HOMODERIVATION OF PRIME RINGS WITH INVOLUTION

E.F. Alharfie and N.M. Muthana

Abstract

Let R be a ring with involution $*$. An additive mapping h from R into itself is called homoderivation if $h(x y)=h(x) h(y)+h(x) y+x h(y)$ for all $x, y \in R$. In this paper we investigate the commutativity of a ring R with involution $*$ which admits a homoderivation satisfying certain algebraic identities.

1. Introduction

Throughout this paper, R will represent a ring with center $Z(R)$. For any $x, y \in R$ the symbol $[x, y]$ denote the commutator $x y-y x$; while the symbol $x \circ y$ will stand for the anti-commutator $x y+y x$. A ring R is a 2 -torsion free if whenever $2 x=0, x \in R$, implies $x=0$. A ring R is called prime if $a R b=0$, where $a, b \in R$, implies $a=0$ or $b=0$, and is called a semiprime ring in case $a R a=0$ implies $a=0$. An additive mapping $*: R \rightarrow R$ is called an involution if $*$ is an antihomomorphism of order 2, that is, $\left(a^{*}\right)^{*}=a,(a+b)^{*}=a^{*}+b^{*},(a b)^{*}=b^{*} a^{*}$ for all $a, b \in R$. An element x in a ring R with involution is said to be hermitian if $x^{*}=x$ and skew-hermitian if $x^{*}=-x$. The sets of all hermitian and skew-hermitian elements of R will be denote by $H(R)$ and $S(R)$, respectively. The involution is said to be of the first kind if $Z(R) \subseteq H(R)$; otherwise it is said to be of the second kind. In the later case, $S(R) \cap Z(R) \neq(0)$. If $\operatorname{char}(R) \neq 2$, then $R=S(R)+H(R)$ and $S(R) \cap H(R)=(0)$. Note that in this case x is normal, i.e. $x x^{*}=x^{*} x$, if and only if S and h commute. If all elements in R are normal, then R is called a normal ring. A mapping $f: R \rightarrow R$ is said to be $*$-centralizing on S if $\left[f(x), x^{*}\right] \in Z(R)$ for all $x \in S$ and $f: R \rightarrow R$ is said to be $*$-commuting on S if $\left[f(x), x^{*}\right]=0$ for all $x \in S$. A derivation on R is an additive mapping $d: R \rightarrow R$ such that

[^0]$d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. El-Sofy [3] defined a homoderivation on R as an additive map h on R such that $h(x y)=h(x) h(y)+h(x) y+x h(y)$, for all $x, y \in R$. For a positive integer $n(x)>1$ such that $f^{n(x)}(x)=0$ for all $x \in R$, the mapping $f: R \rightarrow R$ is called a zero-power valued on $R[\mathbf{3}]$. Over the last few decades, several authors have describe the structure of additive mappings that are $*$-commuting on a prime or semiprime ring with involution and study the commutativity of rings with involution satisfying some algebraic conditions(see, [2], [12]). In this paper, we study the commutativity of rings with involution admitting a homoderivation satisfying some algebraic identities In [11], the authors proved the commutativity of $*$-prime rings admitting homoderivations that commute with * and satisfy some conditions on $*$-ideals.

2. preliminaries

In [8], for any $x, y, z \in R$, the following identities of anticommutators are obvious

- $x \circ(y z)=(x \circ y) z-y[x, z]=y(x \circ z)+[x, y] z$.
- $(x y) \circ z=x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z]$.

An important results will be listed in this section.
Lemma 2.1 ([10], Lemma 4). Let b and ab be elements in the center of a prime ring R. If b is not zero, then a is in $Z(R)$.

Lemma 2.2 ([9], Lemma 2). Suppose $2 R=0$ and U is a commutative Lie ideal of R. Then $u^{2} \in Z(R)$ for all $u \in U$.

Lemma 2.3 ([1], Lemma 2.1). Let R be a prime ring with involution $*$ such that char $(R) \neq 2$. If $S(R) \cap Z(R) \neq(0)$ and R is normal, then R is commutative.

Lemma 2.4 ([12], Lemma 2.1). Let R be a prime ring with involution of the second kind. Then $*$ is centralizing if and only if R is commutative.

Lemma 2.5 ([12], Lemma 2.2). Let R be a prime ring with involution of the second kind. Then $x \circ x^{*} \in Z(R)$ for all $x \in R$ if and only if R is commutative.

Lemma 2.6 ([11], Lemma 2.3.1). Let R be a ring and let h be a zero power valued homoderivation on R. Then h preserves $Z(R)$.

Lemma 2.7 ([11], Lemma 2.3.2). Let R be a prime ring, and $h \neq 0$ a homoderivation of R such that $[h(x), h(y)]=0$ for all $x, y \in R$. If $\operatorname{char}(R) \neq \mathcal{2} . R$ is commutative .

Lemma 2.8 ([3], Theorem 3.3.1). Let R be a prime ring with char $(R) \neq 2$ and $h \neq 0$ be a homoderivation of R. An element $a \in R$ is such that $a h(x)=h(x)$ a for all $x \in R$. Then a must be in $Z(R)$.

Lemma 2.9 ([3], Theorem 3.4.7). let R be a prime ring and $I \neq 0$ a two sided ideal of R. If R admits a non-zero homoderivation h which is commuting and zero-power valued on I. Then R is a commutative.

Lemma 2.10 ([3], Corollary 3.4.8). let R be a prime ring and $I \neq 0$ a two sided ideal of R. If R admits a non-zero homoderivation h which is centralizing and zero-power valued on I. Then R is a commutative.

Lemma 2.11 ([4], Lemma 1). Let R be any ring with involution $*$ such that $R=S+K$. Then K^{2}, the addition subgroup generated by all products $k_{1} k_{2}$ for $k_{1}, k_{2} \in K$, is a Lie ideal of R.

3. Main Result

Lemma 3.1. Let $(R, *)$ be a 2-torsion free prime ring with involution provided with a homoderivation h. If $h(t)=0$ for all $t \in H(R) \cap Z(R)$, then $h(z)=0$ for all $z \in Z(R)$.

Proof. If $t=0$, then $h(t)=0$. Assume that $t \neq 0$, and

$$
\begin{equation*}
h(t)=0 \text { for all } t \in H(R) \cap Z(R) . \tag{3.1}
\end{equation*}
$$

Then replacing t by $t k^{2} \in H(R) \cap Z(R)$ where $k \in S(R) \cap Z(R)$ and applying (3.1) we get

$$
\begin{gathered}
0=h\left(t k^{2}\right)=h(t) h\left(k^{2}\right)+t h\left(k^{2}\right)+h(t) k^{2} . \\
0=t h\left(k^{2}\right) .
\end{gathered}
$$

Now replace k by $s+r$ such that $0 \neq s, r \in S(R) \cap Z(R)$

$$
\begin{gathered}
t h\left((s+r)^{2}\right)=t h\left(s^{2}+2 s r+r^{2}\right)=t h\left(s^{2}\right)+2 t h(s r)+t h\left(r^{2}\right)=2 t h(s r)=0 . \\
2 t h(s r)=0 .
\end{gathered}
$$

Since R is 2-torsion free, so

$$
\begin{gathered}
t h(s r)=0 \\
t h(s) h(r)+t s h(r)+t h(s) r=0 \\
t s h(r)=0
\end{gathered}
$$

Since the center of a prime ring is free zero divisors this assures that $h(r)=0$ for all $r \in S(R) \cap Z(R)$. Since each element $z \in Z(R)$ can be uniquely represented in the form $2 z=g+k$ where $g \in H(R) \cap Z(R)$ and $k \in S(R) \cap Z(R)$ then,

$$
2 h(z)=h(2 z)=h(g+k)=h(g)+h(k)=0 .
$$

Since $\operatorname{char}(R) \neq 2$, so $h(z)=0$ for all $z \in Z(R)$.
Theorem 3.1. Let R be a 2-torsion free prime ring with involution $*$ of the second kind. Let h be a homoderivation of R such that $\left[h(x), h\left(x^{*}\right)\right]=0$ for all $x \in R$, then R is commutative.

