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HOMODERIVATION OF PRIME RINGS
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E.F. Alharfie and N.M. Muthana

ABSTRACT. Let R be a ring with involution *. An additive mapping h from
R into itself is called homoderivation if h(zy) = h(z)h(y) + h(z)y + zh(y)
for all ,y € R. In this paper we investigate the commutativity of a ring R
with involution * which admits a homoderivation satisfying certain algebraic
identities.

1. Introduction

Throughout this paper, R will represent a ring with center Z(R). For any
x,y € R the symbol [x,y] denote the commutator xy — yx; while the symbol x o y
will stand for the anti-commutator xy+yx. A ring R is a 2-torsion free if whenever
20 =0, z € R, implies z = 0. A ring R is called prime if aRb = 0, where a,b € R,
implies a = 0 or b = 0, and is called a semiprime ring in case aRa = 0 implies a = 0.
An additive mapping * : R — R is called an involution if % is an antihomomorphism
of order 2, that is, (a*)* = a, (a + b)* = a* + b*, (ab)* = b*a* for all a,b € R.
An element z in a ring R with involution is said to be hermitian if z* = z and
skew-hermitian if 2* = —z. The sets of all hermitian and skew-hermitian elements
of R will be denote by H(R) and S(R), respectively. The involution is said to be
of the first kind if Z(R) C H(R); otherwise it is said to be of the second kind.
In the later case, S(R) N Z(R) # (0). If char(R)#2, then R = S(R) + H(R) and
S(R) N H(R) = (0). Note that in this case  is normal, i.e. xz* = z*z, if and only
if S and A commute. If all elements in R are normal, then R is called a normal
ring. A mapping f : R — R is said to be #-centralizing on S if [f(x),z*] € Z(R)
for all z € S and f : R — R is said to be #-commuting on S if [f(z),z*] = 0
for all x € S. A derivation on R is an additive mapping d : R — R such that
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306 E.F. ALHARFIE AND N.M. MUTHANA

d(zy) = d(x)y + xd(y) for all z,y € R. El-Sofy [3] defined a homoderivation
on R as an additive map h on R such that h(zy) = h(z)h(y) + h(z)y + zh(y),
for all 2,y € R. For a positive integer n(z) > 1 such that f*(®)(z) = 0 for all
x € R, the mapping f : R — R is called a zero-power valued on R [3]. Over the
last few decades, several authors have describe the structure of additive mappings
that are x-commuting on a prime or semiprime ring with involution and study the
commutativity of rings with involution satisfying some algebraic conditions(see, [2],
[12]). In this paper, we study the commutativity of rings with involution admitting
a homoderivation satisfying some algebraic identities In [11], the authors proved
the commutativity of *-prime rings admitting homoderivations that commute with
* and satisfy some conditions on *-ideals.

2. preliminaries

In [8], for any z,y, z € R, the following identities of anticommutators are
obvious
e zo(yz) = (zoy)z—ylz,z] = y(xo2) +[z,y]z.
o (zy)oz=ua(yoz)—[rzy=(zoz)y+azly 2
An important results will be listed in this section.

LEMMA 2.1 ([10], Lemma 4). Let b and ab be elements in the center of a prime
ring R. If b is not zero, then a is in Z(R).

LEMMA 2.2 ([9], Lemma 2). Suppose 2R =0 and U is a commutative Lie ideal
of R. Then u? € Z(R) for allu € U.

LEMMA 2.3 ([1], Lemma 2.1). Let R be a prime ring with involution * such
that char(R) # 2. If S(R)N Z(R) # (0) and R is normal, then R is commutative.

LEMMA 2.4 ([12], Lemma 2.1 ). Let R be a prime ring with involution of the
second kind. Then * is centralizing if and only if R is commutative.

LEMMA 2.5 ([12], Lemma 2.2 ). Let R be a prime ring with involution of the
second kind. Then x ox* € Z(R) for all x € R if and only if R is commutative.

LEMMA 2.6 ([11], Lemma 2.3.1). Let R be a ring and let h be a zero power
valued homoderivation on R. Then h preserves Z(R).

LEMMA 2.7 ([11], Lemma 2.3.2). Let R be a prime ring, and h # 0 a homod-
erivation of R such that [h(z),h(y)] =0 for all x,y € R . If char(R)#2. R is
commutative .

LEMMA 2.8 ([3], Theorem 3.3.1). Let R be a prime ring with char(R) # 2 and
h # 0 be a homoderivation of R. An element a € R is such that ah(z) = h(x)a for
all x € R. Then a must be in Z(R).

LEMMA 2.9 ([3], Theorem 3.4.7). let R be a prime ring and I # 0 a two sided
ideal of R. If R admits a non-zero homoderivation h which is commuting and
zero-power valued on I. Then R is a commutative.
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LEMMA 2.10 ([8], Corollary 3.4.8). let R be a prime ring and I # 0 a two
sided ideal of R. If R admits a mon-zero homoderivation h which is centralizing
and zero-power valued on I. Then R is a commutative.

