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AMICABLE SETS IN ALMOST LATTICES

G. Nanaji Rao, Habtamu Tiruneh Alemu
and Terefe Getachew Beyene

Abstract. The concepts of maximal set and amicable set are introduced in
an Almost Lattice (AL) and proved certain properties of these concepts.Proved
that every maximal set in an AL L is embedded in an amicable set in an AL

L. Also, proved that every amicable set in an AL L can be embedded in a
maximal set with uni-element.

1. Introduction

After Boole’s axiomatisation of the two valued propositional calculus into Boole-
an algebra, many generalizations of the Boolean algebras have come into being. The
class of distributive lattices has occupied in major part of the present lattice theory,
since lattices were abstracted from Boolean algebras through the class of distribu-
tive lattices and these classes have many interesting properties in which lattices, in
general, do not have. For this reason, the concept of an Almost Distributive Lattice
(ADL) was introduced by Swamy U.M. and Rao G.C. [3], as a common abstraction
of existing lattice theoretic and ring theoretic generalizations of Boolean algebra. It
was Garett Birkhoff’s (1911 - 1996) work in the mid thirties that started the general
development of the lattice theory. In a brilliant series of papers, he demonstrated
the importance of the lattice theory and showed that it provides a unified frame
work for unrelated developments in many mathematical disciplines. V. Glivenko,
Karl Menger, John Van Neumann, Oystein Ore, George Gratzer, P. R. Halmos, E.
T. Schmidt, G. Szasz, M. H. Stone , R. P. Dilworth and many others have devel-
oped enough of this field for making it attractive to the mathematicians and for its
further progress. The traditional approach to lattice theory proceeds from partially
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ordered sets to general lattices, semimodular lattices, modular lattices and finally
to distributive lattices. The concept of Almost Lattice (AL) was introduced by G.
Nanaji Rao and Habtamu Tiruneh Alemu [1] as a common abstraction of almost all
lattice theoretic generalizations of Boolean algebra like distributive lattices, almost
distributive lattices and lattices.

In this paper, we introduced the concepts of compatible set, maximal set M ,
M-amicable element and amicable set in an Almost Lattice (AL) and proved that
any maximal set in an AL L is a lattice with respect to the induced operations.
We proved that if M is a maximal set and x ∈ L is M-amicable, then there is a
smallest element a ∈M with the property a∧ x = x and this element a is denoted
by xM . Also, we proved that for maximal setsM , the set AM (L), of all M-amicable
elements of an AL L is again an AL under the induced operations. Moreover, for
any x, y ∈ AM (L), we have proved that

(x ∧ y)M = xM ∧ yM and (x ∨ y)M = xM ∨ yM .
Also, we introduced the concept of a uni-element in a maximal set of an AL L and
proved that if M is a maximal set in an AL L with uni-element υ, then υ is a
maximal element of L and M = {x ∧ υ| x ∈ L}. Also, we proved that if an AL L
has maximal element, then a maximal set M in an AL L is amicable if and only
if M has a uni-element. Finally, we proved that if an AL L has maximal element,
then every amicable set can be embedded in a maximal set with uni-element.

2. Preliminaries

In this section we collect a few important definitions and results which are
already known and which will be used more frequently in the paper.

Definition 2.1. Let (P,6) be a poset and a ∈ P . Then

(1) a is called the least element of P if a 6 x for all x ∈ P .
(2) a is called the greatest element of P if x 6 a for all x ∈ P .

It can be easily observed that, if least (greatest) element exists in a poset, then
it is unique.

Definition 2.2. Let (P,6) be a poset and a ∈ P . Then

(1) a is called a minimal element, if x ∈ P and x 6 a, then x = a.
(2) a is called maximal element, if x ∈ P and a 6 x, then a = x.

It can be easily verified that least (greatest) element (if exists), then it is
minimal (maximal) but, converse need not be true.

Definition 2.3. Let (P,6) be a poset and S be a non empty subset of P .
Then

(1) An element a in P is called a lower bound of S if a 6 x for all x ∈ S.
(2) An element a in P is called an upper bound of S if x 6 a for all x ∈ S.
(3) An element a in P is called the greatest lower bound (g.l.b or infimum)

of S if a is a lower bound of S and b ∈ P such that b is a lower bound of
S, then b 6 a.
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(4) An element a in P ia called the least upper bound (l.u.b or supremum)
of S if a is an upper bound of S and b ∈ P such that b is an upper bound
of S, then a 6 b.

Definition 2.4. (Zorn’s Lemma) If every sub chain of a non empty partly
ordered set P has an upper bound in P, then P contains a maximal element.

Definition 2.5. Let (P,6) be a poset. If P has least element 0 and greatest
element 1, then P is said to be a bounded poset.