Proof. By the assumption, we have

$$
\begin{equation*}
\left[h(x), h\left(x^{*}\right)\right]=0 \text { for all } x \in R \tag{3.2}
\end{equation*}
$$

By lineralization (3.2) yields that

$$
\begin{equation*}
\left[h(x), h\left(y^{*}\right)\right]+\left[h(y), h\left(x^{*}\right)\right]=0 \text { for all } x, y \in R . \tag{3.3}
\end{equation*}
$$

Replacing y by $x x^{*}$ in (3.3),

$$
\begin{align*}
0= & {\left[h(x), h\left(\left(x x^{*}\right)^{*}\right)\right]+\left[h\left(x x^{*}\right), h\left(x^{*}\right)\right] . } \\
= & {\left[h(x), h\left(x x^{*}\right)\right]+\left[h\left(x x^{*}\right), h\left(x^{*}\right)\right] . } \\
= & {\left[h(x), h(x) h\left(x^{*}\right)\right]+\left[h(x), x h\left(x^{*}\right)\right]+\left[h(x), h(x) x^{*}\right]+\left[h(x) h\left(x^{*}\right), h\left(x^{*}\right)\right] } \\
& +\left[x h\left(x^{*}\right), h\left(x^{*}\right)\right]+\left[h(x) x^{*}, h\left(x^{*}\right)\right] . \\
= & h(x)\left[h(x), h\left(x^{*}\right)\right]+[h(x), h(x)] h\left(x^{*}\right)+x\left[h(x), h\left(x^{*}\right)\right]+[h(x), x] h\left(x^{*}\right) \\
& +h(x)\left[h(x), x^{*}\right]+[h(x), h(x)] x^{*}+h(x)\left[h\left(x^{*}\right), h\left(x^{*}\right)\right]+\left[h(x), h\left(x^{*}\right)\right] h\left(x^{*}\right) \\
& +x\left[h\left(x^{*}\right), h\left(x^{*}\right)\right]+\left[x, h\left(x^{*}\right)\right] h\left(x^{*}\right)+h(x)\left[x^{*}, h\left(x^{*}\right)\right]+\left[h(x), h\left(x^{*}\right)\right] x^{*} . \\
(3.4) \quad & 0=[h(x), x] h\left(x^{*}\right)+h(x)\left[h(x), x^{*}\right]+\left[x, h\left(x^{*}\right)\right] h\left(x^{*}\right)+h(x)\left[x^{*}, h\left(x^{*}\right)\right] . \tag{3.4}
\end{align*}
$$

Replacing x by $x+t$, where $t \in H(R) \cap Z(R)$, we obtain

$$
\begin{aligned}
0= & {[h(x+t), x+t] h\left(x^{*}+t\right)+h(x+t)\left[h(x+t), x^{*}+t\right]+\left[x+t, h\left(x^{*}+t\right)\right] h\left(x^{*}+t\right) } \\
& +h(x+t)\left[x^{*}+t, h\left(x^{*}+t\right)\right] . \\
0= & {[h(x), x] h\left(x^{*}\right)+[h(x), x] h(t)+[h(x), t] h\left(x^{*}\right)+[h(x), t] h(t)+[h(t), t] h\left(x^{*}\right) } \\
& +[h(t), t] h(t)+[h(t), x] h\left(x^{*}\right)+[h(t), x] h(t)+h(x)\left[h(x), x^{*}\right]+h(x)[h(t), t] \\
& +h(x)[h(x), t]+h(x)\left[h(t), x^{*}\right]+h(t)\left[h(x), x^{*}\right]+h(t)[h(t), t]+h(t)[h(x), t] \\
+ & h(t)\left[h(t), x^{*}\right]+h(x)\left[x^{*}, h\left(x^{*}\right)\right]+h(x)[t, h(t)]+h(x)\left[x^{*}, h(t)\right]+h(x)\left[t, h\left(x^{*}\right)\right] \\
& +h(t)\left[x^{*}, h\left(x^{*}\right)\right]+h(t)[t, h(t)]+h(t)\left[x^{*}, h(t)\right]+h(t)\left[t, h\left(x^{*}\right)\right] \\
& +\left[x, h\left(x^{*}\right)\right] h\left(x^{*}\right)+[t, h(t)] h\left(x^{*}\right)+[x, h(t)] h\left(x^{*}\right)+\left[t, h\left(x^{*}\right)\right] h\left(x^{*}\right) \\
& +\left[x, h\left(x^{*}\right)\right] h(t)+[t, h(t)] h(t)+[x, h(t)] h(t)+\left[t, h\left(x^{*}\right)\right] h(t) .
\end{aligned}
$$

By using (3.4) we get

$$
0=h(t)\left([h(x), x]+\left[h(x), x^{*}\right]+\left[x^{*}, h\left(x^{*}\right)\right]+\left[x, h\left(x^{*}\right)\right]\right) .
$$

for all $t \in H(R) \cap Z(R)$ and $x \in R$. Since the center of a prime ring is free from zero divisors we get either $h(t)=0$ for all $t \in H(R) \cap Z(R)$ or $[h(x), x]+\left[h(x), x^{*}\right]+$ $\left[x^{*}, h\left(x^{*}\right)\right]+\left[x, h\left(x^{*}\right)\right]=0$ for all $x \in R$. Suppose

$$
\begin{equation*}
h(t)=0 \text { for all } t \in H(R) \cap Z(R) . \tag{3.5}
\end{equation*}
$$

By lemma 3.1 we get

$$
\begin{equation*}
h(x)=0 \text { for all } x \in Z(R) . \tag{3.6}
\end{equation*}
$$

Replacing y by $k y$ in (3.3), where $k \in S(R) \cap Z(R)$ and using (3.6), we get

$$
\begin{gathered}
{\left[h(x), h\left((k y)^{*}\right)\right]+\left[h(k y), h\left(x^{*}\right)\right]=0 \text { for all } x, y \in R .} \\
{\left[h(x), h\left(y^{*} k^{*}\right)\right]+\left[h(k y), h\left(x^{*}\right)\right]=0 \text { for all } x, y \in R .} \\
{\left[h(x), h\left(y^{*}(-k)\right)\right]+\left[h(k y), h\left(x^{*}\right)\right]=0 \text { for all } x, y \in R .} \\
-\left[h(x), h\left((y)^{*} k\right)\right]+\left[h(k y), h\left(x^{*}\right)\right]=0 \text { for all } x, y \in R . \\
-\left[h(x), h\left(y^{*}\right) h(k)\right]-\left[h(x), y^{*} h(k)\right]-\left[h(x), h\left(y^{*}\right) k\right]+\left[h(k) h(y), h\left(x^{*}\right)\right]+\left[k h(y), h\left(x^{*}\right)\right] \\
+\left[h(k) y, h\left(x^{*}\right)\right]=0 \text { for all } x, y \in R . \\
-h\left(y^{*}\right)[h(x), h(k)]-\left[h(x), h\left(y^{*}\right)\right] h(k)-y^{*}[h(x), h(k)]-\left[h(x), y^{*}\right] h(k)-h\left(y^{*}\right)[h(x), k] \\
-\left[h(x), h\left(y^{*}\right)\right] k+h(k)\left[h(y), h\left(x^{*}\right)\right]+\left[h(k), h\left(x^{*}\right)\right] h(y)+k\left[h(y), h\left(x^{*}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
+\left[k, h\left(x^{*}\right)\right] h(y)+h(k)\left[y, h\left(x^{*}\right)\right] \\
+\left[h(k), h\left(x^{*}\right)\right] y=0 \text { for all } x, y \in R . \\
k\left(-\left[h(x), h\left(y^{*}\right)\right]+\left[h(y), h\left(x^{*}\right)\right]\right)=0
\end{gathered}
$$