LEMMA 2.11 ([4], Lemma 1). Let R be any ring with involution = such that
R = S+ K. Then K2, the addition subgroup generated by all products kiks for
ki,ks € K, is a Lie ideal of R.
3. Main Result

LEMMA 3.1. Let (R, *) be a 2-torsion free prime ring with involution provided
with a homoderivation h. If h(t) = 0 for allt € H(R) N Z(R), then h(z) = 0 for
all z € Z(R).

PrOOF. If t = 0, then h(t) = 0. Assume that ¢ # 0, and
(3.1) h(t) =0 for all t € H(R)N Z(R).
Then replacing t by tk* € H(R) N Z(R) where k € S(R) N Z(R) and applying (3.1)
we get

0 = h(tk?) = h(t)h(k?) + th(k?) + h(t)k>.
0 = th(k?).

Now replace k by s + r such that 0 # s,r € S(R) N Z(R)

th((s +7)%) = th(s® 4 2sr + 1) = th(s?) 4 2th(sr) + th(r?) = 2th(sr) = 0.

2th(sr) = 0.
Since R is 2-torsion free, so
th(sr) =0.
th(s)h(r) + tsh(r) + th(s)r = 0.
tsh(r) =0

Since the center of a prime ring is free zero divisors this assures that h(r) = 0 for
all r € S(R) N Z(R). Since each element z € Z(R) can be uniquely represented in
the form 2z = g + k where g € H(R) N Z(R) and k € S(R) N Z(R)then,

2h(z) = h(2z) = h(g + k) = h(g) + h(k) = 0.
Since char(R) #2 , so h(z) =0 for all z € Z(R). O

THEOREM 3.1. Let R be a 2-torsion free prime ring with involution x of the
second kind. Let h be a homoderivation of R such that [h(x), h(z*)] = 0 for all
x € R, then R is commutative.

PROOF. By the assumption, we have
(3.2) [h(z),h(z*)] =0 for all z € R.
By lineralization (3.2) yields that
(3.3) [h(x), h(y™)] + [h(y), h(z")] =0 for all x,y € R.
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Replacing y by zz* in (3.3),
0 = [h(z),h((z27)")] + [A(zz"), h(z")].
= [h(2), h(zz")] + [A(zz"), h(z7)].
= [(®), h(@)h(z")] + [h(z), zh(z")] + [h(z), h(z)2"] + [h(z)h(z7), h(z")]
+ [zh(z”), h(z")] + [h(z)2”, h(z7)].
= ( )h(x), h(z)] + [h(z), h(x)]h(z") + z[h(z), h(2)] + [A(z), z]h(z7)
+ h(z)[h(z), 7] + [h(x), h(z)]z" + h(z)[A(z"), h(z")] + [A(z), h(z7)]h(z")
+ a[h(z®), h(z")] + [z, h(z")|h(z") + h(z)[z", h(z")] + [A(2), h(z")]z
(34) 0= [h(x),z]h(z") + h(z)[h(x), 2] + [x, h(z")|h(z") + h(z)[z", h(z")]

Replacing x by x + t, where t € H(R) N Z(R), we obtain
0=[h(z+1t),z+tlh(z* +1t)+ h(z+t)[h(z+ 1), 2% + ]|+ [z + ¢ h(z" +1)]h(z* +7)
+h(x +t)[z" +t, h(z™ +1))].
), alh(z®) + [h(x), z]h(t) + [h(2), t]h(z") + [h(z), tA(E) + [A(2), t]h(27)
t) + [h(t), ]h(2") + [n(t )
t]+ h(z)[h(t), "] +
1+ h(x )[a: h(z™)] +
h

By using (3.4) we get

0 = h(t)([n(z), 2] + [A(x), "] + [27, h(2")] + [2, h(z7)]).
for all t € H(R) N Z(R) and z € R. Since the center of a prime ring is free from
zero divisors we get either h(t) = 0 for all t € H(R)NZ(R) or [h(x), x]+ [h(z), z*]+
[z*, h(z*)] + [z, h(2*)] = 0 for all z € R. Suppose

(3.5) h(t)=0 forall te€ H(R)NZ(R).
By lemma 3.1 we get
(3.6) h(z) =0 for all z € Z(R).

Replacing y by ky in (3.3), where k € S(R) N Z(R) and using (3.6), we get
[h(x), h((ky)")] + [h(ky), h(z")] = 0 for all z,y € R.
[h(z), h(y*k*)] + [h(ky), h(z*)] =0 for all z,y € R.