If (P,6) is a bounded poset with bounds 0, 1, then for any x ∈ P , we have
0 6 x 6 1.

Definition 2.6. An algebra (L,∨,∧) of type (2, 2) is called an Almost Lat-
tice(AL) if it satisfies the following axioms. For any a, b, c ∈ L:

A1. (a ∧ b) ∧ c = (b ∧ a) ∧ c
A2. (a ∨ b) ∧ c = (b ∨ a) ∧ c
A3. (a ∧ b) ∧ c = a ∧ (b ∧ c)
A4. (a ∨ b) ∨ c = a ∨ (b ∨ c)
A5. a ∧ (a ∨ b) = a
A6. a ∨ (a ∧ b) = a
A7 (a ∧ b) ∨ b = b

Lemma 2.1. Let L be an AL. Then for any a, b ∈ L we have the following:

(1) a ∨ a = a
(2) a ∧ a = a
(3) a ∧ b = a if and only if a ∨ b = b

Definition 2.7. For any a, b ∈ L in an AL L, we say that a is less than or
equal to b and write as a 6 b if and only if a ∧ b = a or, equivalently a ∨ b = b.

Theorem 2.1. Let L be an AL such that a, b, c ∈ L. Then we have the follow-
ing.

(1) The relation 6 is a partial ordering on L and hence (L,6) is a poset.
(2) a 6 b =⇒ a ∧ b = b ∧ a
(3) a 6 a ∨ b
(4) a ∧ b 6 b
(5) (a ∨ b) ∧ a = a
(6) (a ∨ b) ∧ b = b
(7) b ∨ (a ∧ b) = b
(8) a ∧ b = b⇐⇒ a ∨ b = a
(9) a 6 b =⇒ a ∨ b = b ∨ a
(10) a ∨ b = b ∨ a =⇒ a ∧ b = b ∧ a
(11) If a 6 c and b 6 c, then a ∧ b 6 c and a ∨ b 6 c
(12) (a ∨ b) ∨ b = a ∨ b
(13) (a ∨ b) ∨ a = a ∨ b
(14) a ∨ (a ∨ b) = a ∨ b
(15) a ∧ (a ∧ b) = a ∧ b
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(16) (a ∧ b) ∧ b = a ∧ b
(17) b ∧ (a ∧ b) = a ∧ b
(18) a ∨ b = a ∨ (b ∨ a).

Definition 2.8. An AL L is said to be directed above if for any a, b ∈ L there
exists c ∈ L such that a, b 6 c.

Theorem 2.2. Let L be an AL. Then the following are equivalent:

(1) L is directed above.
(2) ∧ is commutative.
(3) ∨ is commutative.
(4) L is a lattice.

Definition 2.9. Let L be an AL. Then for any a, b ∈ L, we say that a is
compatible with b, written as a ∼ b if and only if a ∧ b = b ∧ a or, equivalently,
a ∨ b = b ∨ a.

Proposition 2.1. Let L be an AL such that a, b, c ∈ L. Then we have the
following.

(1) a ∼ b⇐⇒ a ∧ b ∼ b ∧ a.
(2) a ∼ b⇐⇒ a ∨ b ∼ b ∨ a.
(3) a ∼ b and a ∼ c =⇒ a ∼ b ∧ c.

Definition 2.10. An algebra (L,∨,∧, 0) of type (2, 2, 0) is called an AL with
0 if it satisfying the following axioms. For any a, b, c ∈ L:

(A1) (a ∧ b) ∧ c = (b ∧ a) ∧ c
(A2) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(A3) (a ∧ b) ∧ c = a ∧ (b ∧ c)
(A4) (a ∨ b) ∨ c = a ∨ (b ∨ c)
(A5) a ∧ (a ∨ b) = a
(A6) a ∨ (a ∧ b) = a
(A7) (a ∧ b) ∨ b = b
(01) 0 ∧ a = 0

Lemma 2.2. Let L be an AL with 0. Then for any a, b ∈ L, we have the
following:

(1) a ∧ 0 = 0.
(2) a ∨ 0 = a.
(3) 0 ∨ a = a
(4) a ∧ b = 0 ⇐⇒ b ∧ a = 0.
(5) a ∧ b = b ∧ a whenever a ∧ b = 0

Definition 2.11. Let L be an AL. Then an element a ∈ L is maximal if for
any x ∈ L, a 6 x implies a = x.

Proposition 2.2. Let L be an AL. Then for any m ∈ L, the following are
equivalent:

(1) m is maximal.
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(2) m ∨ x = m, ∀x ∈ L.
(3) m ∧ x = x, ∀x ∈ L.

Corollary 2.1. L is discrete AL if and only if every element of L is maximal.