for all $k \in S(R) \cap Z(R)$ and $x, y \in R$. Using the primeness of R and the fact that $S(R) \cap Z(R) \neq(0)$, we get

$$
\begin{equation*}
-\left[h(x), h\left(y^{*}\right)\right]+\left[h(y), h\left(x^{*}\right)\right]=0 \text { for all } x, y \in R . \tag{3.7}
\end{equation*}
$$

for all $x, y \in R$. On comparing (3.3) and (3.7), we obtain $2\left[h(x), h\left(y^{*}\right)\right]=0$ Replacing y by y^{*} and using the fact that $\operatorname{char}(R) \neq 2$, we conclude that $[h(x), h(y)]=0$ for all $x, y \in R$. Therefore, by Lemma 2.7, we get that R is commutative.
Now we consider the case

$$
\begin{equation*}
[h(x), x]+\left[h(x), x^{*}\right]+\left[x^{*}, h\left(x^{*}\right)\right]+\left[x, h\left(x^{*}\right)\right]=0 \text { for all } x \in R . \tag{3.8}
\end{equation*}
$$

Replacing x by $t+k$, where $t \in H(R)$ and $k \in S(R)$,

$$
\begin{aligned}
& \left.\left.[h(t+k), t+k]+\left[h(t+k),(t+k)^{*}\right]+\left[(t+k)^{*}, h\left((t+k)^{*}\right)\right)\right]+\left[t+k, h\left((t+k)^{*}\right)\right)\right]=0 . \\
& {[h(t), t]+[h(t), k]+[h(k), t]+[h(k), k]+\left[h(t), t^{*}\right]+\left[h(t), k^{*}\right]+\left[h(k), t^{*}\right]+\left[h(k), k^{*}\right]} \\
& +\left[t^{*}, h\left(t^{*}\right)\right]+\left[t^{*}, h\left(k^{*}\right)\right]+\left[k^{*}, h\left(t^{*}\right)\right]+\left[k^{*}, h\left(k^{*}\right)\right]+\left[t, h\left(t^{*}\right)\right]+\left[t, h\left(k^{*}\right)\right]+\left[k, h\left(t^{*}\right)\right] \\
& +\quad+\left[k, h\left(k^{*}\right)\right]=0 .
\end{aligned} \begin{gathered}
{[h(t), t]+\left[h(t), t^{*}\right]+\left[t^{*}, h\left(t^{*}\right)\right]+\left[t, h\left(t^{*}\right)\right]+[h(k), k]+\left[h(k), k^{*}\right]+\left[k^{*}, h\left(k^{*}\right)\right]+\left[k, h\left(k^{*}\right)\right]} \\
+[h(t), k]+[h(k), t]+\left[h(t), k^{*}\right]+\left[h(k), t^{*}\right]+\left[t^{*}, h\left(k^{*}\right)\right]+\left[k^{*}, h\left(t^{*}\right)\right]+\left[t, h\left(k^{*}\right)\right] \\
+\left[k, h\left(t^{*}\right)\right]=0 .
\end{gathered}
$$

for all $x \in R$. By (3.8), we get $4[h(k), t]=0$. Since $\operatorname{char}(R) \neq 2$, we obtain

$$
\begin{equation*}
[h(k), t]=0 \text { for all } t \in H(R) \text { and } k \in S(R) \tag{3.9}
\end{equation*}
$$

Replacing t by $k_{0} k^{\prime}$, where $k_{0} \in S(R)$ and $k^{\prime} \in S(R) \cap Z(R)$, we arrive at $\left(\left[h(k), k_{0}\right]\right) k=0$. Using the primeness of R and since $S(R) \cap Z(R) \neq(0)$, we get

$$
\begin{equation*}
\left[h(k), k_{0}\right]=0 \text { for all } k, k_{0} \in S(R) \tag{3.10}
\end{equation*}
$$

Since $\operatorname{char}(R) \neq 2$, every $x \in R$ can be represented as $2 x=t+k$, where $t \in$ $H(R), k \in S(R)$, so in equations (3.9) and (3.10),

$$
\begin{gathered}
{[h(k), 2 x]=[h(k), t+k]=[h(k), t]+[h(k), k]=0 \text { for all } k \in S(R) x \in R .} \\
2[h(k), x]=0 \text { for all } k \in S(R) x \in R .
\end{gathered}
$$

Since $\operatorname{char}(R) \neq 2$ we conclude that

$$
\begin{equation*}
[h(k), x]=0 \text { for all } k \in S(R) x \in R . \tag{3.11}
\end{equation*}
$$

That is $h(k) \in Z(R)$ for all $k \in S(R)$. Assume that $h(S(R))=(0)$, so $\left(h\left(x-x^{*}\right)\right)=$ 0 for all $x \in R$. That is $h(x)=h\left(x^{*}\right)$ for all $x \in R$. Now for $k \in S(R)$ and $x \in R$, we have $0=h\left(k x+x^{*} k\right)=h(k) h(x)+k h(x)+h(k) x+h\left(x^{*}\right) h(k)+x^{*} h(k)+$ $h\left(x^{*}\right) k=k h(x)+h\left(x^{*}\right) k=k h(x)+h(x) k$ for all $x \in R$. This further implies that $k^{2} h(x)=h(x) k^{2}$ for all $x \in R$. Thus, by the Lemma 2.8, we conclude that $k^{2} \in Z(R)$ for all $k \in Z(R)$. Since $S(R) \cap Z(R) \neq(0)$, let $0 \neq k_{0} \in S(R) \cap Z(R)$
and k be an arbitrary element of $S(R)$. Then $\left(k+k_{0}\right)^{2}=k^{2}+k_{0}^{2}+2 k k_{0} \in Z(R)$ hence $2 k k_{0} \in Z(R)$. Since $\operatorname{char}(R) \neq 2$, we get $k k_{0} \in Z(R)$ for all $k \in S(R)$ and $k_{0} \in S(R) \cap Z(R)$ implies that $k \in Z(R)$ for all $k \in S(R) R$ is normal. Thus, R is commutative by Lemma 2.3.

Now suppose $h(S(R)) \neq(0)$. For $k_{0} \in S(R)$ with $h\left(k_{0}\right) \neq 0$ and $k \in$ [$S(R), S(R)$], we have

$$
\begin{gathered}
h\left(k k_{0} k\right) \in Z(R) \\
h(k) h\left(k_{0} k\right)+h(k) k_{0} k+k h\left(k_{0} k\right) \in Z(R) \\
h(k) h\left(k_{0}\right) h(k)+h(k) k_{0} h(k)+h(k) h\left(k_{0}\right) k+h(k) k_{0} k+k h\left(k_{0}\right) h(k)+k k_{0} h(k) \\
+k h\left(k_{0}\right) k \in Z(R)
\end{gathered}
$$

Since $h([S(R), S(R)])=0$

$$
k^{2} h\left(k_{0}\right) \in Z(R)
$$

Thus, by the Lemma 2.8, we conclude that $k^{2} \in Z(R)$ for all $k \in Z(R)$. Since $S(R) \cap Z(R) \neq(0)$, let $0 \neq k_{0} \in S(R) \cap Z(R)$ and let k be an arbitrary element of $S(R)$. Then $\left(k+k_{0}\right)^{2}=k^{2}+k_{0}^{2}+2 k k_{0} \in Z(R)$ and hence $2 k k_{0} \in Z(R)$. Since $\operatorname{char}(R) \neq 2$, we get $k k_{0} \in Z(R)$ for all $k \in S(R)$ and $k_{0} \in S(R) \cap Z(R)$. This further implies that $k \in Z(R)$ for all $k \in S(R)$. That is, $[S(R), S(R)] \subseteq Z(R)$.