(), hy" (k)] + [h(ky), h(@*)] = 0 for all z,y € R,
—[h(@), h((y)" k)] + [h(ky), h(2")] = 0 for all z,y € R.
—[h(2), h(y"Yh(k)] ~[h(z).y

“h(k)]=[h(x), h(y*)K]+[R(k)h(y), h(z™)]+[kh(y), h(z")]
(K)y,h(xz*)] =0 for all x,y € R.

h(x), h(y")Ih(k) =y [h(x), h(k)] = [A(x), y"[h(k) = h(y") [A(z), K]
—[h(x), h(y* )] h(k)[A(y), h(z*)] + [h(k), h(z")]h(y) + k[A(y), h(z")]

+[h
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+[k, h(z")]h(y) + h(k)[y, h(z")]
+[h(k),h(z*)]y =0 for all z,y € R.
k(=[h(z), h(y")] + [A(y), h(z7)]) = O

for all k € S(R) N Z(R) and x,y € R. Using the primeness of R and the fact that
S(R)N Z(R) # (0), we get
(3.7) —[h(x), h(y")] + [P(y), h(z")] = 0 for all 2,y € R.
for all x,y € R. On comparing (3.3) and (3.7), we obtain 2[h(z), h(y*)] = 0 Replac-
ing y by y* and using the fact that char(R) # 2, we conclude that [h(z),h(y)] =0
for all z,y € R. Therefore, by Lemma 2.7, we get that R is commutative.
Now we consider the case
(3.8) [h(z),z] + [h(z),z*] + [z, h(z")] + [z, h(z™)] = 0 for all = € R.
Replacing « by t + k , where t € H(R) and k € S(R) ,
(R(t+k), t+ k] -+ [h(t+E), (t4+E) ]+ [(E+E)" h((t+K)")] +[t+k, h((t+E)"))] = 0.
[h(t), 8]+ [1(t), k] + [A(k), ] + [P(k), k] + [B(2), ] + [h(2), k7] + [A(F), ] + [A(k), k]
H[E ()] 187, R(ED)] + [R5, R(8)] + (K7, h(E™)] + [t h(E7)] + [t h(E™)] + [k, h(t7)]
+[k, h(E™)]
[h(t), t]+[R(t), ]+ [, R(E)]+ [, R(t7)]+[R(R), K]+ [R(k), "]+ k", h(E")]+ [k, h(k")]

+[h(t), k] + [R(k), t] + [1(t), k™) + [R(k), *] + [£7, R(K")] + [K, R(E7)] + [¢, h(E")]
+[k, h(t*)] = 0.

+[h(t), k] + 2[h(k), t] — [A(t), k] 4 [h(k), t] — [k, h(t)] + [n(K),t] + [k, h(t")] = O
for all x € R. By (3.8), we get 4[h(k),t] = 0. Since char(R) # 2, we obtain
(3.9) [h(k),t] =0 for all t € H(R) and k € S(R).

’

Replacing t by kok', where ko € S(R) and k' € S(R) N Z(R) , we arrive at

([h(k),ko])k = 0. Using the primeness of R and since S(R) N Z(R) # (0), we

get

(3.10) [h(k), ko] =0 for all k,ko € S(R).

Since char(R) # 2, every © € R can be represented as 2z = ¢ + k, where ¢t €

H(R),k € S(R), so in equations (3.9) and (3.10),

[h(k),2z] = [h(k),t + k] = [h(k),t] + [h(k),k] =0 for all k € S(R) z € R.

2[h(k),z] =0 for all k€ S(R) z € R.

Since char(R) # 2 we conclude that

(3.11) [h(k),z] =0 for all k€ S(R) z € R.

That is h(k) € Z(R) for all k € S(R) . Assume that h(S(R)) = (0), so (h(z—2z*)) =
0 for all z € R. That is h(z) = h(z*) for all x € R. Now for k € S(R) and z € R,
we have 0 = h(kz + 2*k) = h(k)h(z) + kh(z) + h(k)z + h(z*)h(k) + =*h(k) +
h(z*)k = kh(z) + h(z*)k = kh(z) + h(z)k for all x € R. This further implies
that k%h(z) = h(z)k? for all z € R. Thus, by the Lemma 2.8, we conclude that
k? € Z(R) for all k € Z(R) . Since S(R) N Z(R) # (0), let 0 # ko € S(R) N Z(R)

