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HOMODERIVATION OF PRIME RINGS

WITH INVOLUTION

E.F. Alharfie and N.M. Muthana

Abstract. Let R be a ring with involution ∗. An additive mapping h from
R into itself is called homoderivation if h(xy) = h(x)h(y) + h(x)y + xh(y)
for all x, y ∈ R. In this paper we investigate the commutativity of a ring R
with involution ∗ which admits a homoderivation satisfying certain algebraic

identities.

1. Introduction

Throughout this paper, R will represent a ring with center Z(R). For any
x, y ∈ R the symbol [x, y] denote the commutator xy − yx; while the symbol x ◦ y
will stand for the anti-commutator xy+yx. A ring R is a 2-torsion free if whenever
2x = 0, x ∈ R, implies x = 0. A ring R is called prime if aRb = 0, where a, b ∈ R,
implies a = 0 or b = 0, and is called a semiprime ring in case aRa = 0 implies a = 0.
An additive mapping ∗ : R → R is called an involution if ∗ is an antihomomorphism
of order 2, that is, (a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for all a, b ∈ R.
An element x in a ring R with involution is said to be hermitian if x∗ = x and
skew-hermitian if x∗ = −x. The sets of all hermitian and skew-hermitian elements
of R will be denote by H(R) and S(R), respectively. The involution is said to be
of the first kind if Z(R) ⊆ H(R); otherwise it is said to be of the second kind.
In the later case, S(R) ∩ Z(R) ̸= (0). If char(R) ̸=2, then R = S(R) +H(R) and
S(R) ∩H(R) = (0). Note that in this case x is normal, i.e. xx∗ = x∗x, if and only
if S and h commute. If all elements in R are normal, then R is called a normal
ring. A mapping f : R → R is said to be ∗-centralizing on S if [f(x), x∗] ∈ Z(R)
for all x ∈ S and f : R → R is said to be ∗-commuting on S if [f(x), x∗] = 0
for all x ∈ S. A derivation on R is an additive mapping d : R → R such that
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d(xy) = d(x)y + xd(y) for all x, y ∈ R. El-Sofy [3] defined a homoderivation
on R as an additive map h on R such that h(xy) = h(x)h(y) + h(x)y + xh(y),
for all x, y ∈ R. For a positive integer n(x) > 1 such that fn(x)(x) = 0 for all
x ∈ R, the mapping f : R → R is called a zero-power valued on R [3]. Over the
last few decades, several authors have describe the structure of additive mappings
that are ∗-commuting on a prime or semiprime ring with involution and study the
commutativity of rings with involution satisfying some algebraic conditions(see, [2],
[12]). In this paper, we study the commutativity of rings with involution admitting
a homoderivation satisfying some algebraic identities In [11], the authors proved
the commutativity of ∗-prime rings admitting homoderivations that commute with
∗ and satisfy some conditions on ∗-ideals.

2. preliminaries

In [8], for any x, y, z ∈ R, the following identities of anticommutators are
obvious

• x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z.
• (xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z].

An important results will be listed in this section.

Lemma 2.1 ([10], Lemma 4). Let b and ab be elements in the center of a prime
ring R. If b is not zero, then a is in Z(R).

Lemma 2.2 ([9], Lemma 2). Suppose 2R = 0 and U is a commutative Lie ideal
of R. Then u2 ∈ Z(R) for all u ∈ U .

Lemma 2.3 ([1], Lemma 2.1). Let R be a prime ring with involution ∗ such
that char(R) ̸= 2. If S(R) ∩ Z(R) ̸= (0) and R is normal, then R is commutative.

Lemma 2.4 ([12], Lemma 2.1 ). Let R be a prime ring with involution of the
second kind. Then ∗ is centralizing if and only if R is commutative.

Lemma 2.5 ([12], Lemma 2.2 ). Let R be a prime ring with involution of the
second kind. Then x ◦ x∗ ∈ Z(R) for all x ∈ R if and only if R is commutative.

Lemma 2.6 ([11], Lemma 2.3.1). Let R be a ring and let h be a zero power
valued homoderivation on R. Then h preserves Z(R).

Lemma 2.7 ([11], Lemma 2.3.2). Let R be a prime ring, and h ̸= 0 a homod-
erivation of R such that [h(x), h(y)] = 0 for all x, y ∈ R . If char(R) ̸=2. R is
commutative .

Lemma 2.8 ([3], Theorem 3.3.1). Let R be a prime ring with char(R) ̸= 2 and
h ̸= 0 be a homoderivation of R. An element a ∈ R is such that ah(x) = h(x)a for
all x ∈ R. Then a must be in Z(R).

Lemma 2.9 ([3], Theorem 3.4.7). let R be a prime ring and I ̸= 0 a two sided
ideal of R. If R admits a non-zero homoderivation h which is commuting and
zero-power valued on I. Then R is a commutative.



HOMODERIVATIONS OF PRIME RINGS WITH INVOLUTION 307

Lemma 2.10 ([3], Corollary 3.4.8). let R be a prime ring and I ̸= 0 a two
sided ideal of R. If R admits a non-zero homoderivation h which is centralizing
and zero-power valued on I. Then R is a commutative.

Lemma 2.11 ([4], Lemma 1). Let R be any ring with involution ∗ such that
R = S + K. Then K2, the addition subgroup generated by all products k1k2 for
k1, k2 ∈ K, is a Lie ideal of R.

3. Main Result

Lemma 3.1. Let (R, ∗) be a 2-torsion free prime ring with involution provided
with a homoderivation h. If h(t) = 0 for all t ∈ H(R) ∩ Z(R), then h(z) = 0 for
all z ∈ Z(R).