Suppose $[S(R), S(R)] \neq(0)$ and let $k, k_{0} \in S(R)$ such that $\left[k, k_{0}\right] \neq 0$. Since $k k_{0} k \in S(R)$, we have

$$
\left[k, k k_{0} k\right]=[k, k] k_{0} k+k\left[k, k_{0}\right] k+k k_{0}[k, k]=k^{2}\left[k, k_{0}\right] \in Z(R)
$$

This implies that $k \in Z(R)$ for all $k \in S(R)$. Therefore, R is commutative by Lemma 2.3.

Now suppose $[S(R), S(R)]=(0)$. Since by lemma $2.11 \overline{S(R)^{2}}$ is a Lie ideal and a commutative subring of R, by lemma $2.2, k^{2} \in Z(R)$ for all $k \in S(R)$ and hence $k \in Z(R)$ for all $k \in S(R)$. Thus, R is normal. Hence R is commutative by Lemma 2.3.

Theorem 3.2. Let R be a 2-torsion free prime ring with involution $*$ of the second kind. Let h be a homoderivation which is zero-power valued on R, then the following are equivalent:
(i) $h(x) \circ h\left(x^{*}\right)-x \circ x^{*} \in Z(R)$ for all $x \in R$.
(ii) $h(x) \circ h\left(x^{*}\right)+x \circ x^{*} \in Z(R)$ for all $x \in R$.
(iii) R is commutative.

Moreover, if $h \neq 0$ and $h(x) \circ h\left(x^{*}\right) \in Z(R)$ for all $x \in R$, implies that R is commutative.

Proof. It is clear that (iii) implies both of (i) and (ii). So, we need to prove that (i) \Rightarrow (iii) and (ii) \Rightarrow (iii).

If $h=0$ we get $x \circ x^{*} \in Z(R)$ for all $x \in R$. Using Lemma 2.5 we conclude that R is commutative. Assume that $h \neq 0$.

We have:

$$
\begin{equation*}
h(x) \circ h\left(x^{*}\right)-x \circ x^{*} \in Z(R) \text { for all } x \in R . \tag{3.12}
\end{equation*}
$$

Replacing x by $x+y$ and applying (3.12), we get

$$
\begin{equation*}
h(x) \circ h\left(y^{*}\right)+h(y) \circ h\left(x^{*}\right)-x \circ y^{*}-y \circ x^{*} \in Z(R) \text { for all } x, y \in R . \tag{3.13}
\end{equation*}
$$

Replacing y by $y d$ where $d \in Z(R) \cap H(R)$, and using (3.13) yields

$$
\begin{gathered}
h(x) \circ h\left((y d)^{*}\right)+h(y d) \circ h\left(x^{*}\right)-x \circ\left((y d)^{*}\right)-(y d) \circ x^{*} \in Z(R) . \\
h(x) \circ h\left(d y^{*}\right)+h(y d) \circ h\left(x^{*}\right)-x \circ\left(d y^{*}\right)-(y d) \circ x^{*} \in Z(R) . \\
h(x) \circ\left(h(d) h\left(y^{*}\right)\right)+h(x) \circ\left(d h\left(y^{*}\right)+h(x) \circ\left(h(d) y^{*}\right)+(h(y) h(d)) \circ h\left(x^{*}\right)+(y h(d)) \circ h\left(x^{*}\right)\right. \\
+(h(y) d) \circ h\left(x^{*}\right)-d\left(x \circ y^{*}\right)-[x, d] y^{*}-\left(y \circ x^{*}\right) d-y\left[d, x^{*}\right] \in Z(R) . \\
h(d)\left(h(x) \circ h\left(y^{*}\right)\right)+[h(x), h(d)] h\left(y^{*}\right)+d\left(h(x) \circ h\left(y^{*}\right)+[h(x), d] h\left(y^{*}\right)\right. \\
+h(d)\left(h(x) \circ y^{*}\right)+[h(x), h(d)] y^{*}+\left(h(y) \circ h\left(x^{*}\right)\right) h(d)+h(y)\left[h(d), h\left(x^{*}\right)\right] \\
+\left(y \circ h\left(x^{*}\right) h(d)+y\left[h(d), h\left(x^{*}\right)\right]+\left(h(y) \circ h\left(x^{*}\right)\right) d+h(y)\left[d, h\left(x^{*}\right)\right]\right. \\
-d\left(x \circ y^{*}\right)-[x, d] y^{*}-\left(y \circ x^{*}\right) d-y\left[d, x^{*}\right] \in Z(R) . \\
{\left[h(x) \circ h\left(y^{*}\right)+h(y) \circ h\left(x^{*}\right)-x \circ y^{*}-y \circ x^{*}, r\right] d+\left[h(x) \circ\left(y^{*}+h\left(y^{*}\right)\right)\right.} \\
\left.+(y+h(y)) \circ h\left(x^{*}\right), r\right] h(d)=0
\end{gathered}
$$

for all $x, y \in R$.
(3.14) $\quad\left[h(x) \circ\left(y^{*}+h\left(y^{*}\right)\right)+(y+h(y)) \circ h\left(x^{*}\right), r\right] h(d)=0$ for all $x, y \in R$.

Since h is zero-power valued on R, we get

$$
\left[h(x) \circ y^{*}+y \circ h\left(x^{*}\right), r\right] h(d)=0 \text { for all } x, y, r \in R .
$$

thus,

$$
\begin{equation*}
\left[h(x) \circ y^{*}+y \circ h\left(x^{*}\right), r\right] R h(d)=0 \text { for all } x, y, r \in R . \tag{3.15}
\end{equation*}
$$

Since R is prime, so, either $h(d)=0$ or $\left[h(x) \circ y^{*}+y \circ h\left(x^{*}\right), r\right]=0$. If $h(d)=0$ for all $d \in Z(R) \cap H(R)$, by Lemma 3.1, we have that

$$
\begin{equation*}
h(z)=0 \text { for all } z \in Z(R) . \tag{3.16}
\end{equation*}
$$

Replacing y by $y z$ in (3.13) where $z \in Z(R)$

$$
\begin{gathered}
h(x) \circ h\left(z^{*} y^{*}\right)+h(y z) \circ h\left(x^{*}\right)+(y z) \circ x^{*}+x \circ\left(z^{*} y^{*}\right) \in Z(R) . \\
h(x) \circ\left(h\left(z^{*}\right) h\left(y^{*}\right)\right)+h(x) \circ\left(z^{*} h\left(y^{*}\right)\right)+h(x) \circ\left(h\left(z^{*}\right) y^{*}\right)+(h(y) h(z)) \circ h\left(x^{*}\right) \\
+(y h(z)) \circ h\left(x^{*}\right)+(h(y) z) \circ h\left(x^{*}\right)+\left(y \circ x^{*}\right) z+y\left[x^{*}, z\right]+ \\
z^{*}\left(x \circ y^{*}\right)+\left[x, z^{*}\right] y^{*} \in Z(R) . \\
h\left(z^{*}\right)\left(h(x) \circ h\left(y^{*}\right)\right)+\left[h(x), h\left(z^{*}\right)\right] h\left(y^{*}\right)+z^{*}\left(h(x) \circ h\left(y^{*}\right)\right)+\left[h(x), z^{*}\right] h\left(y^{*}\right) \\
+h\left(z^{*}\right)\left(h(x) \circ y^{*}\right)+\left[h(x), h\left(z^{*}\right)\right] y^{*}+\left(h(y) \circ h\left(x^{*}\right)\right) h(z)+h(y)\left[h(z), h\left(x^{*}\right)\right]+ \\
\left(y \circ h\left(x^{*}\right)\right) h(z)+y\left[h(z), h\left(x^{*}\right)\right]+\left(h(y) \circ h\left(x^{*}\right)\right) z+h(y)\left[z, h\left(x^{*}\right)\right] \\
\left(y \circ x^{*}\right) z+y\left[x^{*}, z\right]+z^{*}\left(x \circ y^{*}\right)+\left[x, z^{*}\right] y^{*} \in Z(R) . \\
{[h(x) \circ h(y)-x \circ y, r]\left(z^{*}-z\right)=0 .}
\end{gathered}
$$