)
=0.
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and k be an arbitrary element of S(R). Then (k + ko)? = k? + k& + 2kko € Z(R)
hence 2kkqg € Z(R). Since char(R) # 2, we get kko € Z(R) for all k € S(R) and
ko € S(R) N Z(R) implies that k € Z(R) for all k € S(R) R is normal. Thus, R is
commutative by Lemma 2.3.
Now suppose h(S(R)) # (0). For ko € S(R) with h(ko) # 0 and k €
[S(R),S(R)] , we have
h(kkok) € Z(R)
h(k)h(kok) + h(k)kok + kh(kok) € Z(R)
h(k)h(ko)h(k) + h(k)koh(k) + h(k)h(ko)k + h(k)kok + kh(ko)h(k) + kkoh(k)
+kh(ko)k € Z(R)
Since h([S(R),S(R)]) =0
k*h(ko) € Z(R)
Thus, by the Lemma 2.8, we conclude that k? € Z(R) for all k € Z(R) . Since
S(R)NZ(R) # (0), let 0 # ko € S(R) N Z(R) and let k be an arbitrary element
of S(R). Then (k + ko)? = k? + ki + 2kko € Z(R) and hence 2kky € Z(R). Since
char(R) # 2, we get kko € Z(R) for all k € S(R) and ko € S(R) N Z(R) . This
further implies that k£ € Z(R) for all k € S(R) . That is, [S(R), S(R)] C Z(R).
Suppose [S(R),S(R)] # (0) and let k,ky € S(R) such that[k, ko] # 0. Since
kkok € S(R), we have

[k, kkok] = [k, k]kok + K[k, kolk + kko[k, k] = K[k, ko] € Z(R).

This implies that k¥ € Z(R) for all k € S(R). Therefore, R is commutative by
Lemma 2.3.

Now suppose [S(R),S(R)] = (0). Since by lemma 2.11 S(R)? is a Lie ideal
and a commutative subring of R, by lemma 2.2, k? € Z(R) for all k € S(R) and
hence k € Z(R) for all k € S(R). Thus, R is normal . Hence R is commutative by
Lemma 2.3. g

THEOREM 3.2. Let R be a 2-torsion free prime ring with involution * of the
second kind. Let h be a homoderivation which is zero-power valued on R, then the
following are equivalent:

(i) h(z)oh(z*) —zoa* € Z(R) for all x € R.
(ii) h(z)oh(z*)+xox* € Z(R) for all z € R.

(i4i) R is commutative.

Moreover, if h # 0 and h(x) o h(z*) € Z(R) for all x € R, implies that R is
commutative.

PROOF. It is clear that (iii) implies both of (i) and (ii). So, we need to prove
that (i) = (iii) and (ii) = (iii).

If h =0 we get zoa* € Z(R) for all x € R. Using Lemma 2.5 we conclude
that R is commutative. Assume that h # 0.

We have:

(3.12) h(z)oh(x*™) —xzox™ € Z(R) for all z € R.
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Replacing « by « + y and applying (3.12), we get
(3.13)  h(z)oh(y*)+h(y)oh(x™) —zoy™ —yoa™ € Z(R) for all z,y € R.
Replacing y by yd where d € Z(R) N H(R), and using (3.13) yields

h(z) o h((yd)") + h(yd) o h(z") — z o ((yd)") — (yd) o 2™ € Z(R).

h(z) o h(dy*) + h(yd) o h(x*) — z o (dy*) — (yd) o x* € Z(R).
(@)o(h(d)h(y"))+h(z)o(dh(y®)+h(z)o(h(d)y")+(h(y)h(d))oh(z")+(yh(d))oh(x")
+(h(y)d) o h(z") —d(z o y®) — [z,d]y" — (y o x")d — yld, 2"] € Z(R).

h(d)(h(x) o h(y)) + [h(x), h(d)]h(y") + d(h(z) o h(y") + [A(x), d]h(y")
+h(d)(h(z) o y*) + [h(x), M(d)]y" + (h(y) o h(x™))h(d) + h(y)[h(d), h(z")]
+(y o h(z")h(d) + y[h(d), h(z")] + (h(y) o h(z7))d + h(y)[d, h(z")]
—d(zoy®) = [z,dly" — (yoa™)d — y[d,z*] € Z(R).
[h(x) o h(y™) + h(y) o h(z*) =z oy™ —yox™,rld+ [h(z) o (y* + h(y"))
+(y + h(y)) o h(z"),rh(d) = 0
for all z,y € R.
(3.14)  [h(z) o (y* + h(y*)) + (y + h(y)) o h(z*),r]h(d) = 0 for all x,y € R.
Since h is zero-power valued on R, we get
[h(z) oy™ +yoh(z*),r]h(d) =0 for all z,y,r € R.
thus,
(3.15) [h(z) oy™ +yoh(z*),r]Rh(d) =0 for all z,y,r € R.