Proof. If t = 0, then h(t) = 0. Assume that t ̸= 0, and

(3.1) h(t) = 0 for all t ∈ H(R) ∩ Z(R).

Then replacing t by tk2 ∈ H(R)∩Z(R) where k ∈ S(R)∩Z(R) and applying (3.1)
we get

0 = h(tk2) = h(t)h(k2) + th(k2) + h(t)k2.

0 = th(k2).

Now replace k by s+ r such that 0 ̸= s, r ∈ S(R) ∩ Z(R)

th((s+ r)2) = th(s2 + 2sr + r2) = th(s2) + 2th(sr) + th(r2) = 2th(sr) = 0.

2th(sr) = 0.

Since R is 2-torsion free, so

th(sr) = 0.

th(s)h(r) + tsh(r) + th(s)r = 0.

tsh(r) = 0

Since the center of a prime ring is free zero divisors this assures that h(r) = 0 for
all r ∈ S(R) ∩ Z(R). Since each element z ∈ Z(R) can be uniquely represented in
the form 2z = g + k where g ∈ H(R) ∩ Z(R) and k ∈ S(R) ∩ Z(R)then,

2h(z) = h(2z) = h(g + k) = h(g) + h(k) = 0.

Since char(R) ̸=2 , so h(z) = 0 for all z ∈ Z(R). �

Theorem 3.1. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. Let h be a homoderivation of R such that [h(x), h(x∗)] = 0 for all
x ∈ R, then R is commutative.

Proof. By the assumption, we have

(3.2) [h(x), h(x∗)] = 0 for all x ∈ R.

By lineralization (3.2) yields that

(3.3) [h(x), h(y∗)] + [h(y), h(x∗)] = 0 for all x, y ∈ R.
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Replacing y by xx∗ in (3.3),

0 = [h(x), h((xx∗)∗)] + [h(xx∗), h(x∗)].

= [h(x), h(xx∗)] + [h(xx∗), h(x∗)].

= [h(x), h(x)h(x∗)] + [h(x), xh(x∗)] + [h(x), h(x)x∗] + [h(x)h(x∗), h(x∗)]

+ [xh(x∗), h(x∗)] + [h(x)x∗, h(x∗)].

= h(x)[h(x), h(x∗)] + [h(x), h(x)]h(x∗) + x[h(x), h(x∗)] + [h(x), x]h(x∗)

+ h(x)[h(x), x∗] + [h(x), h(x)]x∗ + h(x)[h(x∗), h(x∗)] + [h(x), h(x∗)]h(x∗)

+ x[h(x∗), h(x∗)] + [x, h(x∗)]h(x∗) + h(x)[x∗, h(x∗)] + [h(x), h(x∗)]x∗.

(3.4) 0 = [h(x), x]h(x∗) + h(x)[h(x), x∗] + [x, h(x∗)]h(x∗) + h(x)[x∗, h(x∗)].

Replacing x by x+ t, where t ∈ H(R) ∩ Z(R), we obtain

0 = [h(x+ t), x+ t]h(x∗ + t) + h(x+ t)[h(x+ t), x∗ + t] + [x+ t, h(x∗ + t)]h(x∗ + t)

+h(x+ t)[x∗ + t, h(x∗ + t)].

0 = [h(x), x]h(x∗) + [h(x), x]h(t) + [h(x), t]h(x∗) + [h(x), t]h(t) + [h(t), t]h(x∗)

+[h(t), t]h(t) + [h(t), x]h(x∗) + [h(t), x]h(t) + h(x)[h(x), x∗] + h(x)[h(t), t]

+h(x)[h(x), t] + h(x)[h(t), x∗] + h(t)[h(x), x∗] + h(t)[h(t), t] + h(t)[h(x), t]

+h(t)[h(t), x∗] + h(x)[x∗, h(x∗)] + h(x)[t, h(t)] + h(x)[x∗, h(t)] + h(x)[t, h(x∗)]

+h(t)[x∗, h(x∗)] + h(t)[t, h(t)] + h(t)[x∗, h(t)] + h(t)[t, h(x∗)]

+[x, h(x∗)]h(x∗) + [t, h(t)]h(x∗) + [x, h(t)]h(x∗) + [t, h(x∗)]h(x∗)

+[x, h(x∗)]h(t) + [t, h(t)]h(t) + [x, h(t)]h(t) + [t, h(x∗)]h(t).

By using (3.4) we get

0 = h(t)([h(x), x] + [h(x), x∗] + [x∗, h(x∗)] + [x, h(x∗)]).

for all t ∈ H(R) ∩ Z(R) and x ∈ R. Since the center of a prime ring is free from
zero divisors we get either h(t) = 0 for all t ∈ H(R)∩Z(R) or [h(x), x]+[h(x), x∗]+
[x∗, h(x∗)] + [x, h(x∗)] = 0 for all x ∈ R. Suppose

(3.5) h(t) = 0 for all t ∈ H(R) ∩ Z(R).

By lemma 3.1 we get

(3.6) h(x) = 0 for all x ∈ Z(R).

Replacing y by ky in (3.3), where k ∈ S(R) ∩ Z(R) and using (3.6), we get

[h(x), h((ky)∗)] + [h(ky), h(x∗)] = 0 for all x, y ∈ R.

[h(x), h(y∗k∗)] + [h(ky), h(x∗)] = 0 for all x, y ∈ R.

[h(x), h(y∗(−k))] + [h(ky), h(x∗)] = 0 for all x, y ∈ R.

−[h(x), h((y)∗k)] + [h(ky), h(x∗)] = 0 for all x, y ∈ R.