So that

$$
\begin{equation*}
[h(x) \circ h(y)-x \circ y, r] R\left(z^{*}-z\right)=0 \text { for all } r, x, y \in R . \tag{3.17}
\end{equation*}
$$

By the primeness of R, either $[h(x) \circ h(y)-x \circ y, r]=0$ or $z^{*}-z=0$. Since the involution is of the second kind so $z^{*}-z \neq 0$. Thus, $[h(x) \circ h(y)-x \circ y, r]=0$ for all $r, x, y \in R$, that is,

$$
\begin{equation*}
h(x) \circ h(y)-x \circ y \in Z(R) \text { for all } x, y \in R . \tag{3.18}
\end{equation*}
$$

Taking $y \in Z(R) \backslash\{0\}$ and using (3.16), we have $x y \in Z(R)$ for all $x \in R$, $y \in Z(R)$. By Lemma 2.1, we have $x \in Z(R)$ for all $x \in R$. Hence, R is commutative.

Now suppose that

$$
\begin{equation*}
\left[h(x) \circ y^{*}+y \circ h\left(x^{*}\right), r\right]=0 \text { for all } r, x, y \in R . \tag{3.19}
\end{equation*}
$$

Replacing y by $y z$ where $z \in Z(R)$ in (3.19), we get

$$
\begin{gathered}
{\left[h(x) \circ(y z)^{*}+(y z) \circ h\left(x^{*}\right), r\right]=0 .} \\
{\left[h(x) \circ\left(z^{*} y^{*}\right)+(y z) \circ h\left(x^{*}\right), r\right]=0 .} \\
{\left[z^{*}\left(h(x) \circ y^{*}\right), r\right]+\left[\left[h(x), z^{*}\right] y^{*}, r\right]+\left[\left(y \circ h\left(x^{*}\right)\right) z, r\right]+\left[y\left[z, h\left(x^{*}\right], r\right]=0 .\right.} \\
{\left[z^{*}\left(h(x) \circ y^{*}\right), r\right]+\left[\left(y \circ h\left(x^{*}\right)\right) z, r\right]=0 .} \\
-\left[z^{*}\left(y^{*} \circ h(x)\right), r\right]+\left[\left(y \circ h\left(x^{*}\right)\right) z, r\right]=0 . \\
-\left[z^{*}\left(y^{*} h(x)+h(x) y^{*}\right), r\right]+\left[\left(y h\left(x^{*}\right)+h\left(x^{*}\right) y\right) z, r\right]=0 .
\end{gathered}
$$

Using (3.19), we get

$$
\begin{equation*}
[h(x) y+y h(x), r] R\left(z-z^{*}\right)=0 \text { for all } r, x, y \in R \text { and } z \in Z(R) \tag{3.20}
\end{equation*}
$$

Since R is prime and the involution is of the second kind, so, (3.20) implies

$$
\begin{equation*}
[h(x) y, r]+[y h(x), r]=0 \text { for all } r, x, y \in R . \tag{3.21}
\end{equation*}
$$

Substituting $y r$ for y and using (3.21), we find that

$$
\begin{gather*}
{[h(x) y r, r]+[y r h(x), r]=0 .} \\
{[h(x) y, r] r+y r[h(x), r]+[y, r] r h(x)=0 .} \\
-[y h(x), r] r+y r[h(x), r]+[y, r] r h(x)=0 . \\
-y[h(x), r] r-[y, r] h(x) r+y r[h(x), r]+[y, r] r h(x)=0 . \\
{[y, r](r h(x)-h(x) r)+y(r[h(x), r]-[h(x), r] r)=0 .} \\
y[[h(x), r], r]-[y, r][h(x), r]=0 \text { for all } r, x, y \in R \\
{[y[h(x), r], r]=0 \text { for all } r, x, y \in R .} \tag{3.22}
\end{gather*}
$$

Replacing y by $t y$ where $t \in R$, yields

$$
\begin{gathered}
{[t y[h(x), r], r]=0 .} \\
t y[[h(x), r], r]+t[y, r][h(x), r]+[t, r] y[h(x), r]=0 . \\
t(y[h(x), r], r]+[y, r][h(x), r])+[t, r] y[h(x), r]=0 . \\
t[y[h(x), r], r]+[t, r] y[h(x), r]=0 . \\
{[t, r] y[h(x), r]=0 \text { for all } r, x, y \in R .}
\end{gathered}
$$

Since R is prime, either $[t, r]=0$ or $[h(x), x]=0$ for all $x \in R$. By Lemma 2.9 R is commutative.
(ii) \Rightarrow (iii) Suppose that,

$$
\begin{equation*}
h(x) \circ h\left(x^{*}\right)+x \circ x^{*} \in Z(R) \text { for all } x \in R . \tag{3.23}
\end{equation*}
$$

Replacing x by $x+y$ and using (3.23), we find that
(3.24) $\quad h(x) \circ h\left(y^{*}\right)+h(y) \circ h\left(x^{*}\right)+y \circ x^{*}+x \circ y^{*} \in Z(R)$ for all $x, y \in R$.

Replacing y by $y d$ where $d \in Z(R) \cap H(R)$ and using (3.24), we obtain

$$
h(x) \circ h\left(d^{*} y^{*}\right)+h(y d) \circ h\left(x^{*}\right)+(y d) \circ x^{*}+x \circ\left(d^{*} y^{*}\right) \in Z(R) .
$$

Since $d \in Z(R) \cap H(R)$

$$
\begin{gathered}
h(x) \circ h\left(d y^{*}\right)+h(y d) \circ h\left(x^{*}\right)+(y d) \circ x^{*}+x \circ\left(d y^{*}\right) \in Z(R) . \\
h(x) \circ\left(h(d) h\left(y^{*}\right)\right)+h(x) \circ\left(d h\left(y^{*}\right)\right)+h(x) \circ\left(h(d) y^{*}\right)+(h(y) h(d)) \circ h\left(x^{*}\right) \\
+(y h(d)) \circ h\left(x^{*}\right)+(h(y) d) \circ h\left(x^{*}\right)+(y d) \circ x^{*}+x \circ\left(d y^{*}\right) \in Z(R) . \\
h(d)\left(h(x) \circ h\left(y^{*}\right)\right)+[h(x), h(d)] h\left(y^{*}\right)+d\left(h(x) \circ h\left(y^{*}\right)\right)+[h(x), d] h\left(y^{*}\right) \\
+h(d)\left(h(x) \circ y^{*}\right)+[h(x), h(d)] y^{*}+\left(h(y) \circ h\left(x^{*}\right)\right) h(d)+h(y)\left[h(d), h\left(x^{*}\right)\right] \\
+\left(y \circ h\left(x^{*}\right)\right) h(d)+y\left[h(d), h\left(x^{*}\right)\right]+\left(h(y) \circ h\left(x^{*}\right)\right) d+h(y)\left[d, h\left(x^{*}\right)\right]+\left(y \circ x^{*}\right) d+y\left[d, x^{*}\right] \\
+d\left(x \circ y^{*}\right)+[x, d] y^{*} \in Z(R) . \\
{\left[h(x) \circ h\left(y^{*}\right)+h(x) \circ y^{*}, r\right] h(d)+\left[h(y) \circ h\left(x^{*}\right)+y \circ h\left(x^{*}\right), r\right] h(d)} \\
+\left[h(x) \circ h\left(y^{*}\right)+h(y) \circ h\left(x^{*}\right)+y \circ x^{*}+x \circ y^{*}, r\right] d=0 .
\end{gathered}
$$

$$
\begin{equation*}
\left[h(x) \circ\left(h\left(y^{*}\right)+y^{*}\right)+(y+h(y)) \circ h\left(x^{*}\right), r\right] h(d)=0 \text { for all } x, y, r \in R . \tag{3.25}
\end{equation*}
$$