Since R is prime, so, either h(d) =0 or [h(x) o y* +y o h(z*),r] = 0.
If h(d) =0 for all d € Z(R) N H(R), by Lemma 3.1, we have that

(3.16) h(z) =0 for all z € Z(R).
Replacing y by yz in (3.13) where z € Z(R)
h(z) o h(2"y") + h(yz) o h(z") + (yz) o 2" + w0 (2"y") € Z(R).
h(z) o (h(z")h(y")) + h(z) o (z"h(y")) + h(z) o (A(z")y") + (h(y)h(2)) o h(z")
+(yh(2)) o h(z") + (h(y)z) o h(z") + (y o ")z + yla™, 2]+
Z(xoy”) + [z, 2"]y" € Z(R).
[h(x), h(z")|h(y") + 2" (h(x) © h(y")) + [A(z), 2" ] (y")
+h(z")(h(z) o y*) + [h(x), h(z")]y" + (A(y) o h(z"))h(2) + h(y)[h(2), h(z")]+
(y o h(z"))h(z) + y[h(2), h(z")] + (h(y) o h(x))z + h(y)[z, h(z")]
(you®)z+yla™, 2]+ 2 (woy") + [, 2"]y" € Z(R).
[h(z)oh(y) —zoy,r](z* —2) =0.
So that
(3.17) [M(z)oh(y) —zoy,r|R(z" —2) =0 for all r,z,y € R.
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By the primeness of R, either [h(z) o h(y) — 2z oy,r] =0 or z* — z = 0 . Since the
involution is of the second kind so z* — z # 0. Thus, [h(x) o h(y) —xoy,r] =0 for
all m,z,y € R, that is,

(3.18) h(z)oh(y) —xoy € Z(R) for all z,y € R.

Taking y € Z(R)\{0} and using (3.16), we have zy € Z(R) for all x € R,
y € Z(R). By Lemma 2.1, we have € Z(R) for all z € R. Hence, R is commuta-
tive.

Now suppose that

(3.19) [h(z)oy™ +yoh(z*),r] =0 for all r,z,y € R.
Replacing y by yz where z € Z(R) in (3.19) , we get
[h(x) o (y2)* + (yz) o h(z™),r] = 0.
[h(z) o ("y") + (yz) o h(z")
[z"(h(x) o y™), ] + [[M(x), 2" Jy™, 7] + [(y o Az

,r] = 0.
))Z,T] [ [z, h(z*],r] = 0.

(2" (h(z) o ),7‘] [(y o h(z"))z,7] =
—[z"(y" o h(@)),r] + [(y o h(z7))z,7] =
—[2"(y"h(z) + h(2)y"), r] + [(yh(z") + h(2z")y )Z r] = 0.
Using (3.19), we get
(3.20) [P(x)y + yh(z),r|R(z — 2*) =0 for all r,z,y € Rand z € Z(R).
Since R is prime and the involution is of the second kind, so, (3.20) implies
(3.21) [R(x)y,r] + [yh(z),r] =0 for all r,z,y € R.

Substituting yr for y and using (3.21), we find that
[h(z)yr,r] + [yrh(x),r] = 0.

[h(z)y,r]r +yr[h(z),r] + [y, rIrh(z) =
—[yh(z), rlr + yr[h(x),r] + [y, r]rh(z) = 0.
—y[h(z),r]r — [y, r]h(2)r +yr(h(x), r] + [y, r]rh(z) =

]
ly, r](rh(z) — h(z)r) + y(r[h(z), 7] — [A(z),r]r) = 0.
yl[h(z),r],r] = [y, r][h(z),r] =0 for all r,z,y € R

(3.22) [y[h(z),r],7] =0 for all r,z,y € R.
Replacing y by ty where t € R, yields
[ty[h(x), 7], 7] = 0.
tyl[h(x), r],r] + tly, r][h(x), r] + [t rly[(x), 7] = 0.
t(ylh(x), r],r] + [y, rl[h(x), r]) + [t rly[(z), 7] = 0.
tlylh(x), r], vl + [t, rly[h(z), ] = 0

[t,r]y[h(x),r] =0 for all r,z,y € R.
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Since R is prime, either [t,r] = 0 or [h(z),2z] = 0 for all x € R. By Lemma 2.9 R
is commutative.
(ii)=-(iii) Suppose that,

(3.23) h(z)oh(z*)+xoz™ € Z(R) for all z € R.
Replacing x by x + y and using (3.23), we find that
(3.24)  h(z)oh(y")+h(y)oh(z*)+yox"+zoy” € Z(R) forall z,y € R.
Replacing y by yd where d € Z(R) N H(R) and using (3.24), we obtain
h(z) o h(d*y*) + h(yd) o h(z™) + (yd) o ™ + z o (d*y*) € Z(R).