3. Amicable Sets

If (S, .) is a P1− semigroup, then we have seen that S is an AL and the Birkhoff
center B(S) of S has the following property; given x ∈ S there exists an element
x0 ∈ B(S) which is the least among a of B(S) such that a ∧ x = ax = x. In this
section, we introduce the concepts of compatible set, maximal set and M-amicable
element and prove certain properties of these concepts. Also, we prove that if M is
a maximal set in an AL L and x ∈ L is an M-amicable element, then there exists
a smallest element xM in M such that xM ∧ x = x. We prove that the set AM (L)
of all M-amicable elements in an AL L is again an AL with respect to induced
operations. We introduce the concepts of an amicable set in an AL L and prove
that every maximal set in an AL L is embedded in an amicable set.

Recall that for any a, b in an AL L, we say a is compatible with b, write as
a ∼ b if and only if a∧ b = b∧ a or, equivalently, a∨ b = b∨ a. First we begin with
the following definition:

Definition 3.1. A subset S of an Almost Lattice (AL) L is said to be com-
patible if a ∼ b for all a, b ∈ S.

It can be easily seen that for any a in an AL, {a} is a compatible set of L and
also seen that the set F of all compatible sets of L is a poset with respect to the
set inclusion. Now, we introduce the following definition.

Definition 3.2. Let L be an AL. Then a maximal set in L is a maximal
element in the poset (F ,⊆).

In the following we prove certain basic properties of compatible sets.

Lemma 3.1. Let M be a maximal set in an AL L and x ∈ L such that x ∼ a
for all a ∈M . Then x ∈M .

Proof. Let M be a maximal set in an AL L and x ∈ L such that x ∼ a for
all a ∈ M . Then clearly, M ∪ {x} is a compatible and M ⊆ M ∪ {x}. Hence, by
maximality of M, we get M =M ∪ {x}. Therefore x ∈M . �

Theorem 3.1. Let M is a maximal set in an AL L. Then M is a lattice with
respect to induced operations.

Proof. Let M be a maximal set. It is sufficient to show that M is closed under
∨ and ∧. Let a, b ∈ M . Now, for any x ∈ M consider, x ∧ (a ∧ b) = (x ∧ a) ∧ b =
(a∧ x)∧ b = a∧ (x∧ b) = a∧ (b∧ x) = (a∧ b)∧ x. Hence a∧ b ∈M by lemma 3.1.
Similarly we can prove that a ∨ b ∈M . Therefore M is a lattice. �

Now, we have the following corollary whose proof follows by theorem 3.1.
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Corollary 3.1. Let L be an AL. Then the following are equivalent:

(1) L is a lattice.
(2) L is compatible set.
(3) L is maximal set.

Proposition 3.1. Let M be a maximal set of an AL L and a ∈ M . Then for
any x ∈ L, x ∧ a ∈M .

Proof. Suppose M is a maximal set such that a ∈M and x ∈ L. Then for any
b ∈M consider, (x∧a)∧b = x∧(a∧b) = x∧(b∧a) = (x∧b)∧a = (b∧x)∧a = b∧(x∧a).
Hence by lemma 3.1, we get x ∧ a ∈M . �

Corollary 3.2. Let M be a maximal set in an AL L. Then M is an initial
segment in the poset (L,6) (i.e. for any x ∈ L and a ∈M,x 6 a implies, x ∈M).

Proof. Suppose that x ∈ L and a ∈ M such that x 6 a. Then x = x ∧ a.
Hence by proposition 3.1, we have x = x ∧ a ∈M . �

In the following we introduce the concept of an M-amicable element in an AL
L.

Definition 3.3. Let M be a maximal set in an AL L. Then an element x ∈ L
is said to be M-amicable if there exists a ∈M such that a ∧ x = x.

It can be easily observed that every element in discrete AL, is M-amicable. In
the following we prove that if M is maximal in an AL L and x ∈ L is M-amicable,
then there exists a smallest element a ∈ M with the property that a ∧ x = x. For
this first we need the following lemma.

Lemma 3.2. Let M be a maximal set in an AL L and x ∈ L be M- amicable.
Then there exists a ∈M with the following properties:

(1) a ∧ x = x
(2) If b ∈ L such that b ∧ x = x, then b ∧ a = a.

Proof. (1):- Suppose M be a maximal set in an AL L and x ∈ L is M-amicable.
Then there exists an element c ∈ M such that c ∧ x = x. Now, put a = x ∧ c.
Then by proposition 3.1, we get a ∈ M . Now, a ∧ x = (x ∧ c) ∧ x = (c ∧ x) ∧ x =
c ∧ (x ∧ x) = c ∧ x = x. Therefore a ∧ x = x
(2):- Let b ∈ L such that b∧x = x. Then b∧a = b∧ (x∧c) = (b∧x)∧c = x∧c = a.
Thus b ∧ a = a. �

Note that if b ∈ M in the above lemma, then a = b ∧ a = a ∧ b so that a 6 b
and hence we have the following:

Theorem 3.2. Let M be a maximal set in an AL L and x ∈ L be M-amicable.
Then there is a smallest element a ∈M with the property a ∧ x = x.