−[h(x), h(y∗)h(k)]−[h(x), y∗h(k)]−[h(x), h(y∗)k]+[h(k)h(y), h(x∗)]+[kh(y), h(x∗)]

+[h(k)y, h(x∗)] = 0 for all x, y ∈ R.

−h(y∗)[h(x), h(k)]−[h(x), h(y∗)]h(k)−y∗[h(x), h(k)]−[h(x), y∗]h(k)−h(y∗)[h(x), k]

−[h(x), h(y∗)]k + h(k)[h(y), h(x∗)] + [h(k), h(x∗)]h(y) + k[h(y), h(x∗)]
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+[k, h(x∗)]h(y) + h(k)[y, h(x∗)]

+[h(k), h(x∗)]y = 0 for all x, y ∈ R.

k(−[h(x), h(y∗)] + [h(y), h(x∗)]) = 0

for all k ∈ S(R) ∩ Z(R) and x, y ∈ R. Using the primeness of R and the fact that
S(R) ∩ Z(R) ̸= (0), we get

(3.7) −[h(x), h(y∗)] + [h(y), h(x∗)] = 0 for all x, y ∈ R.

for all x, y ∈ R. On comparing (3.3) and (3.7), we obtain 2[h(x), h(y∗)] = 0 Replac-
ing y by y∗ and using the fact that char(R) ̸= 2, we conclude that [h(x), h(y)] = 0
for all x, y ∈ R. Therefore, by Lemma 2.7, we get that R is commutative.
Now we consider the case

(3.8) [h(x), x] + [h(x), x∗] + [x∗, h(x∗)] + [x, h(x∗)] = 0 for all x ∈ R.

Replacing x by t+ k , where t ∈ H(R) and k ∈ S(R) ,

[h(t+k), t+k]+ [h(t+k), (t+k)∗]+ [(t+k)∗, h((t+k)∗))]+ [t+k, h((t+k)∗))] = 0.

[h(t), t] + [h(t), k] + [h(k), t] + [h(k), k] + [h(t), t∗] + [h(t), k∗] + [h(k), t∗] + [h(k), k∗]

+[t∗, h(t∗)] + [t∗, h(k∗)] + [k∗, h(t∗)] + [k∗, h(k∗)] + [t, h(t∗)] + [t, h(k∗)] + [k, h(t∗)]

+[k, h(k∗)] = 0.

[h(t), t]+[h(t), t∗]+[t∗, h(t∗)]+[t, h(t∗)]+[h(k), k]+[h(k), k∗]+[k∗, h(k∗)]+[k, h(k∗)]

+[h(t), k] + [h(k), t] + [h(t), k∗] + [h(k), t∗] + [t∗, h(k∗)] + [k∗, h(t∗)] + [t, h(k∗)]

+[k, h(t∗)] = 0.

+[h(t), k] + 2[h(k), t]− [h(t), k] + [h(k), t]− [k, h(t)] + [h(k), t] + [k, h(t∗)] = 0

for all x ∈ R. By (3.8), we get 4[h(k), t] = 0. Since char(R) ̸= 2, we obtain

(3.9) [h(k), t] = 0 for all t ∈ H(R) and k ∈ S(R).

Replacing t by k0k
′
, where k0 ∈ S(R) and k

′ ∈ S(R) ∩ Z(R) , we arrive at
([h(k), k0])k = 0. Using the primeness of R and since S(R) ∩ Z(R) ̸= (0), we
get

(3.10) [h(k), k0] = 0 for all k, k0 ∈ S(R).

Since char(R) ̸= 2, every x ∈ R can be represented as 2x = t + k, where t ∈
H(R), k ∈ S(R), so in equations (3.9) and (3.10),

[h(k), 2x] = [h(k), t+ k] = [h(k), t] + [h(k), k] = 0 for all k ∈ S(R) x ∈ R.

2[h(k), x] = 0 for all k ∈ S(R) x ∈ R.

Since char(R) ̸= 2 we conclude that

(3.11) [h(k), x] = 0 for all k ∈ S(R) x ∈ R.

That is h(k) ∈ Z(R) for all k ∈ S(R) . Assume that h(S(R)) = (0), so (h(x−x∗)) =
0 for all x ∈ R. That is h(x) = h(x∗) for all x ∈ R. Now for k ∈ S(R) and x ∈ R,
we have 0 = h(kx + x∗k) = h(k)h(x) + kh(x) + h(k)x + h(x∗)h(k) + x∗h(k) +
h(x∗)k = kh(x) + h(x∗)k = kh(x) + h(x)k for all x ∈ R. This further implies
that k2h(x) = h(x)k2 for all x ∈ R. Thus, by the Lemma 2.8, we conclude that
k2 ∈ Z(R) for all k ∈ Z(R) . Since S(R) ∩ Z(R) ̸= (0), let 0 ̸= k0 ∈ S(R) ∩ Z(R)
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and k be an arbitrary element of S(R). Then (k + k0)
2 = k2 + k20 + 2kk0 ∈ Z(R)

hence 2kk0 ∈ Z(R). Since char(R) ̸= 2, we get kk0 ∈ Z(R) for all k ∈ S(R) and
k0 ∈ S(R) ∩ Z(R) implies that k ∈ Z(R) for all k ∈ S(R) R is normal. Thus, R is
commutative by Lemma 2.3.