Since d € Z(R) N H(R)

h(z) o h(dy") + h(yd) o
h(z) o (h(d)h(y*)) + h(z) o (dh

h(z*) + (yd) o x™ + x o (dy*) € Z(R).
) o (dh(
h(y)

)+
y*)) + h(z) o (h(d)y™) + (h(y)h(d))
)

+(yh(d)) o h(z") + (h(y)d) o h(z") + (yd) o =™ + w0 (dy”) € (R)
h(d)(h(x) o h(y®)) + [A(x), h(d)]h(y") + d(h(z) © h(y")) + [A(z), d]h(y")
+h(d)(h(zx) o y") + [h(z), h(d)]y™ + (h(y) o h(z"))h(d) + h(y)[R(d), h(z")]

+(yoh(z"))h(d)+ [ (d), h(z")]+(h(y) o h(a™))d+R(y)[d, h(z")]+ (yoz™)d+yld, =]

(
h(x
+d(zoy®) + [z,dly" € Z(R).
[h(z) o h(y*) + h(z) oy T]h(d) [h(y) o h(z") +y o h(z"),r]h(d)
+[h(z) o h(y™) + h(y) o h(z™) + yoa™ + zoy*,r]d = 0.
(3.25)  [h(z)o (h(y*) +y*) + (y + h(y)) o h(z*),r|h(d) = 0 for all z,y,r € R.
Since h is zero-power valued on R, we have
(3.26) [h(z) oy™ +yoh(z™),r]Rh(d) =0 for all z,y,r € R.
Since R is prime, either h(d) = 0 or [h(z) o y* +y o h(z*),r] = 0.
If h(d) =0 for all d € Z(R) N H(R) by Lemma 3.1, we have that
(3.27) h(z) =0 for all z € Z(R).
Replacing y by yz in (3.24) where z € Z(R)
h(z) o h(2"y") + h(yz) o h(z") + (yz) o 2™ + w0 (2"y") € Z(R).
h(z) o (h(z")h(y")) + h(z) o (z"h(y")) + h(z) o (A(z")y") + (h(y)h(2)) o h(z")
+(yh(2)) o h(z*) + (h(y)z) o h(z") + (y 0 %)z + y[z", 2]+
2 (xoy”)+ [z, 2%|y" € Z(R).
h(z")(h(x) o h(y")) + [h(z), [h(y™) + 2" (h(x) o h(y")) + [A(x), 2" ]h(y")
+h(z")(h(z) o y*) + [h(x), h(z")ly" + (A(y) o h(z"))h(2) + h(y)[h(2), h(z")]+
(yoh(x )) (2) + ylh(2), h(z™)] + (h(y) o h(z7))z + h(y)[z, h(z")]
(yox™)z+yla™, 2]+ 2" (xoy®) + [z, 2"|y" € Z(R).
[h(z)oh(y) —zoy,r](z* —2) =0.

y
h(z")

So that
(3.28) [M(z)oh(y) —zoy,r|R(z" —2) =0 for all r,z,y € R.
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By the primeness of R, either [h(z) o h(y) — 2z oy,r] =0 or z* — z = 0 . Since the
involution is of the second kind ,s0 z* — z # 0. Then [h(z) o h(y) —x oy, r] = 0 for
all r € R, that is

(3.29) h(z)oh(y) —xoy € Z(R) for all r,x,y € R.

Taking y € Z(R)\{0} and using (3.27), we have zy € Z(R) for all x € R,

y € Z(R). By Lemma 2.1, we have 2 € Z(R) for all z € R. Hence, R is commuta-
tive.

Now suppose that

(3.30) [h(z) oy™ +yoh(z*),r] =0 for all r,z,y € R.

Replacing y by yz where z € Z(R) in (3.30) , we get

[h(z) o (y2)" + (yz) © h(z™),r] = 0.

[h(x) o (2"y") + (yz) o h(z"),r] = 0.
[z"(h(x) o y™), 7] + [[M(x), 2" ]y", ] + [(y o h(2")) 2, 7] + [ [z, h(z"], 7] = 0.
[2"(h(x) o y™), 7] + [(y o h(z7))z, 7] =
—z(* Oh( ) rl+ [y o h(z?))z, 7] =
="y h(x) + h(x)y®), r] + [(yh(z") + h(x*))zr]—()
Replace z* by x and y* by y we get
(3.31) [h(z)y + yh(z),r|R(z — 2*) =0 for all r,z,y € Rand z € Z(R).
Since R is prime and the involution is of the second kind, so (3.31) implies
(3.32) [h(x)y,r] + [yh(z),r] =0 for all r,z,y € R.

