THE EXACT AND THE SHARP UPPER BOUND FOR MULTIPLICATIVE ZAGREB INDICES OF GRAPH PRODUCT

R. Muruganandam, R. S. Manikandan and M. Aruvi

Abstract

In this paper, we determine the exact formula for the multiplicative Zagreb indices of tensor product. Also we find the sharp upper bound for the multiplicative first Zagreb index of strong product of two connected graphs and using this result we compute the exact formula for the multiplicative first Zagreb index of strong product of two complete graphs.

1. Introduction

In this paper, all graphs considered are simple and connected graphs. We denote the vertex and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. $d_{G}(v)$ denotes the degree of a vertex v in G. The number of elements in the vertex set of a graph G is called the order of G and is denoted by $v(G)$. The number of elements in the edge set of a graph G is called the size of G and is denoted by $e(G)$. A graph with order n and size m is called a (n, m)-graph. For any $u, v \in V(G)$, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G. A graph G is complete, if every pair of its vertices are adjacent. A complete graph on n vertices is denoted by K_{n}.

A topological index of a graph is a parameter related to the graph, it does not depend on labeling or pictorial representation of the graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacological, toxicological, biological and other properties of chemical compounds [5]. Several types of such indices exist, especially those based on vertex and edge distance. One of the oldest intensively studied

[^0]topological indices is the Wiener index. In 1947, Wiener [9] introduced the first distance-based topological index which is named as Wiener index and it is defined as
$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)=\frac{1}{2} \sum_{u, v \in V(G)} d_{G}(u, v) .
$$

Its chemical applications and Mathematical properties are well studied in [3].
There are some topological indices based on degrees known as the first and second Zagreb indices of molecular graphs. The first and second kinds of Zagreb indices are introduced by Gutman et al. in [4]. The first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ of a graph G are defined as

$$
\begin{aligned}
M_{1}(G)= & \sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]=\sum_{v \in V(G)} d_{G}^{2}(v) . \\
& M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)
\end{aligned}
$$

In 2010, Todeschini et al. $[\mathbf{7}, \mathbf{8}]$ have proposed the multiplicative variants of ordinary Zagreb indices, which are defined as follows:

$$
\prod_{1}=\prod_{1}(G)=\prod_{v \in V(G)} d_{G}^{2}(v), \prod_{2}=\prod_{2}(G)=\prod_{u v \in E(G)} d_{G}(u) d_{G}(v) .
$$

Mathematical properties and applications of multiplicative Zagreb indices are reported in [2].

The strong product [1] of graphs G_{1} and G_{2} is denoted by $G_{1} \boxtimes G_{2}$, and it is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent if $(i) u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$, or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$, or (iii) $u_{1} v_{1} \in E\left(G_{1}\right)$ and $u_{2} v_{2} \in E\left(G_{2}\right)$. The tensor product of the graphs G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, has the vertex set $V\left(G_{1} \times G_{2}\right)$ and $E\left(G_{1} \times G_{2}\right)=$ $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$.

Lemma 1.1 ([2]). Let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative numbers. Then

$$
\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \geqslant \sqrt[n]{x_{1} x_{2} \ldots x_{n}} .
$$

Lemma 1.2 ([6]). (a) The degree of a vertex $\left(u_{i}, v_{j}\right)$ of $G_{1} \times G_{2}$ is given by

$$
d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)=d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right) .
$$

(b) Let $x_{i j}$ denote the vertex $\left(u_{i}, u_{j}\right)$ of $G \boxtimes K_{r} . \operatorname{Now} d_{G \boxtimes K_{r}}\left(x_{i j}\right)=r d_{G}\left(u_{i}\right)+(r-1)$ and

$$
d_{G \boxtimes K_{r}}\left(x_{i j}, x_{k p}\right)= \begin{cases}1, & i=k, j \neq p \\ d_{G}\left(u_{i}, u_{k}\right), & i \neq k, j=p \\ d_{G}\left(u_{i}, u_{k}\right), & i \neq k, j \neq p\end{cases}
$$

The degree of the vertex $\left(u_{i}, v_{j}\right)$ of $V\left(G_{1} \boxtimes G_{2}\right)$ is

$$
d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)+d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right),
$$

that is

$$
d_{G_{1} \boxtimes G_{2}}\left(u_{i}, v_{j}\right)=d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)+d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right) .
$$

Lemma 1.3. Let G be a graph. Then

$$
\sum_{x y \in G} 1=2 e(G)
$$

Proof.

$$
\sum_{x y \in G} 1=2 \sum_{x y \in E(G)} 1=2 e(G)
$$

2. The Multiplicative Zagreb indices of $G_{1} \times G_{2}$

In this section, we compute the multiplicative Zagreb indices of the tensor product of graphs.