Proof. Suppose M be a maximal set in an AL L and x ∈ L be M-amicable.
Then there exists a ∈M such that a∧x = x. It is enough to prove a is the smallest
element of M with the property a ∧ x = x. Suppose b ∈ M such that b ∧ x = x.
Then by condition (2) of lemma 3.2, we get b∧a = a and hence a∧b = a. It implies
a 6 b. Therefore a is the smallest element of M with the property a ∧ x = x. �
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Note that such smallest element a in M is denoted by xM and observe that xM

depends on M as well as on x.

Corollary 3.3. Let M be a maximal set in an AL L and x ∈ L. Then x is
M-amicable and x = xM if and only if x ∈M .

Proof. Suppose for any x ∈ L, x is M-amicable and x = xM . Then x = xM ∈
M . Hence x ∈M . Conversely, suppose x ∈M . Then clearly x is M-amicable. Now,
by theorem 3.10, there exists a smallest element xM ∈ M such that xM ∧ x = x.
Also, we have x ∧ x = x. It follows that, xM 6 x. Now, x ∧ xM = xM ∧ x = x,
since x, xM ∈M and hence x 6 xM . Therefore x = xM . �

Corollary 3.4. Let M be a maximal set in an AL L and x ∈ L is M-amicable.
Let a ∈ L such that x ∧ a = a. Then a is M-amicable and aM 6 xM .

Proof. Suppose x ∈ L is M-amicable and a ∈ L with the property x ∧ a = a.
Then by theorem 3.2, there exists a smallest element xM ∈M such that xM∧x = x.
Now, consider xM ∧ a = xM ∧ (x ∧ a) = (xM ∧ x) ∧ a = x ∧ a = a. Hence a is
M-amicable. Therefore by theorem 3.2 there exists smallest element aM of M with
the property that aM ∧ a = a. It follows that aM 6 xM . �

Corollary 3.5. Let M be a maximal set in an AL L and x ∈ M . Then xM

is the largest element of M with the property x ∧ xM = xM .

Proof. Let M be a maximal set in an AL L and x ∈ M . Then by corollary
3.3, we have x = xM and hence x ∧ xM = xM . Now, suppose b ∈ M such that
x ∧ b = b. Then b 6 x and hence b 6 xM . Therefore xM is the largest element of
M with the property x ∧ xM = xM . �

Corollary 3.6. Let M be a maximal set in an AL L and x ∈ L be M-amicable.
Then for any a ∈ L, a ∧ x = x and x ∧ a = a if and only if a is M-amicable and
xM = aM .

Proof. Let M be a maximal set in an AL L and x ∈ L be M-amicable. Suppose
for any a ∈ L, a ∧ x = x and x ∧ a = a. Then there exists xM ∈ M such that
xM ∧x = x. Now, xM ∧a = xM ∧ (x∧a) = (xM ∧x)∧a = x∧a = a. Hence a is M-
amicable. Therefore there exists a smallest element aM ∈M with the property that
aM∧a = a. Hence aM 6 xM . Also, aM∧x = aM∧(a∧x) = (aM∧a)∧x = a∧x = x.
It follows that, xM 6 aM . Therefore xM = aM . Conversely, suppose that a is M-
amicable and aM = xM . Then a∧x = a∧ (xM ∧x) = a∧ (aM ∧x) = (a∧aM )∧x =
aM ∧ x = xM ∧ x = x. Similarly, we can prove that x ∧ a = a. �

Corollary 3.7. Let M be a maximal set in an AL L and x ∈ L be M-amicable.
Then xM is the unique element of M such that xM ∧ x = x and x ∧ xM = xM .

Proof. Suppose M is a maximal set and x ∈M is M-amicable. Since xM ∈M ,
by corollary 3.11, we have xM is M-amicable and (xM )M = xM . Put a = xM .
Then aM = (xM )M = a. Therefore aM = a = xM . Then by corollary 3.6,
a ∧ x = x and x ∧ a = a and hence xM ∧ x = x and x ∧ xM = xM . Now, we
prove xM is unique element of M satisfying the given condition. Suppose b ∈ M
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such that b ∧ x = x and x ∧ b = b. Then by corollary 3.6 and corollary 3.3, we
have b = bM = xM . Therefore xM is a unique element of M satisfying the given
condition, xM ∧ x = x and x ∧ xM = xM . �

If M is a maximal set in an AL L, then we denote the set of all M-amicable
elements of L by AM (L). Now, we prove that AM (L) is an AL with the induced
operation on L.

