
Cauchy sequence in LP (I), therefore, there exist v € LP (I) such that I'~Pu,, — v
in LP (I). Beside, we have u,, — u in LP (I), then by using the fact I'~# : LP (I) —
Lr (I), B € (0,1), we get I*Pu,, — I'"Puin LP (I), so, I'Pu = v and I'"Pu =
us-.

It remains to show that (I 1’5u)/ = u’B, where u’ﬁ denotes the first derivatives
in distributions sense of ug. In other term we prove that (Il’ﬂum)/ — (Il’ﬁu)/ in
LP (I). Clearly, L (I) C L}, (I), then I'*~Pu,, determines a distribution Tj1-5,, €

loc

D’ (I). For ® € C} (I) and we use Holder inequality we get
|T11*5um ((I)) _Tllfﬁ‘u ((I))‘ < /‘Il_ﬁum (t) —I'"Pu (t)| |(I)(t)‘dt
I

< @l

Il_ﬂum — Il_Bqu .

where p’ is the exponent conjugate to p. therefore: Tpf@um (®) = Tri-s, (®) as
m — oo. ) R
Also, (I'"Pu,,)" determine a distribution 7', then for ® € C! (I) we have

~

T,y (B) = /1 (1B (8) B (8) dt

= —/I (Iliﬁum) (t) CI)/ (t) dt = —fll—ﬁum ((I)/),

we pass to the limit when m — oo, we obtain
Ty, (®) = =T, (¥) = T(p1-puy (9),

for every ® € C; (I). Thus uj = (Il_Bu)/ in the distributional sense on I for
B8 €(0,1).

Consequently, I'~%u € WP (I) and (Ilfﬂu)/ = u% in distributional sense.
Therefore I'~Au,, — I*~Puin WP (I). Accordingly, u,, — u in W}’ng (I), whence

(ng (1), H'”Wﬁf’(})) is a Banach space. O

REMARK 2.2. In [3], the authors discussed more broadly about fractional
Sobolev space W}gf (I) in the case where p = 1 to make the relation between
this spaces and the classical spaces of functions of bounded variation BV. The au-
thors shown also the completeness of the fractional Sobolev spaces ng; (I). for
more details about Sobolev spaces and their properties see [11] and [5].

We should note that we can not show the existence of solutions according to
Schauder’s fixed point theorem in ngf (I). To overcome these problem, we can
use a more suitable weighted norm.

We define the weighted LP—space

L7 (1) = {u e (1), |lul,, < +oo} ,
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where, [|ul|, , is the positive real valued function defined on L? (I) by

1
lull,, = (/0 () u(t)|pdt> for all w € L” (I).
I
Also, we define the weighted fractional Sobolev space with Riemann-Liouville frac-
tional derivative by
Ey(I)={ueLP°(I): I' Puec WhPo(I), B€ (0,1)},
equipped with the norm

_ P 5
lully, = (lll o + 1Pl )
where
Wteo (1) = {v € LP7 (I) :v' € LP7 ()},
o is a given function defined on I and such that there exists a real number o, > 1
satisfies 1 < 0 (t) < oy, for all t € I, and

K'(t)e LP? (I), for ae. t €1,

where .
o(t—s))r
K (t) = Jo ((E_S))g)ds, t>s,
0, t<s.

Clearly

o(t—s) =1, forallt,s € I witht > s,
and |||, is a norm. Since 1 < o (t) < o4, then the two norms ||'”ng(1) and .||,
are equivalent. So, from Lemma 2.1, (E,, ||.||,) is a Banach space.

DEFINITION 2.4. The solutions of the system (1.1)-(1.2) are functions u €
E, (I) and u satisfies the system (1.1)-(1.2).

LEMMA 2.2 ([17]). Letn—1 < a < n and ¢ > 0. The Laplace transform of the
Riemann-Liowville fractional derivative D*u (t) and the power function t — t% are
given respectively by

(i) L{D“u(t),2} = 22U (2) — ”iol 2 (D1 (1)

(i) L{t1,2} =T (g +1) =@+,
where U (z) denotes the Laplace transform of u (t).

t=0"’

LEMMA 2.3. Letn — 1 < a < n. The unique solution of the linear fractional
problem

(2.1) D (t) = yt),telI=]0,T], T>0
(2.2) D* g = 0,i=1,...n, i#n—1andu(T)=0,
is given by

T
w) = [ Gy s
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where G (t, s) denotes the Green’s function defined by

(2.3)
1 a—n a—1
) W[_(%)a—n+l(T_s)a—1:|, OStSSST

PrOOF. We take [Do‘_iu (t)]t:O = b;. Applying Laplace transform on both
side of (2.1) and using Lemma 2.2, we get

n—1
22U (z) — Zz’ [Do‘_i_lu (t)]t:O =Y (2),
i=0

where U (z) and Y (z) denote the Laplace transform of u (¢) and y () respectively.
In other words, we can write

n—1
U(z)=27Y (2) + Zbi+1zi_a.
=0

Inverse Laplace transform give us
1 t n—1 b
u(t) = —— / (t—s)* "y (s)ds + — il ja—ied
(@) s S ey
_ b /t (t—s)a_ly(s) ds—l—zn:ibi o
I'(@) Jo —T(a—i+1) '

we have b; =0,i=1,...,n for i # n — 1 then

@) w0 =g [ = T ) s e,

By condition u (T") = 0 we obtain
bnfl _Tniail r a—1
- T d
T(a—n+2) T (a) /0 (T =)™ "y (s)ds,

substituting in (2.4), we get

T
ut)= [ Glto)y(s)ds
0
where G (.,.) the Green’s kernel defined by (2.3). The proof is complete. O

Define the integro-differential operator B : E, (I) — E, (I) by

T
(2.5) (Bu) (t) = /o G(t,s)g (s u(s) , DPy (s)) ds.