Since h is zero-power valued on R, we have

$$
\begin{equation*}
\left[h(x) \circ y^{*}+y \circ h\left(x^{*}\right), r\right] R h(d)=0 \text { for all } x, y, r \in R . \tag{3.26}
\end{equation*}
$$

Since R is prime, either $h(d)=0$ or $\left[h(x) \circ y^{*}+y \circ h\left(x^{*}\right), r\right]=0$. If $h(d)=0$ for all $d \in Z(R) \cap H(R)$ by Lemma 3.1, we have that

$$
\begin{equation*}
h(z)=0 \text { for all } z \in Z(R) . \tag{3.27}
\end{equation*}
$$

Replacing y by $y z$ in (3.24) where $z \in Z(R)$

$$
\begin{gathered}
h(x) \circ h\left(z^{*} y^{*}\right)+h(y z) \circ h\left(x^{*}\right)+(y z) \circ x^{*}+x \circ\left(z^{*} y^{*}\right) \in Z(R) . \\
h(x) \circ\left(h\left(z^{*}\right) h\left(y^{*}\right)\right)+h(x) \circ\left(z^{*} h\left(y^{*}\right)\right)+h(x) \circ\left(h\left(z^{*}\right) y^{*}\right)+(h(y) h(z)) \circ h\left(x^{*}\right) \\
+(y h(z)) \circ h\left(x^{*}\right)+(h(y) z) \circ h\left(x^{*}\right)+\left(y \circ x^{*}\right) z+y\left[x^{*}, z\right]+ \\
z^{*}\left(x \circ y^{*}\right)+\left[x, z^{*}\right] y^{*} \in Z(R) . \\
h\left(z^{*}\right)\left(h(x) \circ h\left(y^{*}\right)\right)+\left[h(x), h\left(z^{*}\right)\right] h\left(y^{*}\right)+z^{*}\left(h(x) \circ h\left(y^{*}\right)\right)+\left[h(x), z^{*}\right] h\left(y^{*}\right) \\
+h\left(z^{*}\right)\left(h(x) \circ y^{*}\right)+\left[h(x), h\left(z^{*}\right)\right] y^{*}+\left(h(y) \circ h\left(x^{*}\right)\right) h(z)+h(y)\left[h(z), h\left(x^{*}\right)\right]+ \\
\left(y \circ h\left(x^{*}\right)\right) h(z)+y\left[h(z), h\left(x^{*}\right)\right]+\left(h(y) \circ h\left(x^{*}\right)\right) z+h(y)\left[z, h\left(x^{*}\right)\right] \\
\left(y \circ x^{*}\right) z+y\left[x^{*}, z\right]+z^{*}\left(x \circ y^{*}\right)+\left[x, z^{*}\right] y^{*} \in Z(R) . \\
{[h(x) \circ h(y)-x \circ y, r]\left(z^{*}-z\right)=0 .}
\end{gathered}
$$

So that

$$
\begin{equation*}
[h(x) \circ h(y)-x \circ y, r] R\left(z^{*}-z\right)=0 \text { for all } r, x, y \in R . \tag{3.28}
\end{equation*}
$$

By the primeness of R, either $[h(x) \circ h(y)-x \circ y, r]=0$ or $z^{*}-z=0$. Since the involution is of the second kind ,so $z^{*}-z \neq 0$. Then $[h(x) \circ h(y)-x \circ y, r]=0$ for all $r \in R$, that is

$$
\begin{equation*}
h(x) \circ h(y)-x \circ y \in Z(R) \text { for all } r, x, y \in R . \tag{3.29}
\end{equation*}
$$

Taking $y \in Z(R) \backslash\{0\}$ and using (3.27), we have $x y \in Z(R)$ for all $x \in R$, $y \in Z(R)$. By Lemma 2.1, we have $x \in Z(R)$ for all $x \in R$. Hence, R is commutative.
Now suppose that

$$
\begin{equation*}
\left[h(x) \circ y^{*}+y \circ h\left(x^{*}\right), r\right]=0 \text { for all } r, x, y \in R . \tag{3.30}
\end{equation*}
$$

Replacing y by $y z$ where $z \in Z(R)$ in (3.30), we get

$$
\begin{gathered}
{\left[h(x) \circ(y z)^{*}+(y z) \circ h\left(x^{*}\right), r\right]=0 .} \\
{\left[h(x) \circ\left(z^{*} y^{*}\right)+(y z) \circ h\left(x^{*}\right), r\right]=0 .} \\
{\left[z^{*}\left(h(x) \circ y^{*}\right), r\right]+\left[\left[h(x), z^{*}\right] y^{*}, r\right]+\left[\left(y \circ h\left(x^{*}\right)\right) z, r\right]+\left[y\left[z, h\left(x^{*}\right], r\right]=0 .\right.} \\
{\left[z^{*}\left(h(x) \circ y^{*}\right), r\right]+\left[\left(y \circ h\left(x^{*}\right)\right) z, r\right]=0 .} \\
-\left[z^{*}\left(y^{*} \circ h(x)\right), r\right]+\left[\left(y \circ h\left(x^{*}\right)\right) z, r\right]=0 . \\
-\left[z^{*}\left(y^{*} h(x)+h(x) y^{*}\right), r\right]+\left[\left(y h\left(x^{*}\right)+h\left(x^{*}\right) y\right) z, r\right]=0 .
\end{gathered}
$$

Replace x^{*} by x and y^{*} by y we get
(3.31) $\quad[h(x) y+y h(x), r] R\left(z-z^{*}\right)=0$ for all $r, x, y \in R$ and $z \in Z(R)$.

Since R is prime and the involution is of the second kind, so (3.31) implies

$$
\begin{equation*}
[h(x) y, r]+[y h(x), r]=0 \text { for all } r, x, y \in R . \tag{3.32}
\end{equation*}
$$

Substituting $y r$ for y and using (3.32), we find that

$$
[h(x) y r, r]+[y r h(x), r]=0 .
$$

$[h(x) y, r] r+y r[h(x), r]+[y, r] r h(x)=0$.
$-[y h(x), r] r+y r[h(x), r]+[y, r] r h(x)=0$.
$-y[h(x), r] r-[y, r] h(x) r+y r[h(x), r]+[y, r] r h(x)=0$.
$[y, r](r h(x)-h(x) r)+y(r[h(x), r]-[h(x), r] r)=0$.

$$
y[[h(x), r], r]-[y, r][h(x), r]=0 \text { for all } r, x, y \in R
$$

$$
\begin{equation*}
[y[h(x), r], r]=0 \text { for all } r, x, y \in R . \tag{3.33}
\end{equation*}
$$

Replacing y by $t y$ where $t \in R$, yields

$$
\begin{gathered}
{[t y[h(x), r], r]=0 .} \\
t y[[h(x), r], r]+t[y, r][h(x), r]+[t, r] y[h(x), r]=0 . \\
t(y[h(x), r], r]+[y, r][h(x), r])+[t, r] y[h(x), r]=0 . \\
t[y[h(x), r], r]+[t, r] y[h(x), r]=0 . \\
{[t, r] y[h(x), r]=0 \text { for all } r, x, y \in R .}
\end{gathered}
$$

Since R is prime, either $[t, r]=0$ or $[h(x), x]=0$ for all $x \in R$. By lemma 2.9 R is commutative.

Corollary 3.1. Let R be a 2-torsion free prime ring with involution $*$ of the second kind. Let h be a homoderivation which is zero-power valued on R, then the following are equivalent:
(i) $h(x) \circ h(y)-x \circ y \in Z(R)$ for all $x, y \in R$.
(ii) $h(x) \circ h(y)+x \circ y \in Z(R)$ for all $x, y \in R$
(iii) R is commutative.

