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ON HOMODERIVATIONS

AND COMMUTATIVITY OF RINGS

E. F. Al harfie and N. M. Muthana

Abstract. Let R be a ring admits a homoderivation h, Z(R) is the center of
R, and I be a nonzero left ideal. In this paper, we proved the commutativity
of the ring R if h(xy)− xy ∈ Z(R) and h(xy) + xy ∈ Z(R) for all x, y ∈ I.

1. Introduction

Let R be a ring with a center Z(R) . The ring R is called a prime if aRb = 0
either a = 0 or b = 0 for all a, b ∈ R and is called semiprime ring if aRa = 0
then a = 0 for all a ∈ R. For any x, y ∈ R the symbol [x, y] will denote the
commutator xy − yx. An element a ∈ R is called nilpotent if there exist a positive
integer n such that an = 0. A prime ring is obviously semiprime and the center of
a semiprime ring contains no nonzero nilpotent elements. A mapping f : R → R
is said to be centralizing on R if [f(x), x] ∈ Z(R) for all x ∈ R and is said to be
commuting on R if [f(x), x] = 0 for all x ∈ R. A derivation on R is an additive
mapping d : R → R such that d(xy) = d(x)y + xd(y) for all x, y ∈ R. El-Sofy
[4] defined a homderivation on R as an additive map h from R into itself satisfies
h(xy) = h(x)h(y) + h(x)y + xh(y) for all x, y ∈ R. For a positive integer n(x) > 1
in such that fn(x)(x) = 0, then a map f : R → R is called zero-power valued
for all x ∈ R [4].

2. Centralizing Homoderivations.

Bell and W. S. Martindale [2] studied the commutativity of rings admitting
centralizing derivation. Our purpose in this section is to prove the commutativity
of the rings with centralizing homoderivations.
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Lemma 2.1 ([6], Lemma 4). Let b and ab be in the center of a prime ring R.
If b ̸= 0, then a is in Z(R).

Lemma 2.2. Let I be a nonzero left ideal of a prime ring R and h be a nonzero
homoderivation on R, then h is a nonzero on I.

Proof. If h(x) = 0 for all x ∈ I , then h(rx) = 0 and r ∈ R, it follows that
h(r)x = 0 for all r ∈ R , x ∈ I. Hence h(R)I = 0 , since R is a prime ring and
I ̸= 0, then h(R) = 0 is a contradiction, so h is a nonzero mapping on I. �

El-Sofy [4] proved that a prime ring R of char(R) ̸= 2, I a nonzero right ideal
of R and h be a nonzero homoderivation on R such that [x, d(x)] ∈ Z(R) for all
x ∈ I, then h is commuting on I. Using other technique of proof, we proved the
result for left ideal.

Theorem 2.1. Let R be a semiprime ring of characteristics not 2, I be a
nonzero left ideal of R and h be a nonzero homoderivation on R such that h is
centralizing. Then h is commuting on I.

Proof. Let x ∈ I. Then [x2, h(x2)] ∈ Z(R) by hypothesis. Now

[x2, h(x2)] = [x2, h(x)h(x) + xh(x) + h(x)x]

= [x2, h(x)h(x) + 2xh(x)− [x, h(x)]]

= [x2, h(x)h(x) + 2xh(x)] + [x2,−[x, h(x)]]

= [x2, h(x)h(x) + 2xh(x)]

= [x2, h(x)h(x)] + [x2, 2xh(x)]

= x[x, h(x)h(x)] + [x, h(x)h(x)]x+ x[x, 2xh(x)] + [x, 2xh(x)]x

= xh(x)[x, h(x)] + x[x, h(x)]h(x) + h(x)[x, h(x)]x+ [x, h(x)]h(x)x

+ 2x2[x, h(x)] + 2x[x, h(x)]x

= 2xh(x)[x, h(x)] + 2h(x)x[x, h(x)] + 4x2[x, h(x)]

= 2x(x+ h(x))[x, h(x)] + 2(h(x) + x)x[x, h(x)]

= (2x(x+ h(x)) + 2(h(x) + x)x)[x, h(x)] ∈ Z(R)

= 2(2x2 + h(x)x+ xh(x))[x, h(x)] ∈ Z(R)

By lemma 2.1 , if [x, h(x)] ̸= 0, then

2(2x2 + h(x)x+ xh(x)) ∈ Z(R)

So 2[2x2 + h(x)x+ xh(x), x] = 0

Since char(R) ̸= 2
[2x2 + h(x)x+ xh(x), x] = 0

[h(x)x, x] + [xh(x), x] = 0

2x[h(x), x] = 0

x[h(x), x] = 0

x[h(x), x]2 = 0

[x, h(x)]3 = 0
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Since the center of a semiprime ring contains no nonzero nilpotent elements, so

[x, h(x)] = 0 for all x ∈ I.