Theorem 3.3. Let M be a maximal set in an AL L. Then AM (L) is an AL
with the induced operations on L. More over for any x, y ∈ L we have (x ∧ y)M =
xM ∧ yM and (x ∨ y)M = xM ∨ yM .

Proof. Let M be a maximal set in an AL L. Then clearly we have AM (L) ⊆ L.
Now, it is suffice to prove that AM (L) is closed over ∨ and ∧. Let x, y ∈ AM (L).
Then we have xM , yM ∈ M such that xM ∧ x = x and yM ∧ y = y. Now, for any
t ∈M consider, (xM ∧ yM )∧ t = xM ∧ (yM ∧ t) = xM ∧ (t∧ yM ) = (xM ∧ t)∧ yM =
(t∧xM )∧yM = t∧(xM∧yM ). Also, (xM∨yM )∨t = xM∨(yM∨t) = xM∨(t∨yM ) =
(xM ∨ t)∨yM = (t∨xM )∨yM = t∨ (xM ∨yM ). Therefore xM ∨yM , xM ∧yM ∈M .
Now, we have (xM ∨yM )∨ (x∨y) = ((xM ∨yM )∨ (x∨y))∧ ((xM ∨yM )∨ (x∨y)) =
((xM ∨x)∨ (yM ∨y))∧ ((xM ∨yM )∨ (x∨y)) = (xM ∨yM )∧ ((xM ∨yM )∨ (x∨y)) =
xM ∨ yM . Hence (xM ∨ yM ) ∧ (x ∨ y) = x ∨ y. Therefore x ∨ y ∈ AM (L). Also,
(xM ∧yM )∧(x∧y) = (xM ∧x)∧(yM ∧y) = x∧y. Hence x∧y ∈ AM (L). Therefore
AM (L) is closed under the operations ∨ and ∧ on L and hence (AM (L),∨,∧) is an
AL. It remains to show that (x∨ y)M = xM ∨ yM and (x∧ y)M = xM ∧ yM . Now,
we have (x ∨ y) ∨ (xM ∨ yM ) = ((x ∨ y) ∨ (xM ∨ yM )) ∧ ((x ∨ y) ∨ (xM ∨ yM )) =
(x ∨ y) ∧ ((x ∨ y) ∨ (xM ∨ yM )) = x ∨ y. Hence (x ∨ y) ∧ (xM ∨ yM ) = xM ∨ yM .
Similarly, (xM ∨ yM ) ∧ (x ∧ y) = x ∧ y. Hence by corollary 3.6 and 3.7, we get
(x∨y)M = xM∨yM . Also, (x∧y)∧(xM∧yM ) = xM∧yM and (xM∧yM )∧(x∧y) =
x ∧ y. Hence by corollary 3.6 and 3.7, we get (x ∧ y)M = xM ∧ yM . �

Proposition 3.2. Let M be a maximal set in an AL L and x, y ∈ L be M-
amicable such that x ∼ y. Then xM = yM if and only if x = y.

Proof. Let x, y ∈ L be M-amicable and x ∼ y. Then x∧y = y∧x and x∨y =
y ∨ x. Now, suppose xM = yM . Consider, x = xM ∧ x = yM ∧ x = y ∧ yM ∧ x =
yM ∧ y ∧ x = y ∧ x = x ∧ y. Hence x 6 y. Similarly, we can prove that y 6 x.
Therefore x = y. Conversely, suppose x = y. Since x, y ∈ L is M-amicable and
x ∼ y, x ∧ y = y ∧ y = y and y ∧ x = x ∧ x = x. Then by corollary 3.16, we get
xM = yM . �

It can be easily seen that every element in a maximal set M is M-amicable.
Hence we get M ⊆ AM (L) ⊆ L. Now, we prove the following theorem.

Theorem 3.4. Let M be a maximal set in an AL L. Then the following are
equivalent:

(1) M = AM (L)
(2) M = L
(3) L is a lattice.
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Proof. (1) =⇒ (2). Assume (1). Clearly, M ⊆ L. Let x ∈ L and t ∈ M =
AM (L). Then x ∧ t ∈M . Now, (x ∧ t) ∧ (t ∧ x) = (x ∧ t) ∧ x = (t ∧ x) ∧ x = t ∧ x.
Hence t ∧ x ∈ AM (L). Then x ∧ t ∼ t ∧ x. It follows that, x ∼ t and hence x ∈M
(by lemma 3.1). Therefore L ⊆M . Thus M = L.

Proof of (2) =⇒ (3) is clear since M is a lattice.