Substituting yr for y and using (3.32), we find that
[h(z)yr,r] + [yrh(x),r] = 0.

y,rlr +yrih(z),r] + [y, r]rh(z) =
z),rlr + yrih(z),r] + [y, rlrh(z) =

[h(x

—[yh

—ylh(z),r]r — [y, rlh(z)r + yrh(z), 7] + [y, r]rh(z) = 0.
[y, r](rh(z) — h(z)r) + y(r[h(z), 7] = [h(z),r]r) = 0.
yl[h(z),r],r] = [y, r][h(z),r] =0 for all r,z,y € R

)
(

(3.33) [y[h(z),r],r] =0 for all r,z,y € R.
Replacing y by ty where t € R, yields
[ty[h(z), 7], r] =
tyl[h(x), r], vl + tly, r][h(z), r] + [ﬂ“}y[h(x)ﬂ”] =0
ty[h(x), vl ] + [y, rllh(x), r]) + [t rly[h(z), r] = 0.
tlylh(x), r],r] + [t, rly[h(z), r] = 0.
[t,r]y[h(x),r] =0 for all r,z,y € R.

Since R is prime, either [t,7] = 0 or [h(z),z] =0 for all z € R. By lemma 2.9 R is
commutative.
O
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COROLLARY 3.1. Let R be a 2-torsion free prime ring with involution x of the
second kind. Let h be a homoderivation which is zero-power valued on R, then the
following are equivalent:

(i) h(z)oh(y) —zoy € Z(R) for all z,y € R.
(ii) h(z)oh(y) +x oy € Z(R) for all z,y € R

(i1i) R is commutative.

Moreover, if h # 0 and h(z) o h(y) € Z(R) for all z,y € R, implies that R is

commutative.

In [12], Theorem 3.7, the authors proved that if R is a 2-torsion free prime ring
with involution of the second kind, and d be a non-zero derivation on R. Then R is
commutative if and only if h(z) o z* € Z(R) for all x € R which is also equivalent
to h is x-centralizing on R. Applying theses conditions on homoderivation, we get
the following theorem.

THEOREM 3.3. Let (R, *) be a 2-torsion free prime ring with involution of the
second kind, and h be a non-zero homoderivation which is zero-power valued on R.
Then the following are equivalent:

(i) h is x-centralizing on R.
(i) h(z)ox* € Z(R) for all x € R..

(i1i) R is commutative.

PROOF. It is obvious that (iii) implies both of (i) and (ii). Now, to prove that
(1) = (i%9) suppose that

(3.34) [h(x),2*] € Z(R) for all x € R.
Replacing by = + y and using (3.34), we find that
(3.35) [h(z),y*] + [h(y),z"] € Z(R) for all z,y € R.

Replacing y by yd, where d € Z(R) N H(R), yields
[h(z),d*y*] + [h(yd),z*] € Z(R) for all z,y € R.
[h(z),dy*] + [h(yd),z*] € Z(R) for all z,y € R.
d[h(x),y"] + [h(x), dly" + [h(y)h(d), z*] + [yh(d), "] + [h(y)d, ="] € Z(R)
for all z,y € R.
d[h(z),y"] + [h(2), dly” + h(y)[h(d), 27| + [h(y), z"]h(d) + y[h(d), 2] + [y, z"]h(d)
+h(y)[d, z*] + [h(y),z*]d € Z(R) for all x,y € R.

(3.36)
[h(x),y*]d + [y, x*|h(d) + [h(y),z"|d + [h(y),2*]h(d) € Z(R) for all z,y € R.

The relation (3.35), (3.36) reduces to
[y, z*|h(d) + [h(y),z*]h(d) € Z(R) for all z,y € R.
[y + h(y),z*]h(d) € Z(R) for all z,y € R.
Since h is zero-power valued on R, we have
(3.37) [y, z*1h(d) € Z(R) for all z,y € R.
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Hence [[y, z]h(d),r] =0, for all € R, so
[y, z"][h(d), 7] + [ly, 2], r]h(d) = O
Since h(Z(R)) C Z(R), so h(d) € Z(R) and
[ly, z*],r]h(d) = 0.

Replace r by rt for all r,t € R, we have

[ly, z*],r]th(d) = 0 for all r t,z,y € R.
thus,
(3.38) [ly,z*],7]Rh(d) =0 for all r,z,y € R.

By the primeness of R, we get h(d) = 0 or [[y,z*],r] = 0. If h(d) = 0, for all
d € Z(R) N H(R), by lemma 3.1, we conclude that

(3.39) h(z) =0 for all z € Z(R).
Substituting yz for y where z € Z(R) in (3.35), we get
[h(z), (y2)*] + [h(yz),z*] € Z(R) for all z,y € R.
[h(x), 2"y"] + [h(y)h(2), 27| + [yh(z), 27| + [h(y)z,2"] € Z(R) for all z,y € R.
2 [x), y ]+ (M), 2" y" + h(y)[h(z), 27] + [h(y), 2" ]h(2) + y[h(2), 27] + [y, 2" ]h(2)
+h(y)[z, "] + [h(y), z*]z € Z(R) for all z,y € R.