Moreover, if $h \neq 0$ and $h(x) \circ h(y) \in Z(R)$ for all $x, y \in R$, implies that R is commutative.

In [12], Theorem 3.7, the authors proved that if R is a 2 -torsion free prime ring with involution of the second kind, and d be a non-zero derivation on R. Then R is commutative if and only if $h(x) \circ x^{*} \in Z(R)$ for all $x \in R$ which is also equivalent to h is $*$-centralizing on R. Applying theses conditions on homoderivation, we get the following theorem.

Theorem 3.3. Let $(R, *)$ be a 2-torsion free prime ring with involution of the second kind, and h be a non-zero homoderivation which is zero-power valued on R. Then the following are equivalent:
(i) h is *-centralizing on R.
(ii) $h(x) \circ x^{*} \in Z(R)$ for all $x \in R$..
(iii) R is commutative.

Proof. It is obvious that (iii) implies both of (i) and (ii). Now, to prove that (i) \Rightarrow (iii) suppose that

$$
\begin{equation*}
\left[h(x), x^{*}\right] \in Z(R) \text { for all } x \in R \tag{3.34}
\end{equation*}
$$

Replacing x by $x+y$ and using (3.34), we find that

$$
\begin{equation*}
\left[h(x), y^{*}\right]+\left[h(y), x^{*}\right] \in Z(R) \text { for all } x, y \in R \tag{3.35}
\end{equation*}
$$

Replacing y by $y d$, where $d \in Z(R) \cap H(R)$, yields

$$
\begin{gathered}
{\left[h(x), d^{*} y^{*}\right]+\left[h(y d), x^{*}\right] \in Z(R) \text { for all } x, y \in R .} \\
{\left[h(x), d y^{*}\right]+\left[h(y d), x^{*}\right] \in Z(R) \text { for all } x, y \in R .} \\
d\left[h(x), y^{*}\right]+[h(x), d] y^{*}+\left[h(y) h(d), x^{*}\right]+\left[y h(d), x^{*}\right]+\left[h(y) d, x^{*}\right] \in Z(R)
\end{gathered}
$$

for all $x, y \in R$.

$$
\begin{gather*}
d\left[h(x), y^{*}\right]+[h(x), d] y^{*}+h(y)\left[h(d), x^{*}\right]+\left[h(y), x^{*}\right] h(d)+y\left[h(d), x^{*}\right]+\left[y, x^{*}\right] h(d) \\
+h(y)\left[d, x^{*}\right]+\left[h(y), x^{*}\right] d \in Z(R) \text { for all } x, y \in R . \tag{3.36}
\end{gather*}
$$

$$
\left[h(x), y^{*}\right] d+\left[y, x^{*}\right] h(d)+\left[h(y), x^{*}\right] d+\left[h(y), x^{*}\right] h(d) \in Z(R) \text { for all } x, y \in R .
$$

The relation (3.35), (3.36) reduces to

$$
\begin{gathered}
{\left[y, x^{*}\right] h(d)+\left[h(y), x^{*}\right] h(d) \in Z(R) \text { for all } x, y \in R .} \\
{\left[y+h(y), x^{*}\right] h(d) \in Z(R) \text { for all } x, y \in R .}
\end{gathered}
$$

Since h is zero-power valued on R, we have

$$
\begin{equation*}
\left[y, x^{*}\right] h(d) \in Z(R) \text { for all } x, y \in R \tag{3.37}
\end{equation*}
$$

Hence $[[y, x] h(d), r]=0$, for all $r \in R$, so

$$
\left[y, x^{*}\right][h(d), r]+\left[\left[y, x^{*}\right], r\right] h(d)=0
$$

Since $h(Z(R)) \subseteq Z(R)$, so $h(d) \in Z(R)$ and

$$
\left[\left[y, x^{*}\right], r\right] h(d)=0 .
$$

Replace r by $r t$ for all $r, t \in R$, we have

$$
\left[\left[y, x^{*}\right], r\right] \operatorname{th}(d)=0 \text { for all } r, t, x, y \in R .
$$

thus,

$$
\begin{equation*}
\left[\left[y, x^{*}\right], r\right] R h(d)=0 \text { for all } r, x, y \in R . \tag{3.38}
\end{equation*}
$$

By the primeness of R, we get $h(d)=0$ or $\left[\left[y, x^{*}\right], r\right]=0$. If $h(d)=0$, for all $d \in Z(R) \cap H(R)$, by lemma 3.1, we conclude that

$$
\begin{equation*}
h(z)=0 \text { for all } z \in Z(R) . \tag{3.39}
\end{equation*}
$$

Substituting $y z$ for y where $z \in Z(R)$ in (3.35), we get

$$
\left[h(x),(y z)^{*}\right]+\left[h(y z), x^{*}\right] \in Z(R) \text { for all } x, y \in R .
$$

$\left[h(x), z^{*} y^{*}\right]+\left[h(y) h(z), x^{*}\right]+\left[y h(z), x^{*}\right]+\left[h(y) z, x^{*}\right] \in Z(R)$ for all $x, y \in R$.
$z^{*}\left[h(x), y^{*}\right]+\left[h(x), z^{*}\right] y^{*}+h(y)\left[h(z), x^{*}\right]+\left[h(y), x^{*}\right] h(z)+y\left[h(z), x^{*}\right]+\left[y, x^{*}\right] h(z)$

$$
+h(y)\left[z, x^{*}\right]+\left[h(y), x^{*}\right] z \in Z(R) \text { for all } x, y \in R .
$$

$z^{*}\left[h(x), y^{*}\right]+\left[h(y), x^{*}\right] h(z)+\left[y, x^{*}\right] h(z)+\left[h(y), x^{*}\right] z \in Z(R)$ for all $x, y \in R$.

$$
\begin{equation*}
\left[h(x), y^{*}\right] z^{*}+\left[h(y), x^{*}\right] z \in Z(R) \text { for all } x, y \in R . \tag{3.40}
\end{equation*}
$$

From (3.35), we have

$$
\left[\left[h(x), y^{*}\right], r\right]+\left[\left[h(y), x^{*}\right], r\right]=0 \text { for all } r, x, y \in R .
$$

$$
\begin{equation*}
\operatorname{inoh}_{1} 0\left[\left[h(y), x^{*}\right], r\right]=-\left[\left[h(x), y^{*}\right], r\right] \text { for all } r, x, y \in R . \tag{3.41}
\end{equation*}
$$

Using (3.35), (3.40) yields

$$
\begin{gathered}
{\left[\left[h(x), y^{*}\right] z^{*}, r\right]+\left[\left[h(y), x^{*}\right] z, r\right]=0 \text { for all } r, x, y \in R .} \\
{\left[\left[h(x), y^{*}\right], r\right] z^{*}+\left[\left[h(y), x^{*}\right], r\right] z=0 \text { for all } r, x, y \in R .} \\
{\left[\left[h(x), y^{*}\right], r\right] z^{*}-\left[\left[h(x), y^{*}\right], r\right] z=0 \text { for all } r, x, y \in R .} \\
{\left[\left[h(x), y^{*}\right], r\right]\left(z^{*}-z\right)=0 \text { for all } r, x, y \in R .}
\end{gathered}
$$

Replacing y^{*} by y, so

$$
\begin{equation*}
[[h(x), y], r]\left(z^{*}-z\right)=0 \text { for all } r, x, y \in R . \tag{3.42}
\end{equation*}
$$

Since R is prime ring, either $[[h(x), y], r]=0$ or $z^{*}-z=0$ Since the involution is of the second kind we have $z^{*}-z \neq 0$, then

$$
\begin{equation*}
[[h(x), y], r]=0 \text { for all } r, x, y \in R . \tag{3.43}
\end{equation*}
$$

That is, $[h(x), x] \in Z(R)$ for all $x \in R$, thus, h is centralizing. By lemma $2.10 R$ is commutative.