(3) ⇒ (1) Suppose L is a lattice. Clearly, M ⊆ AM (L). Let x ∈ AM (L) and
t ∈ M . Then we have t ∧ x = x ∧ t. Therefore t ∼ x and hence x ∈ M . Therefore
M = AM (L). �

Now, we introduce the concept of an amicable set in an AL L and prove that
the Birkhoff centre of a P1− semi group is an amicable set. Also, observe that a
maximal set in an AL L need not be amicable by means of example.

Definition 3.4. A maximal set M in an AL is said to be amicable if AM (L) =
L (i.e. if every element of L is M-amicable).

Corollary 3.8. In a discrete AL, every singleton set is amicable.

Proof. Suppose L is a discrete AL and a ∈ L. First we shall prove {a} is
maximal set. Clearly, {a} is compatible set. Suppose N is compatible set in L such
that {a} ⊆ N . Let b ∈ N . Then we have a, b ∈ N . It follows a = b ∧ a = a ∧ b = b.
Thus {a} = N . Therefore {a} is a maximal set. Now, we prove {a} is amicable.
That is enough to prove that A{a}(L) = L. Clearly, A{a}(L) ⊆ L. Let b ∈ L.
Then we have a ∧ b = b and hence b is {a}- amicable. Hence b ∈ A{a}(L). Thus
L ⊆ A{a}(L). ThereforeA{a}(L) = L. Thus {a} is amicable. �

Recall that if (S, .) is a P1− semi group, then to each x ∈ S, there exists x0 in
the Birkhoff centre B(S) of S which is least among the elements of B(S) with the

property x0x = x. Since x0 ∈ B(S), there exists x0
′ ∈ B(S) such that the mapping

y 7→ (x0y, x0
′
y) of S onto x0S × x0

′
S is an isomorphism. Now, if we define for any

x, y ∈ S, x∧y = x0y and x∨y to be the unique element of S such that x0(x∨y) = x

and x0
′
(x ∨ y) = x0

′
y. Then it can be easily verified that (S,∨,∧) is an AL.

Now we prove the following theorem.

Theorem 3.5. If (S, .) is a P1− semi group, then the Birkhoff centre B(S) of
S is an amicable set in S.

Proof. Let (S, .) be a P1− semi group. Let us recall that, for any x ∈ S, there
is a smallest element x0 ∈ B(S) such that x0x = x. It is enough if we prove that
B(S) is a maximal set and x0∧x = x and x∧x0 = x0. Let x ∈ S such that x ∼ a for
all a ∈ B(S). In particular x ∼ x0 so that x0 = x0.x0 = x∧x0 = x0∧x = x0.x = x
and hence x ∈ B(S). Thus B(S) is a maximal set. Now, by the definition of the
operation ∧ in S, we have x0 ∧ x = x0x = x and x ∧ x0 = x0x0 = x0 for all x ∈ S.
Hence B(S) is an amicable set where, for any x ∈ S, xB(S) = x0. �

Now, we prove the following theorem which explains the relation between the
maximal sets in an AL L and the amicable sets in an AL L. For this first we
introduce the concept of AL-homomorphism.
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Definition 3.5. Let (L1,∨,∧) and (L2,∨′,∧′) be two ALs. Then a mapping
ψ : L1 −→ L2 is said to be a homomorphism if for any x, y ∈ L, ψ(x ∨ y) =
ψ(x) ∨′ ψ(y) and ψ(x ∧ y) = ψ(x) ∧′ ψ(y). A homomorphism ψ is said to be
a monomorphism (epimorphism) if ψ is one-one(onto) and ψ is said to be an
isomorphism if ψ is a bijection.

Theorem 3.6. Let M be a maximal set in an AL L and M
′
be an amicable

set in L. Then the mapping a 7→ aM
′

is a mono morphism of the lattice (M,∨,∧)
into the lattice (M

′
,∨,∧). Further if M is also amicable, then the above mapping

is an isomorphism.

Proof. Define f : M −→ M
′
by f(a) = aM

′

for all a ∈ M . Now, we shall
prove that f is a monomorphism. Let a, b ∈ M . Then we have a ∼ b. Also since
a, b ∈ M ⊆ L and M

′
is amicable, AM ′ (L) = L. Hence a and b are M

′
-amicable.