Now suppose h(S(R)) ̸= (0). For k0 ∈ S(R) with h(k0) ̸= 0 and k ∈
[S(R), S(R)] , we have

h(kk0k) ∈ Z(R)

h(k)h(k0k) + h(k)k0k + kh(k0k) ∈ Z(R)

h(k)h(k0)h(k) + h(k)k0h(k) + h(k)h(k0)k + h(k)k0k + kh(k0)h(k) + kk0h(k)

+kh(k0)k ∈ Z(R)

Since h([S(R), S(R)]) = 0

k2h(k0) ∈ Z(R)

Thus, by the Lemma 2.8, we conclude that k2 ∈ Z(R) for all k ∈ Z(R) . Since
S(R) ∩ Z(R) ̸= (0), let 0 ̸= k0 ∈ S(R) ∩ Z(R) and let k be an arbitrary element
of S(R). Then (k + k0)

2 = k2 + k20 + 2kk0 ∈ Z(R) and hence 2kk0 ∈ Z(R). Since
char(R) ̸= 2, we get kk0 ∈ Z(R) for all k ∈ S(R) and k0 ∈ S(R) ∩ Z(R) . This
further implies that k ∈ Z(R) for all k ∈ S(R) . That is, [S(R), S(R)] ⊆ Z(R).

Suppose [S(R), S(R)] ̸= (0) and let k, k0 ∈ S(R) such that[k, k0] ̸= 0. Since
kk0k ∈ S(R), we have

[k, kk0k] = [k, k]k0k + k[k, k0]k + kk0[k, k] = k2[k, k0] ∈ Z(R).

This implies that k ∈ Z(R) for all k ∈ S(R). Therefore, R is commutative by
Lemma 2.3.

Now suppose [S(R), S(R)] = (0). Since by lemma 2.11 S(R)2 is a Lie ideal
and a commutative subring of R, by lemma 2.2, k2 ∈ Z(R) for all k ∈ S(R) and
hence k ∈ Z(R) for all k ∈ S(R). Thus, R is normal . Hence R is commutative by
Lemma 2.3. �

Theorem 3.2. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. Let h be a homoderivation which is zero-power valued on R, then the
following are equivalent:

(i) h(x) ◦ h(x∗)− x ◦ x∗ ∈ Z(R) for all x ∈ R.
(ii) h(x) ◦ h(x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ R.
(iii) R is commutative.

Moreover, if h ̸= 0 and h(x) ◦ h(x∗) ∈ Z(R) for all x ∈ R, implies that R is
commutative.

Proof. It is clear that (iii) implies both of (i) and (ii). So, we need to prove
that (i) ⇒ (iii) and (ii) ⇒(iii).

If h = 0 we get x ◦ x∗ ∈ Z(R) for all x ∈ R. Using Lemma 2.5 we conclude
that R is commutative. Assume that h ̸= 0.

We have:

(3.12) h(x) ◦ h(x∗)− x ◦ x∗ ∈ Z(R) for all x ∈ R.
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Replacing x by x+ y and applying (3.12), we get

(3.13) h(x) ◦ h(y∗) + h(y) ◦ h(x∗)− x ◦ y∗ − y ◦ x∗ ∈ Z(R) for all x, y ∈ R.

Replacing y by yd where d ∈ Z(R) ∩H(R), and using (3.13) yields

h(x) ◦ h((yd)∗) + h(yd) ◦ h(x∗)− x ◦ ((yd)∗)− (yd) ◦ x∗ ∈ Z(R).

h(x) ◦ h(dy∗) + h(yd) ◦ h(x∗)− x ◦ (dy∗)− (yd) ◦ x∗ ∈ Z(R).

h(x)◦(h(d)h(y∗))+h(x)◦(dh(y∗)+h(x)◦(h(d)y∗)+(h(y)h(d))◦h(x∗)+(yh(d))◦h(x∗)

+(h(y)d) ◦ h(x∗)− d(x ◦ y∗)− [x, d]y∗ − (y ◦ x∗)d− y[d, x∗] ∈ Z(R).

h(d)(h(x) ◦ h(y∗)) + [h(x), h(d)]h(y∗) + d(h(x) ◦ h(y∗) + [h(x), d]h(y∗)

+h(d)(h(x) ◦ y∗) + [h(x), h(d)]y∗ + (h(y) ◦ h(x∗))h(d) + h(y)[h(d), h(x∗)]

+(y ◦ h(x∗)h(d) + y[h(d), h(x∗)] + (h(y) ◦ h(x∗))d+ h(y)[d, h(x∗)]

−d(x ◦ y∗)− [x, d]y∗ − (y ◦ x∗)d− y[d, x∗] ∈ Z(R).

[h(x) ◦ h(y∗) + h(y) ◦ h(x∗)− x ◦ y∗ − y ◦ x∗, r]d+ [h(x) ◦ (y∗ + h(y∗))

+(y + h(y)) ◦ h(x∗), r]h(d) = 0

for all x, y ∈ R.

(3.14) [h(x) ◦ (y∗ + h(y∗)) + (y + h(y)) ◦ h(x∗), r]h(d) = 0 for all x, y ∈ R.

Since h is zero-power valued on R, we get

[h(x) ◦ y∗ + y ◦ h(x∗), r]h(d) = 0 for all x, y, r ∈ R.

thus,

(3.15) [h(x) ◦ y∗ + y ◦ h(x∗), r]Rh(d) = 0 for all x, y, r ∈ R.

Since R is prime, so, either h(d) = 0 or [h(x) ◦ y∗ + y ◦ h(x∗), r] = 0.
If h(d) = 0 for all d ∈ Z(R) ∩H(R), by Lemma 3.1, we have that

(3.16) h(z) = 0 for all z ∈ Z(R).