Obviously, all fixed point of B is a solution of system (1.1)-(1.2).
We give in the following, Banach’s fixed point theorem which is the main in-
gredient in the proof of our existence results.
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THEOREM 2.1 (Banach contraction principle [20]). Let E be a Banach space.
If B: E — E is a contraction, then B has a unique fized point in E.

3. Main results

In this section, we prove the existence and uniqueness of solutions in the Banach
space E, (I).

THEOREM 3.1. Assume the following hypotheses on g

(H1) g: I xR — R satisfies the Carathéodory’s condition.

(Hs) There exist a positive real number p’ > 1 and a function ¢ : I — Ry and
such that

(i) p € LP (I) a.e. t € I, where

(i) For any s € I and any u,v,

1

+
7 € R, we have

1
P
u,
19 (s,u,0) = g (5,0, 0)] < ¢ () [Ju —u| + [v -]
(Hs) The condition
T8 (To, % K'|
(To.) +|| I, <1,
r@2-p  ra-5

1
Gl [(Tow)” +

holds, where G, = max |G (t,s)|.
(t,s)€1?

Then the system (1.1)-(1.2) has a unique solution in E,.

PrROOF. Consider the operator B given by (2.5), we want to show that B is a
contraction on E, (I). To this end, let u,v € E, and using (H;) and (Hz), then
for a.e. t € I we have

o (£)7 |(Bu) (t) - (Bv) (t)]

< O'(t)%/o w [U (s)% |g (s,u(s),Dﬁu (s)) —g(s,v(s),Dﬁv (s))” ds

1 UT(S)P 1
<GP [ () [0 @) () = v(s)] + |Du(s) = Do (s)])] as

< G**cr*% el ’ or (Ju—v|+ |D5u - Dﬁv’)

p

1
<Guuol gl |lu=vly o + | DPu— D%, |

1
< Gual ol {Hu —oll,,+ H([l—ﬂu)’ — (5

p,a}

1
< Gauod o]y lu—of

o’

applying LP—norm, we get

o

1
(3.1) [Bu — Bul|,, , < Gux (T'o)7 [lo]], [[u— vl
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Also
07 [1'7F (Bu) (t) = I'=% (Bv) (1)

1

o(t)r

oW [t s TGO y 5y
<F(176)/0 (t—s) /0 o [ 0)7 |g (0,u (6), DPu (9))
—g (6,v(0),DPv (0))]] dods

<Gt [y Mo [0

7 (u(0) — v (0)]
+|DPu () — DPv (0)])] dods
Gt ([ e I
<o T ([ =97 as) el ot (ol + 0% - Do)

G J% , ,
< 0 _pi-p il — H -8y — (-5
re—gL el {”“ Vo + || (7 7u) = (17 F0)

|\
p,o

then
(32) HIl_ﬁBU—Il_ﬁBUHp,o’ C(TY (T;T*)p el lu—2l, -
Moreover
o ()| (17 Bu) (1) — (1" Bo) (1)
ﬂi t —s)7F TM o U Bu
gF(l—ﬁ)dt O(t ) /0 -0} [(6) |9 (6,u (), Du(6))
+g (0,v(0), D% (0))|] dods

+|DPu(8) — DPv (0)|)] dbds

X ’0'% (lu — v+ |DPu— DPv|)

using some precedent method and applying LP—norm on both sides of previous
inequality, we get

(3.3) H (I*#Bu) — (1'% Bv)’ G

< —2 K’ -
po ST =) M lpo 121yl =l

Combining inequalities (3.1)-(3.3) then we obtain

o

' (T0)F | Kl |,

B =

(3-4) [[Bu— Bu|, < Gu el [(TO*) +
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this means that the operator is a contraction from condition (Hj). Hence, by
using Banach contraction principle and according to the theorem 3.1, we conclude
that B has a unique fixed point in F,. This fixed point is a solution of system
(1.1)-(1.2). O

4. Example

Consider the following boundary value problem of fractional differential equa-
tions with p =4
Du (t) =2 (t) [e7!sin (tu) + t2h (DPu)], teI=10,1],
D Dyl,_g =0, i=1,2,3,5, u (1) =0,
@ (t)

t) [e~" sin (tu) + £2h (DPu)] with h(x) =

(4.1)

where a = 5, 8 = %, g(t,z,y) =

@ (t) = —————. By the finite increments theorem we get
(9t)* (1 +1)

h(z) = hl < e o —yl,

# > 1 for all real z), also

for z,y € R (since z + e~
|sin (tx) — sin (ty)| < % |z —y],

then
lg(t,2.y) —g (TP < F(t) [e7 |sin (tz) —sin (t7)| + ¢* |1 (y) — h (G)]]
< @ [lz - $| +ly—7ll,
so, condition (Hgz) holds with ¢ (t) = (1+t)’ obviously ¢ € L3 ([0,1]) and
Il = 0.0363,

o (t) = (1+1)*, it is clear that o (t) > 1 for t € [0,1], and the Banach space is
EX(I) = {u € L4 (I): [fu e Whte (I)} :

also

_ twsf t1+2276t%(5t+11)
K- [ ( is= [ 2= |

t—s)’ 26 55
and
1 1
K'(t) = (t +t75),
then, some computations give us
||K’||476 ~ 3.187991075720807,
and )
0 (To)r 1K,
re-g  ra-p
this means that condition (H3) is also holds. So, using Theorem 3.1, we deduce

that the nonlinear functional boundary value problem 4.1 has a unique solution in
E: (I) c L* (I).

G l0ll3/4 (Ton)7 + ~ 0.5046 < 1,
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