It follows that aM
′

= bM
′

if and only if a = b. Therefore f is well defined and one-

one. Now, let a, b ∈M . Then f(a ∧ b) = (a ∧ b)M
′

= aM
′

∧ bM
′

= f(a) ∧ f(b) and
f(a∨b) = (a∨b)M

′

= aM
′

∨bM
′

= f(a)∨f(b). Thus f is amonomorphism. Suppose

M is an amicable set in L. Let x ∈M
′
. Then x ∈ AM ′ (L) = L = AM (L). Hence x

isM -amicable. Hence there exists unique element xM ∈M such that x∧xM = xM

and xM ∧ x = x. Now, since xM ∈ M , xM is M-amicable. Therefore xM ∈
AM (L) = L = AM ′ (L). Hence xM is M

′
-amicable. It follows that, (xM )M

′

∈M
′

such that xM ∧ (xM )M
′

= (xM )M
′

and (xM )M
′

∧ xM = xM . Then by uniqueness,

we get x = (xM )M
′

. Now, we havexM ∈ M and f(xM ) = (xM )M
′

= x. Therefore

f is onto and hence it is an isomorphism from a lattice M on to a lattice M
′
. �

In the following, we introduce the concepts of a uni-element in an AL L and
prove certain properties of a uni-element.

Definition 3.6. Let M be a maximal set in an AL L. An element υ of L is
said to be a uni-element of M if a 6 υ for all a ∈M .

Lemma 3.3. Let L be an AL and M be a maximal set in L. If υ is a uni-element
of M, then υ ∈M .

Proof. Suppose M is a maximal set and let υ ∈ L is a uni-element of M. Then
we have x 6 υ for all x ∈M . It follows that, x∧υ = υ∧υ for all x ∈M and hence
x ∼ υ for all x ∈M . Therefore x ∈M . �

Lemma 3.4. Let L be an AL and M be a maximal set in L. Then M has at
most one uni-element.

Proof. Suppose υ1, υ2 ∈ L such that υ1 and υ2 are uni-elements of M. Then
by lemma 3.3, υ1, υ2 ∈M . It follows that, υ1 6 υ2 and υ2 6 υ1. Hence υ2 = υ1. �

In the following we prove some properties of uni-elements and maximal ele-
ments. For this, first, we need the following:
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Lemma 3.5. Let L be an AL and x, y ∈ L. Then x ∨ y is maximal if and only
if y ∨ x is maximal.

Proof. Suppose x, y, t ∈ L. Then we have (x ∨ y) ∧ t = (y ∨ x) ∧ t. It follows
that, x ∨ y is maximal if and only if y ∨ x is maximal. �

Lemma 3.6. Let L be an AL with maximal element n. Then for each x ∈ L,
there exists a maximal element m ∈ L such that x 6 m.

Proof. Suppose x ∈ L. Now, put m = x∨ n. Then clearly m is maximal and
x ∧m = x ∧ (x ∨ n) = x. Therefore x 6 m. �

Lemma 3.7. Let M be a maximal set in an AL L with uni-element υ. Then υ
is a maximal element of L and M = {x ∧ υ|x ∈ L}.

Proof. Suppose υ ∈ L is uni element of M. Now, let x ∈ L and υ 6 x. Since
υ is a uni-element of M, υ ∈ M . Therefore a 6 υ 6 x for all a ∈ M . This
implies a 6 x for all a ∈ M . Hence a ∧ x = x ∧ a for all a ∈ L. Therefore a ∼ x
for all a ∈ L. Thus x ∈ M . It follows that x 6 υ. Hence υ = x. Therefore
υ is a maximal element in L. Now, put M ′ = {x ∧ υ|x ∈ L}. We shall prove
that M = M ′. Let a ∈ M . Then we have a 6 υ. Therefore a = a ∧ υ and
hence a ∈ M ′. Conversely, suppose x ∧ υ ∈ M ′ and t ∈ M . Now, consider
(x∧ υ)∧ t = x∧ (υ ∧ t) = x∧ (t∧ υ) = (x∧ t)∧ υ = (t∧ x)∧ υ = t∧ (x∧ υ). Hence
x ∧ υ ∈M . Thus M =M ′ = {x ∧ υ|x ∈ L}. �

Lemma 3.8. Let m be a maximal element of an AL L. Then the set Mm =
{x ∧m|x ∈ L} is a maximal set in L with m as its uni-element.

Proof. Suppose x∧m, y∧m ∈Mm. Then (x∧m)∧(y∧m) = ((x∧m)∧y)∧m =
(x ∧ (m ∧ y)) ∧m = (x ∧ (y ∧m)) ∧m = ((x ∧ y) ∧m) ∧m = ((y ∧ x) ∧m) ∧m =
(y ∧ (x ∧m)) ∧m = ((x ∧ y) ∧m) ∧m = (x ∧ (y ∧m)) ∧m = (y ∧m) ∧ (x ∧m).
Therefore (x ∧m) ∼ (y ∧m) and hence Mm is compatible set in L. Suppose M is
a compatible set in L such that Mm ⊆M . Let x ∈M and y ∧m ∈Mm. Then we
have x, y ∧m ∈ M . Therefore x ∧ (y ∧m) = (y ∧m) ∧ x. Hence x ∼ y ∧m for
all y ∧m ∈ Mm. It follows that, x ∈ Mm . Thus M ⊆ Mm. Therefore Mm is a
maximal set. Since x∧m 6 m for all x∧m ∈Mm, m is a uni-element of Mm. �

Using the above two lemmas, we have the following theorem.