Replacing y by yz in (3.13) where z ∈ Z(R)

h(x) ◦ h(z∗y∗) + h(yz) ◦ h(x∗) + (yz) ◦ x∗ + x ◦ (z∗y∗) ∈ Z(R).

h(x) ◦ (h(z∗)h(y∗)) + h(x) ◦ (z∗h(y∗)) + h(x) ◦ (h(z∗)y∗) + (h(y)h(z)) ◦ h(x∗)

+(yh(z)) ◦ h(x∗) + (h(y)z) ◦ h(x∗) + (y ◦ x∗)z + y[x∗, z]+

z∗(x ◦ y∗) + [x, z∗]y∗ ∈ Z(R).

h(z∗)(h(x) ◦ h(y∗)) + [h(x), h(z∗)]h(y∗) + z∗(h(x) ◦ h(y∗)) + [h(x), z∗]h(y∗)

+h(z∗)(h(x) ◦ y∗) + [h(x), h(z∗)]y∗ + (h(y) ◦ h(x∗))h(z) + h(y)[h(z), h(x∗)]+

(y ◦ h(x∗))h(z) + y[h(z), h(x∗)] + (h(y) ◦ h(x∗))z + h(y)[z, h(x∗)]

(y ◦ x∗)z + y[x∗, z] + z∗(x ◦ y∗) + [x, z∗]y∗ ∈ Z(R).

[h(x) ◦ h(y)− x ◦ y, r](z∗ − z) = 0.

So that

(3.17) [h(x) ◦ h(y)− x ◦ y, r]R(z∗ − z) = 0 for all r, x, y ∈ R.
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By the primeness of R, either [h(x) ◦ h(y)− x ◦ y, r] = 0 or z∗ − z = 0 . Since the
involution is of the second kind so z∗ − z ̸= 0. Thus, [h(x) ◦ h(y)− x ◦ y, r] = 0 for
all r, x, y ∈ R, that is,

(3.18) h(x) ◦ h(y)− x ◦ y ∈ Z(R) for all x, y ∈ R.

Taking y ∈ Z(R)\{0} and using (3.16), we have xy ∈ Z(R) for all x ∈ R,
y ∈ Z(R). By Lemma 2.1, we have x ∈ Z(R) for all x ∈ R. Hence, R is commuta-
tive.

Now suppose that

(3.19) [h(x) ◦ y∗ + y ◦ h(x∗), r] = 0 for all r, x, y ∈ R.

Replacing y by yz where z ∈ Z(R) in (3.19) , we get

[h(x) ◦ (yz)∗ + (yz) ◦ h(x∗), r] = 0.

[h(x) ◦ (z∗y∗) + (yz) ◦ h(x∗), r] = 0.

[z∗(h(x) ◦ y∗), r] + [[h(x), z∗]y∗, r] + [(y ◦ h(x∗))z, r] + [y[z, h(x∗], r] = 0.

[z∗(h(x) ◦ y∗), r] + [(y ◦ h(x∗))z, r] = 0.

−[z∗(y∗ ◦ h(x)), r] + [(y ◦ h(x∗))z, r] = 0.

−[z∗(y∗h(x) + h(x)y∗), r] + [(yh(x∗) + h(x∗)y)z, r] = 0.

Using (3.19), we get

(3.20) [h(x)y + yh(x), r]R(z − z∗) = 0 for all r, x, y ∈ R and z ∈ Z(R).

Since R is prime and the involution is of the second kind, so, (3.20) implies

(3.21) [h(x)y, r] + [yh(x), r] = 0 for all r, x, y ∈ R.

Substituting yr for y and using (3.21), we find that

[h(x)yr, r] + [yrh(x), r] = 0.

[h(x)y, r]r + yr[h(x), r] + [y, r]rh(x) = 0.

−[yh(x), r]r + yr[h(x), r] + [y, r]rh(x) = 0.

−y[h(x), r]r − [y, r]h(x)r + yr[h(x), r] + [y, r]rh(x) = 0.

[y, r](rh(x)− h(x)r) + y(r[h(x), r]− [h(x), r]r) = 0.

y[[h(x), r], r]− [y, r][h(x), r] = 0 for all r, x, y ∈ R

(3.22) [y[h(x), r], r] = 0 for all r, x, y ∈ R.

Replacing y by ty where t ∈ R, yields

[ty[h(x), r], r] = 0.

ty[[h(x), r], r] + t[y, r][h(x), r] + [t, r]y[h(x), r] = 0.

t(y[h(x), r], r] + [y, r][h(x), r]) + [t, r]y[h(x), r] = 0.

t[y[h(x), r], r] + [t, r]y[h(x), r] = 0.

[t, r]y[h(x), r] = 0 for all r, x, y ∈ R.
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Since R is prime, either [t, r] = 0 or [h(x), x] = 0 for all x ∈ R. By Lemma 2.9 R
is commutative.
(ii)⇒(iii) Suppose that,

(3.23) h(x) ◦ h(x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ R.

Replacing x by x+ y and using (3.23), we find that

(3.24) h(x) ◦ h(y∗) + h(y) ◦ h(x∗) + y ◦ x∗ + x ◦ y∗ ∈ Z(R) for all x, y ∈ R.

Replacing y by yd where d ∈ Z(R) ∩H(R) and using (3.24), we obtain

h(x) ◦ h(d∗y∗) + h(yd) ◦ h(x∗) + (yd) ◦ x∗ + x ◦ (d∗y∗) ∈ Z(R).