If $[[y, x], r]=0$, then $\left[x, x^{*}\right] \in Z(R)$ for all $x \in R$. By Lemma $2.4 R$ is commutative. To prove that (ii) \Rightarrow (iii). By hypothesis, we have

$$
\begin{equation*}
h(x) \circ x^{*} \in Z(R) \text { for all } x \in R . \tag{3.44}
\end{equation*}
$$

Replacing x by $x+y$ and using (3.44), we obtain

$$
\begin{equation*}
h(x) \circ y^{*}+h(y) \circ x^{*} \in Z(R) \text { for all } x, y \in R . \tag{3.45}
\end{equation*}
$$

Accordingly, we get

$$
\begin{equation*}
\left[h(x) \circ y^{*}, r\right]+\left[h(y) \circ x^{*}, r\right]=0 \text { for all } r, x, y \in R . \tag{3.46}
\end{equation*}
$$

Replacing y by $y d$, where $d \in Z(R) \cap H(R)$, and using (3.46), we obtain

$$
\begin{gathered}
{\left[h(x) \circ\left(d^{*} y^{*}\right), r\right]+\left[h(y d) \circ x^{*}, r\right]=0 .} \\
{\left[h(x) \circ\left(d y^{*}\right), r\right]+\left[\left(h(y) h(d) \circ x^{*}, r\right]+\left[\left(y h(d) \circ x^{*}, r\right]+\left[(h(y) d) \circ x^{*}, r\right]=0 .\right.\right.} \\
\left.\left[d\left(h(x) \circ y^{*}\right), r\right]+\left[[h(x), d] y^{*}\right), r\right]+\left[\left(h(y) \circ x^{*}\right) h(d), r\right]+\left[h(y)\left[x^{*}, h(d)\right], r\right] \\
+\left[\left(y \circ x^{*}\right) h(d), r\right]+\left[y\left[h(d), x^{*}\right], r\right]+\left[\left(h(y) \circ x^{*}\right) d, r\right]+\left[h(y)\left[d, x^{*}\right], r\right]=0 . \\
d\left[h(x) \circ y^{*}, r\right]+\left[h(y) \circ x^{*}, r\right] h(d)+\left[y \circ x^{*}, r\right] h(d)+\left[h(y) \circ x^{*}, r\right] d=0 .
\end{gathered}
$$

Using (3.46) we get

$$
\begin{equation*}
\left[(h(y)+y) \circ x^{*}, r\right] h(d)=0 \text { for all } r, x, y \in R \tag{3.47}
\end{equation*}
$$

Since h is zero-power valued on R, we get

$$
\begin{equation*}
\left[y \circ x^{*}, r\right] h(d)=0 \text { for all } r, x, y \in R . \tag{3.48}
\end{equation*}
$$

And thus

$$
\begin{equation*}
[y \circ x, r] R h(d)=0 \text { for all } r, x, y \in R . \tag{3.49}
\end{equation*}
$$

Since R is a prime, so either $[y \circ x, r]=0$ or $h(d)=0$ Assume $h(d)=0$, for all $d \in Z(R) \cap H(R)$. Using Lemma 3.1, we conclude that

$$
\begin{equation*}
h(z)=0 \text { for all } z \in Z(R) . \tag{3.50}
\end{equation*}
$$

Replacing y by z in (3.46), we obtain

$$
\begin{gather*}
{\left[h(x) \circ z^{*}, r\right]+\left[h(z) \circ x^{*}, r\right]=0 .} \\
{\left[h(x) z^{*}, r\right]+\left[z^{*} h(x), r\right]=0 .} \\
2\left[h(x) z^{*}, r\right]=0 . \\
{\left[h(x) z^{*}, r\right]=0 .} \\
{[h(x), r] z^{*}=0 \text { for all } r, x \in R \text { and } z \in Z(R)} \\
\text { So; } \quad[h(x), r] z=0 \text { for all } r, x \in R \text { and } z \in Z(R) . \tag{3.51}
\end{gather*}
$$

$$
\begin{equation*}
[h(x), x]=0 \text { for all } x \in R . \tag{3.52}
\end{equation*}
$$

By Lemma 2.9, we conclude that R is commutative.
If $[y \circ x, r]=0$ for all $r, x, y \in R$, then replacing y by z where $z \in Z(R) \backslash\{0\}$,

$$
\begin{gathered}
{[z \circ x, r]=0 .} \\
{[z x+x z, r]=0 .}
\end{gathered}
$$

$$
\begin{gathered}
{[z x, r]+[x z, r]=0} \\
z[x, r]+[x, r] z=0 . \\
2[x, r] z=0 \text { for all } r, x \in R, z \in Z(R) .
\end{gathered}
$$

Since R is 2-torsion free, we get $[x, r] z=0$ for all $r, x \in R$ and $z \in Z(R) \backslash\{0\}$. Using the primeness of R, we get $[x, r]=0$ for all $r, x \in R$ that gives the commutativity of R.

Example 3.1. Let $R=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}$. The set R with matrix addition and multiplication is a prime ring. Let $h: R \rightarrow R$ be a zero homoderivation on R and $*: R \rightarrow R$ is a mapping defined as $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{*}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. Then * is an involution of the first kind since $x^{*}=x$ for all $x \in Z(R)$ and $Z(R) \subseteq H(R)$. Now, $\left(h(x) \circ h\left(x^{*}\right)\right) \pm\left(x \circ x^{*}\right) \in Z(R)$ for all $x \in R$ Hence, the zero homoderivation satisfies the conditions of Theorem 3.2 but R is a not commutative. Hence the hypothesis of the second kind of involution is crucial in Theorem 3.2

References

[1] S. Ali and N. A. Dar. On *-centralizing mappings in rings with involution. Georgian Math $J, 21(1)(2014), 25-28$.
[2] S. Ali and N. A. Dar. On *-commuting mappings and derivations in rings with involution. Turk J Math, 40(4)(2016), 884-894.
[3] M. M. El-Sofy. Rings with some kinds of mappings. M. Sc. Thesis, Cairo University, Branch of Fayoum, Egypt, 2000.
[4] T. S. Erickson. The Lie structure in prime rings with involution. Journal of Algebra, 21(3)(1972), 523-534.
[5] I. N. Herstein. Topics in Ring Theory. The University of Chicago Press, Chicago, 1969.
[6] I. N. Herstein. Rings with Involution. The University of Chicago Press, Chicago, 1976.
[7] I. N. Herstein. A note on derivations, II. Canad. Math. Bull, 22(1979), 509-511.
[8] E. Koc and N. Rehman. Note on generalized derivation of *-prime ring. Miskolc Math. Notes, 15(1)(2014), 117-123.
[9] C. Lanski and S. Montgomery. Lie structure of prime rings with characteristic 2. Pacific J. Math., 42(1)(1972), 117-136.
[10] J. H. Mayne. Centralizing mappings of prime rings. Canad. Math. Bull., 27(1984), 122-126.
[11] A. A. Melaibari. On derivations and other kinds of mappings on rings. M. Sc Thesis, Mathematics department, King Abdulaziz University, Jeddah, Saudi Arabia, 2016.
[12] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite. Commutativity theorems in rings with involution. Communications in Algebra, 45(2)(2017), 698-708.

Receibed by editors 20.11.2017; Revised version 02.01.2019; Available online 14.01.2019.
Department of Mathematics, Tabuk University, Tabuk, Saudi Arabia
E-mail address: ealharfie@ut.edu.sa
Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
E-mail address: nmuthana@kau.edu.sa

[^0]: 2010 Mathematics Subject Classification. 11T99.
 Key words and phrases. Prime ring, homoderivation, commutativity.