Theorem 3.7. An element m ∈ L of an AL L is a maximal element if and
only if there exists a maximal set M with m as its uni-element.

Remark 3.1. Whether amicable sets in an AL exists or not is not known and
it is still under investigation.

In the following example, we describe an AL L and exhibit a maximal set M
of L for which AM (L) $ L. That is, M is a maximal set but not amicable.
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Example 3.1. Let L be the set of all sequences {an} of non negative integers
whose range is finite. Define two binary operations ∨ and ∧ on L as follows: For
any {an}, {bn} ∈ L,

{an} ∨ {bn} = {cn} where cn =

{
an if an ̸= 0

bn if an = 0

and

{an} ∧ {bn} = {dn} where dn =

{
bn if an ̸= 0

0 if an = 0

Then it can be verified that (L,∨,∧) is an AL. Also, observe that for any {an},
{bn} ∈ L, {an} ∼ {bn} if and only if an ̸= 0 ̸= bn implies an = bn. Write

M = {{an} ∈ L| an = n or an = 0 for all n}.
Observe that every sequence in M has only a finite number of non zero entries.
Clearly, M is a compatible set in L. Now, we prove that M is a maximal set. Let
{cn} ∈ L and let {cn} ∼ {an} for all {an} ∈M . Suppose for some m, cm ̸= 0.

Now, consider the sequence {an} where

an =

{
m if n = m

0 if n ̸= m

Then {an} ∈ M so that {cn} ∼ {an}. Hence cm = am = m since cm ̸= 0 ̸= am.
Thus {cn} ∈ M . Therefore M is a maximal set. Now, consider the constant
sequence {1}. Here {1} ∈ L, but {1} /∈ AM (L). For, if {1} ∈ AM (L), then there
exists {an} ∈M such that {an} ∧ {1} = {1} which means an ̸= 0 for all n which is
a contradiction. Hence M is a maximal set in L which is not amicable.

Finally, we give a necessary and sufficient condition for a maximal set to become
an amicable set.

Theorem 3.8. Let L be an AL with maximal element m. Then a maximal set
M of L is amicable if and only if M has a uni-element.

Proof. Suppose M is amicable set. Since m ∈ L = AM (L), m is M-amicable
element. Hence there exists a smallest element mM ∈ M such that mM ∧m = m.
Let a ∈ M . Then a ∧ mM = mM ∧ a = mM ∧ m ∧ a = m ∧ a = a. Hence
a 6 mM . Thus mM is a uni-element of M. Conversely, suppose that a maximal
set M has a uni element say, υ. Now, we prove M is amicable. That is enough to
prove that AM (L) = L. We have AM (L) ⊆ L. Now, let x ∈ L. Then we have
x∧υ 6 υ and υ ∈M . Therefore x∧υ ∈M . Now, (x∧υ)∧x = (υ∧x)∧x = υ∧x = x.
Thus x is M-amicable and hence x ∈ AM (L). Therefore L ⊆ AM (L). Hence we get
AM (L) = L. Therefore M is amicable set. �

Corollary 3.9. If an AL L has a maximal element, then every amicable set
in L can be embedded in a maximal set with uni-element.



AMICABLE SETS IN ALMOST LATTICES 331

References

[1] Nanaji Rao G. and H. T. Alemu. Almost Lattices. J. Int. Math. Virt. Inst., 9(2019), 155–171.
[2] Nanaji Rao G. and T. G. Beyene. Almost Semilattice. Int. J. Math. Archive, 7(3)(2016),

52–67.

[3] U. M. Swamy and G. C. Rao. Almost Distributive Lattice. J. Aust. Math. Soc, (Series A),
31(1)(1981), 77–91.

[4] G. Szasz. Introduction to Lattice Theory. Academic press, New York and London, 1963.

Receibed by editors 13.10.2018; Revised version 07.01.2019; Available online 14.01.2019.

G. NANAJI RAO: Department of Mathematics, Andhra University, Visakhapatnam-
530003, India.

E-mail address: nani6us@yahoo.com, drgnanajirao.math@auvsp.edu.in

HABTAMU TIRUNEH ALEMU: Department of Mathematics, Andhra University,
Visakhapatnam - 530003, India

Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
E-mail address: htiruneh4@gmail.com

TEREFE GETACHEW BEYENE: Addis Ababa Science and Technology University,
Addis Ababa, Ethiopia

E-mail address: gterefe4@gmail.com