Since d ∈ Z(R) ∩H(R)

h(x) ◦ h(dy∗) + h(yd) ◦ h(x∗) + (yd) ◦ x∗ + x ◦ (dy∗) ∈ Z(R).

h(x) ◦ (h(d)h(y∗)) + h(x) ◦ (dh(y∗)) + h(x) ◦ (h(d)y∗) + (h(y)h(d)) ◦ h(x∗)

+(yh(d)) ◦ h(x∗) + (h(y)d) ◦ h(x∗) + (yd) ◦ x∗ + x ◦ (dy∗) ∈ Z(R).

h(d)(h(x) ◦ h(y∗)) + [h(x), h(d)]h(y∗) + d(h(x) ◦ h(y∗)) + [h(x), d]h(y∗)

+h(d)(h(x) ◦ y∗) + [h(x), h(d)]y∗ + (h(y) ◦ h(x∗))h(d) + h(y)[h(d), h(x∗)]

+(y◦h(x∗))h(d)+y[h(d), h(x∗)]+(h(y)◦h(x∗))d+h(y)[d, h(x∗)]+(y◦x∗)d+y[d, x∗]

+d(x ◦ y∗) + [x, d]y∗ ∈ Z(R).

[h(x) ◦ h(y∗) + h(x) ◦ y∗, r]h(d) + [h(y) ◦ h(x∗) + y ◦ h(x∗), r]h(d)

+[h(x) ◦ h(y∗) + h(y) ◦ h(x∗) + y ◦ x∗ + x ◦ y∗, r]d = 0.

(3.25) [h(x) ◦ (h(y∗) + y∗) + (y + h(y)) ◦ h(x∗), r]h(d) = 0 for all x, y, r ∈ R.

Since h is zero-power valued on R, we have

(3.26) [h(x) ◦ y∗ + y ◦ h(x∗), r]Rh(d) = 0 for all x, y, r ∈ R.

Since R is prime, either h(d) = 0 or [h(x) ◦ y∗ + y ◦ h(x∗), r] = 0.
If h(d) = 0 for all d ∈ Z(R) ∩H(R) by Lemma 3.1, we have that

(3.27) h(z) = 0 for all z ∈ Z(R).

Replacing y by yz in (3.24) where z ∈ Z(R)

h(x) ◦ h(z∗y∗) + h(yz) ◦ h(x∗) + (yz) ◦ x∗ + x ◦ (z∗y∗) ∈ Z(R).

h(x) ◦ (h(z∗)h(y∗)) + h(x) ◦ (z∗h(y∗)) + h(x) ◦ (h(z∗)y∗) + (h(y)h(z)) ◦ h(x∗)

+(yh(z)) ◦ h(x∗) + (h(y)z) ◦ h(x∗) + (y ◦ x∗)z + y[x∗, z]+

z∗(x ◦ y∗) + [x, z∗]y∗ ∈ Z(R).

h(z∗)(h(x) ◦ h(y∗)) + [h(x), h(z∗)]h(y∗) + z∗(h(x) ◦ h(y∗)) + [h(x), z∗]h(y∗)

+h(z∗)(h(x) ◦ y∗) + [h(x), h(z∗)]y∗ + (h(y) ◦ h(x∗))h(z) + h(y)[h(z), h(x∗)]+

(y ◦ h(x∗))h(z) + y[h(z), h(x∗)] + (h(y) ◦ h(x∗))z + h(y)[z, h(x∗)]

(y ◦ x∗)z + y[x∗, z] + z∗(x ◦ y∗) + [x, z∗]y∗ ∈ Z(R).

[h(x) ◦ h(y)− x ◦ y, r](z∗ − z) = 0.

So that

(3.28) [h(x) ◦ h(y)− x ◦ y, r]R(z∗ − z) = 0 for all r, x, y ∈ R.
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By the primeness of R, either [h(x) ◦ h(y)− x ◦ y, r] = 0 or z∗ − z = 0 . Since the
involution is of the second kind ,so z∗ − z ̸= 0. Then [h(x) ◦ h(y)− x ◦ y, r] = 0 for
all r ∈ R, that is

(3.29) h(x) ◦ h(y)− x ◦ y ∈ Z(R) for all r, x, y ∈ R.

Taking y ∈ Z(R)\{0} and using (3.27), we have xy ∈ Z(R) for all x ∈ R,
y ∈ Z(R). By Lemma 2.1, we have x ∈ Z(R) for all x ∈ R. Hence, R is commuta-
tive.
Now suppose that

(3.30) [h(x) ◦ y∗ + y ◦ h(x∗), r] = 0 for all r, x, y ∈ R.

Replacing y by yz where z ∈ Z(R) in (3.30) , we get

[h(x) ◦ (yz)∗ + (yz) ◦ h(x∗), r] = 0.

[h(x) ◦ (z∗y∗) + (yz) ◦ h(x∗), r] = 0.

[z∗(h(x) ◦ y∗), r] + [[h(x), z∗]y∗, r] + [(y ◦ h(x∗))z, r] + [y[z, h(x∗], r] = 0.

[z∗(h(x) ◦ y∗), r] + [(y ◦ h(x∗))z, r] = 0.

−[z∗(y∗ ◦ h(x)), r] + [(y ◦ h(x∗))z, r] = 0.

−[z∗(y∗h(x) + h(x)y∗), r] + [(yh(x∗) + h(x∗)y)z, r] = 0.

Replace x∗ by x and y∗ by y we get

(3.31) [h(x)y + yh(x), r]R(z − z∗) = 0 for all r, x, y ∈ R and z ∈ Z(R).

Since R is prime and the involution is of the second kind, so (3.31) implies

(3.32) [h(x)y, r] + [yh(x), r] = 0 for all r, x, y ∈ R.

Substituting yr for y and using (3.32), we find that

[h(x)yr, r] + [yrh(x), r] = 0.

[h(x)y, r]r + yr[h(x), r] + [y, r]rh(x) = 0.

−[yh(x), r]r + yr[h(x), r] + [y, r]rh(x) = 0.