So, h is commuting. �

Corollary 2.1. Let R be a prime ring of characteristics not 2, I be a nonzero
left ideal of R and h be a nonzero homoderivation on R such that h is centralizing.
Then h is commuting on I.

Corollary 2.2 ([4], Corollary 3.4.8). Let R be a prime ring of characteristic
not 2 and I a two sided ideal of R. If R admits a nonzero homoderivation h which
is centralizing and zero-power valued on I, then R is commutative.

3. Commutative of Prime Ring

Ashraf and Nadeem Ur-Rehman [1] proved the commutativity of prime ring
R admitting a derivation d that satisfies any one of the properties d(xy) − xy ∈
Z(R) and d(xy) + xy ∈ Z(R), for all x, y in nonzero ideal I. Our purpose in this
section is to prove a similar result regarding homoderivations.

Lemma 3.1. ([6], Lemma 3) If a prime ring R contains a commutative nonzero
right ideal,then R is commutative.

Theorem 3.1. Let R be a prime ring and I be a nonzero ideal of R. If R admits
a homderivation h which is zero-power valued on I such that h(xy) − xy ∈ Z(R),
for all x, y ∈ I, then R is commutative.

Proof. We have, h(xy)−xy ∈ Z(R) for all x, y ∈ I. If h = 0, then xy ∈ Z(R).
Then, [xy, x] = 0 for all x, y ∈ I, so, x[y, x] = 0. Replace y by yz where z ∈ R,
we have xy[z, x] = 0 for all x, y ∈ I. Then xRI[z, x] = 0 for all x, z ∈ I. Since R
is a prime ring and I ̸= 0 then I[z, x] = 0 for all x, z ∈ I. Then [z, x] = 0 for all
x, z ∈ I. By lemma 3.1, R is commutative.

If h ̸= 0, h(x)h(y) + xh(y) + h(x)y − xy ∈ Z(R), replacing y by yz , we get

h(x)h(yz) + xh(yz) + h(x)yz − xyz ∈ Z(R)

h(x)h(y)h(z) + h(x)yh(z) + h(x)h(y)z + xh(y)h(z)

+xyh(z) + xh(y)z + h(x)yz − xyz ∈ Z(R)

[(h(x)h(y) + h(x)y + xh(y) + xy)h(z) + (h(x)h(y) + xh(y) + h(x)y − xy)z, z] = 0

[(h(xy) + xy)h(z), z] + [(h(xy)− xy)z, z] = 0

[(h(xy) + xy)h(z), z] = 0

Since h is zero-power valued, we get

[xyh(z), z] = 0

(3.1) xy[h(z), z] + x[y, z]h(z) + [x, z]yh(z) = 0 for all x, y, z ∈ I.

For any y1 ∈ I , replace x by y1x

y1xy[h(z), z] + y1x[y, z]h(z) + [y1x, z]yh(z) = 0



304 E. F. AL HARFIE AND N. M. MUTHANA

y1xy[h(z), z] + y1x[y, z]h(z) + y1[x, z]yh(z) + [y1, z]xyh(z) = 0

y1(xy[h(z), z] + x[y, z]h(z) + [x, z]yh(z)) + [y1, z]xyh(z) = 0

From (3.1) we get ;
[y1, z]xyh(z) = 0

[y1, z]xRIh(z) = 0.

Since R is prime ring we get, either [y1, z]x = 0 or Ih(z) = 0. The set of z ∈ I
for which these two properties hold are additive subgroups of I whose union is I.
Therefore either Ih(z) = (0), for all z ∈ I or [y1, z]x = 0, for all x, y1, z ∈ I.

If Ih(z) = 0, for all z ∈ I, then IRh(z) = (0), for all z ∈ I. Since I ̸=
(0), and R is prime, then h(z) = 0, for all z ∈ I. This implies that h(zr) =
h(z)h(r) + zh(r) + h(z)r = 0, for all z ∈ I, and r ∈ R. Hence zh(r) = 0 that is
IRh(r) = (0). Since I ̸= 0, so, h = 0, this is a contradiction. On other hand if
[y1, z]x = 0 for all x, y, z ∈ I, [y1, z]RI = 0 for all x, y, z ∈ I. By the primeness of
R then [y1, z] = 0 for all x, y, z ∈ I. Hence R is commutative by Lemma 3.1. �

Theorem 3.2. Let R be a prime ring and I a nonzero ideal of R. If R admits
a homderivation h which is zero-power valued on I such that h(xy) + xy ∈ Z(R),
for all x, y ∈ I , then R is commutative.

Proof. If h is a homoderivation satisfying h(xy) + xy ∈ Z(R) ,for all x, y ∈ I
. Then (−h)(xy)− xy ∈ Z(R). Then by Theorem 3.1, R is commutative. �
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