2 [h(x), y*] + [h(y), " h(2) + [y, *|h(2) + [h(y),z*]z € Z(R) for all z,y € R.
(3.40) [h(z),y"]z" + [h(y), z¥]z € Z(R) for all z,y € R.
From (3.35) , we have

[[h(z),y*],r] + [[h(y),z*],r] =0 for all r,z,y € R.

(3.41) inoh10[[h(y), z*],r] = —[[h(x),y"],r] for all r,z,y € R.
Using (3.35), (3.40) yields
[h(x),y*])2*,r] + [[h(y), 2*]z,7] = 0 for all r,z,y € R.

[[A(z), y [l

[[h(x),y*], r]z" + [[h(y),z*],r]z =0 for all r,z,y € R.

[[h(zx),y*],r]z" — [[h(x),y*],r]z =0 for all r,z,y € R.
[[h(z),y*],r](z* — 2) =0 for all r,z,y € R.

Replacing y* by y , so

(3.42) [[h(z),y],7](z" —2) =0 for all r,z,y € R.

Since R is prime ring, either [[h(z),y],r] = 0 or z* — z = 0 Since the involution is
of the second kind we have z* — z # 0 , then

(3.43) [[h(x),y],r] =0 for all r,x,y € R.
That is, [A(x),z] € Z(R) for all x € R, thus, h is centralizing. By lemma 2.10 R is

commutative.
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If [[y, z], 7] = 0, then [z,2*] € Z(R) for all x € R. By Lemma 2.4 R is commutative.
To prove that (ii)= (iii). By hypothesis, we have

(3.44) h(z)ox* € Z(R) for all = € R.
Replacing x by x + y and using (3.44), we obtain
(3.45) h(z)oy* + h(y)ox™ € Z(R) for all z,y € R.
Accordingly, we get
(3.46) [h(z)oy*,r] + [h(y) oz*,r] =0 for all r,z,y € R.
Replacing y by yd, where d € Z(R) N H(R), and using (3.46), we obtain
[h(x) o (d"y"), 7] + [P(yd) o 7, 7] = 0.
[h(x) o (dy"),r] + [(h(y)h(d) o =™, ] + [(yh(d) o z™, ] + [(h(y)d) o 2™, 7
[d(h(z) o y"), 7] + [[A(2), dly™), r] + [(k(y) o 2¥)h(d), r] + [h(y)[z" h(d J,7]
z")h(d),r] + [y[h(d), ], 7] + [(h(y) o 2¥)d, ] + [h(y)[d
d[h(z) o y*,r] + [A(y) o 2", r]h(d) + [y o ", 7]h(d) + [h(y) o 27, 7]d = 0.
Using (3.46) we get
(3.47) [(h(y) +y) ocz*,r]h(d) =0 for all r,z,y € R.
Since h is zero-power valued on R, we get
(3.48) [yoz™,r|h(d) =0 for all r,z,y € R.
And thus
(3.49) [yox,r]Rh(d) =0 for all r,z,y € R.

Since R is a prime, so either [y o z,7] = 0 or h(d) = 0 Assume h(d) = 0, for all
d € Z(R) N H(R). Using Lemma 3.1, we conclude that

(3.50) h(z) =0 for all z € Z(R).
Replacing y by z in (3.46), we obtain
[h(z) o z*, 7]+ [h(2) ox™, 7] = 0.
)21+ hla)r) =0
2[h(2)=", 1) =
[h(z)z",r] = 0.
[h(z),r]z" =0 for all r,z € Rand z € Z(R).
(3.51) So; [h(z),r]z =0 for all r,x € Rand z € Z(R).
Taking r = z and using the primeness of R, (3.51) yields
(3.52) [A(z),z] =0 for all x € R.

By Lemma 2.9, we conclude that R is commutative.
If [yox,r] =0 for all 7,2,y € R, then replacing y by z where z € Z(R)\{0},

[zox,r] =0.

[z + xz,7] = 0.
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[zz,7] + [x2,7] = 0.
z[z,r] + [x,r]z = 0.
2[xz,r]z =0 for all r,x € R,z € Z(R).
Since R is 2-torsion free, we get [z,7]z = 0 for all 7,z € Rand z € Z(R)\{0}. Using
the primeness of R, we get [z,r] = 0 for all r,z € R that gives the commutativity
of R. (]

ExaMPLE 3.1. Let R = ( Z Z ) | a,b,c,d € Z p. The set R with matrix

addition and multiplication is a prime ring . Let A : R — R be a zero homoderiva-
tion on R and * : R — R is a mapping defined as < Z Z = _dc _ab ) . Then
* is an involution of the first kind since z* = z for all x € Z(R) and Z(R) C H(R).
Now, (h(z)oh(z*))+ (zox™) € Z(R) for all z € R Hence, the zero homoderivation
satisfies the conditions of Theorem 3.2 but R is a not commutative. Hence the

hypothesis of the second kind of involution is crucial in Theorem 3.2
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