−y[h(x), r]r − [y, r]h(x)r + yr[h(x), r] + [y, r]rh(x) = 0.

[y, r](rh(x)− h(x)r) + y(r[h(x), r]− [h(x), r]r) = 0.

y[[h(x), r], r]− [y, r][h(x), r] = 0 for all r, x, y ∈ R

(3.33) [y[h(x), r], r] = 0 for all r, x, y ∈ R.

Replacing y by ty where t ∈ R, yields

[ty[h(x), r], r] = 0.

ty[[h(x), r], r] + t[y, r][h(x), r] + [t, r]y[h(x), r] = 0.

t(y[h(x), r], r] + [y, r][h(x), r]) + [t, r]y[h(x), r] = 0.

t[y[h(x), r], r] + [t, r]y[h(x), r] = 0.

[t, r]y[h(x), r] = 0 for all r, x, y ∈ R.

Since R is prime, either [t, r] = 0 or [h(x), x] = 0 for all x ∈ R. By lemma 2.9 R is
commutative.

�
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Corollary 3.1. Let R be a 2-torsion free prime ring with involution ∗ of the
second kind. Let h be a homoderivation which is zero-power valued on R, then the
following are equivalent:

(i) h(x) ◦ h(y)− x ◦ y ∈ Z(R) for all x, y ∈ R.
(ii) h(x) ◦ h(y) + x ◦ y ∈ Z(R) for all x, y ∈ R
(iii) R is commutative.

Moreover, if h ̸= 0 and h(x) ◦ h(y) ∈ Z(R) for all x, y ∈ R, implies that R is
commutative.

In [12], Theorem 3.7, the authors proved that if R is a 2-torsion free prime ring
with involution of the second kind, and d be a non-zero derivation on R. Then R is
commutative if and only if h(x) ◦ x∗ ∈ Z(R) for all x ∈ R which is also equivalent
to h is ∗-centralizing on R. Applying theses conditions on homoderivation, we get
the following theorem.

Theorem 3.3. Let (R, ∗) be a 2-torsion free prime ring with involution of the
second kind, and h be a non-zero homoderivation which is zero-power valued on R.
Then the following are equivalent:

(i) h is ∗-centralizing on R.
(ii) h(x) ◦ x∗ ∈ Z(R) for all x ∈ R..
(iii) R is commutative.

Proof. It is obvious that (iii) implies both of (i) and (ii). Now, to prove that
(i) ⇒ (iii) suppose that

(3.34) [h(x), x∗] ∈ Z(R) for all x ∈ R.

Replacing x by x+ y and using (3.34), we find that

(3.35) [h(x), y∗] + [h(y), x∗] ∈ Z(R) for all x, y ∈ R.

Replacing y by yd, where d ∈ Z(R) ∩H(R), yields

[h(x), d∗y∗] + [h(yd), x∗] ∈ Z(R) for all x, y ∈ R.

[h(x), dy∗] + [h(yd), x∗] ∈ Z(R) for all x, y ∈ R.

d[h(x), y∗] + [h(x), d]y∗ + [h(y)h(d), x∗] + [yh(d), x∗] + [h(y)d, x∗] ∈ Z(R)

for all x, y ∈ R.

d[h(x), y∗] + [h(x), d]y∗ + h(y)[h(d), x∗] + [h(y), x∗]h(d) + y[h(d), x∗] + [y, x∗]h(d)

+h(y)[d, x∗] + [h(y), x∗]d ∈ Z(R) for all x, y ∈ R.

(3.36)
[h(x), y∗]d+ [y, x∗]h(d) + [h(y), x∗]d+ [h(y), x∗]h(d) ∈ Z(R) for all x, y ∈ R.

The relation (3.35), (3.36) reduces to

[y, x∗]h(d) + [h(y), x∗]h(d) ∈ Z(R) for all x, y ∈ R.

[y + h(y), x∗]h(d) ∈ Z(R) for all x, y ∈ R.

Since h is zero-power valued on R, we have

(3.37) [y, x∗]h(d) ∈ Z(R) for all x, y ∈ R.
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Hence [[y, x]h(d), r] = 0, for all r ∈ R, so

[y, x∗][h(d), r] + [[y, x∗], r]h(d) = 0

Since h(Z(R)) ⊆ Z(R), so h(d) ∈ Z(R) and

[[y, x∗], r]h(d) = 0.

Replace r by rt for all r, t ∈ R , we have

[[y, x∗], r]th(d) = 0 for all r, t, x, y ∈ R.

thus,

(3.38) [[y, x∗], r]Rh(d) = 0 for all r, x, y ∈ R.

By the primeness of R, we get h(d) = 0 or [[y, x∗], r] = 0. If h(d) = 0, for all
d ∈ Z(R) ∩H(R), by lemma 3.1, we conclude that

(3.39) h(z) = 0 for all z ∈ Z(R).

Substituting yz for y where z ∈ Z(R) in (3.35), we get

[h(x), (yz)∗] + [h(yz), x∗] ∈ Z(R) for all x, y ∈ R.

[h(x), z∗y∗] + [h(y)h(z), x∗] + [yh(z), x∗] + [h(y)z, x∗] ∈ Z(R) for all x, y ∈ R.

z∗[h(x), y∗] + [h(x), z∗]y∗ + h(y)[h(z), x∗] + [h(y), x∗]h(z) + y[h(z), x∗] + [y, x∗]h(z)

+h(y)[z, x∗] + [h(y), x∗]z ∈ Z(R) for all x, y ∈ R.

z∗[h(x), y∗] + [h(y), x∗]h(z) + [y, x∗]h(z) + [h(y), x∗]z ∈ Z(R) for all x, y ∈ R.

(3.40) [h(x), y∗]z∗ + [h(y), x∗]z ∈ Z(R) for all x, y ∈ R.

From (3.35) , we have

[[h(x), y∗], r] + [[h(y), x∗], r] = 0 for all r, x, y ∈ R.

(3.41) inoh10[[h(y), x
∗], r] = −[[h(x), y∗], r] for all r, x, y ∈ R.

Using (3.35), (3.40) yields

[[h(x), y∗]z∗, r] + [[h(y), x∗]z, r] = 0 for all r, x, y ∈ R.

[[h(x), y∗], r]z∗ + [[h(y), x∗], r]z = 0 for all r, x, y ∈ R.

[[h(x), y∗], r]z∗ − [[h(x), y∗], r]z = 0 for all r, x, y ∈ R.

[[h(x), y∗], r](z∗ − z) = 0 for all r, x, y ∈ R.

Replacing y∗ by y , so

(3.42) [[h(x), y], r](z∗ − z) = 0 for all r, x, y ∈ R.

Since R is prime ring, either [[h(x), y], r] = 0 or z∗ − z = 0 Since the involution is
of the second kind we have z∗ − z ̸= 0 , then

(3.43) [[h(x), y], r] = 0 for all r, x, y ∈ R.

That is, [h(x), x] ∈ Z(R) for all x ∈ R, thus, h is centralizing. By lemma 2.10 R is
commutative.
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If [[y, x], r] = 0, then [x, x∗] ∈ Z(R) for all x ∈ R. By Lemma 2.4 R is commutative.
To prove that (ii)⇒ (iii). By hypothesis, we have

(3.44) h(x) ◦ x∗ ∈ Z(R) for all x ∈ R.

Replacing x by x+ y and using (3.44), we obtain

(3.45) h(x) ◦ y∗ + h(y) ◦ x∗ ∈ Z(R) for all x, y ∈ R.

Accordingly, we get

(3.46) [h(x) ◦ y∗, r] + [h(y) ◦ x∗, r] = 0 for all r, x, y ∈ R.

Replacing y by yd, where d ∈ Z(R) ∩H(R), and using (3.46), we obtain

[h(x) ◦ (d∗y∗), r] + [h(yd) ◦ x∗, r] = 0.

[h(x) ◦ (dy∗), r] + [(h(y)h(d) ◦ x∗, r] + [(yh(d) ◦ x∗, r] + [(h(y)d) ◦ x∗, r] = 0.

[d(h(x) ◦ y∗), r] + [[h(x), d]y∗), r] + [(h(y) ◦ x∗)h(d), r] + [h(y)[x∗, h(d)], r]

+[(y ◦ x∗)h(d), r] + [y[h(d), x∗], r] + [(h(y) ◦ x∗)d, r] + [h(y)[d, x∗], r] = 0.

d[h(x) ◦ y∗, r] + [h(y) ◦ x∗, r]h(d) + [y ◦ x∗, r]h(d) + [h(y) ◦ x∗, r]d = 0.

Using (3.46) we get

(3.47) [(h(y) + y) ◦ x∗, r]h(d) = 0 for all r, x, y ∈ R.

Since h is zero-power valued on R, we get

(3.48) [y ◦ x∗, r]h(d) = 0 for all r, x, y ∈ R.

And thus

(3.49) [y ◦ x, r]Rh(d) = 0 for all r, x, y ∈ R.

Since R is a prime, so either [y ◦ x, r] = 0 or h(d) = 0 Assume h(d) = 0, for all
d ∈ Z(R) ∩H(R). Using Lemma 3.1, we conclude that

(3.50) h(z) = 0 for all z ∈ Z(R).

Replacing y by z in (3.46), we obtain

[h(x) ◦ z∗, r] + [h(z) ◦ x∗, r] = 0.

[h(x)z∗, r] + [z∗h(x), r] = 0.

2[h(x)z∗, r] = 0.

[h(x)z∗, r] = 0.

[h(x), r]z∗ = 0 for all r, x ∈ R and z ∈ Z(R).

(3.51) So; [h(x), r]z = 0 for all r, x ∈ R and z ∈ Z(R).

Taking r = x and using the primeness of R, (3.51) yields

(3.52) [h(x), x] = 0 for all x ∈ R.

By Lemma 2.9, we conclude that R is commutative.
If [y ◦ x, r] = 0 for all r, x, y ∈ R, then replacing y by z where z ∈ Z(R)\{0},

[z ◦ x, r] = 0.

[zx+ xz, r] = 0.
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[zx, r] + [xz, r] = 0.

z[x, r] + [x, r]z = 0.

2[x, r]z = 0 for all r, x ∈ R, z ∈ Z(R).

Since R is 2-torsion free, we get [x, r]z = 0 for all r, x ∈ R and z ∈ Z(R)\{0}. Using
the primeness of R, we get [x, r] = 0 for all r, x ∈ R that gives the commutativity
of R. �

Example 3.1. Let R =

{(
a b
c d

)
| a, b, c, d ∈ Z

}
. The set R with matrix

addition and multiplication is a prime ring . Let h : R → R be a zero homoderiva-

tion onR and ∗ : R → R is a mapping defined as

(
a b
c d

)∗

=

(
d −b
−c a

)
. Then

∗ is an involution of the first kind since x∗ = x for all x ∈ Z(R) and Z(R) ⊆ H(R).
Now, (h(x)◦h(x∗))± (x◦x∗) ∈ Z(R) for all x ∈ R Hence, the zero homoderivation
satisfies the conditions of Theorem 3.2 but R is a not commutative. Hence the
hypothesis of the second kind of involution is crucial in Theorem 3.2
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