Theorem 2.1. Let G_{1} be a graph with n - vertices and G_{2} be a graph with r-vertices. Then

$$
\prod_{1}\left(G_{1} \times G_{2}\right)=\left[\prod_{1}\left(G_{1}\right)\right]^{r}\left[\prod_{1}\left(G_{2}\right)\right]^{n}
$$

Proof. Let $V\left(G_{1}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}, V\left(G_{2}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{r-1}\right\}$ and $w_{i j}=\left(u_{i}, v_{j}\right)$.

$$
\begin{aligned}
\prod_{1}\left(G_{1} \times G_{2}\right) & =\prod_{w_{i j} \in V\left(G_{1} \times G_{2}\right)} d_{G_{1} \times G_{2}}^{2}\left(w_{i j}\right) \\
& =\prod_{i=0}^{n-1} \prod_{j=0}^{r-1}\left[d_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)\right]^{2} \\
& =\prod_{i=0}^{n-1} \prod_{j=0}^{r-1}\left[d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right]^{2} \\
& =\prod_{i=0}^{n-1} \prod_{j=0}^{r-1}\left[d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right] \\
& =\left[\prod_{i=0}^{n-1} d_{G_{1}}^{2}\left(u_{i}\right)\right]^{r}\left[\prod_{j=0}^{r-1} d_{G_{2}}^{2}\left(v_{j}\right)\right]^{n} \\
& =\left[\prod_{1}\left(G_{1}\right)\right]^{r}\left[\prod_{1}\left(G_{2}\right)\right]^{n}
\end{aligned}
$$

Theorem 2.2. Let G_{1} be a graph with n - vertices and G_{2} be a graph with r-vertices. Then

$$
\prod_{2}\left(G_{1} \times G_{2}\right)=\left[\prod_{2}\left(G_{1}\right)\right]^{2 e\left(G_{2}\right)}\left[\prod_{2}\left(G_{2}\right)\right]^{2 e\left(G_{1}\right)}
$$

Proof. Let $V\left(G_{1}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}, V\left(G_{2}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{r-1}\right\}$ and $w_{i j}=$ $\left(u_{i}, v_{j}\right)$. Then
$\prod_{2}\left(G_{1} \times G_{2}\right)=\prod_{\left(w_{i j}, w_{p q}\right) \in E\left(G_{1} \times G_{2}\right)} d_{G_{1} \times G_{2}}\left(w_{i j}\right) d_{G_{1} \times G_{2}}\left(w_{p q}\right)$
$=\prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \quad \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)} d_{G_{1} \times G_{2}}\left(w_{i j}\right) d_{G_{1} \times G_{2}}\left(w_{p q}\right) d_{G_{1} \times G_{2}}\left(w_{p j}\right) d_{G_{1} \times G_{2}}\left(w_{i q}\right)$
$=\prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} \quad \prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)} d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{1}}^{2}\left(u_{p}\right) d_{G_{2}}^{2}\left(v_{j}\right) d_{G_{2}}^{2}\left(v_{q}\right)$
$=\left\{\prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)} d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{1}}^{2}\left(u_{p}\right)\right\}^{e\left(G_{2}\right)}\left\{\prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)} d_{G_{2}}^{2}\left(v_{j}\right) d_{G_{2}}^{2}\left(v_{q}\right)\right\}^{e\left(G_{1}\right)}$
$=\left\{\left[\prod_{\left(u_{i}, u_{p}\right) \in E\left(G_{1}\right)}\left[d_{G_{1}}\left(u_{i}\right) d_{G_{1}}\left(u_{p}\right)\right]^{2}\right\}^{e\left(G_{2}\right)} \quad\left\{\left[\prod_{\left(v_{j}, v_{q}\right) \in E\left(G_{2}\right)} d_{G_{2}}\left(v_{j}\right) d_{G_{2}}\left(v_{q}\right)\right]^{2}\right\}^{e\left(G_{1}\right)}\right.$
$=\left[\prod_{2}\left(G_{1}\right)\right]^{2 e\left(G_{2}\right)}\left[\Pi_{2}\left(G_{2}\right)\right]^{2 e\left(G_{1}\right)}$.

3. The Multiplicative Zagreb indices of $G_{1} \boxtimes G_{2}$

In this section, we compute the multiplicative first Zagreb index of $G_{1} \boxtimes G_{2}$.
Theorem 3.1. Let G_{1} be a graph with n - vertices and G_{2} be a graph with r-vertices. Then

$$
\begin{aligned}
\prod_{1}\left(G_{1} \boxtimes G_{2}\right) & \leqslant\left\{\frac { 1 } { n r } \left[r M_{1}\left(G_{1}\right)+n M_{1}\left(G_{2}\right)+M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)\right.\right. \\
& \left.\left.+8 e\left(G_{1}\right) e\left(G_{2}\right)+4 M_{1}\left(G_{1}\right) e\left(G_{2}\right)+4 M_{1}\left(G_{2}\right) e\left(G_{1}\right)\right]\right\}^{n r}
\end{aligned}
$$

Proof. Let $V\left(G_{1}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right\}, V\left(G_{2}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{r-1}\right\}$ and $w_{i j}=\left(u_{i}, v_{j}\right) . \prod_{1}\left(G_{1} \boxtimes G_{2}\right)=\prod_{w_{i j} \in V\left(G_{1} \boxtimes G_{2}\right)} d_{G_{1} \boxtimes G_{2}}^{2}\left(w_{i j}\right)$
$=\prod_{i=0}^{n-1} \quad \prod_{j=0}^{r-1} d_{G_{1} \boxtimes G_{2}}\left(\left(u_{i}, v_{j}\right)\right)^{2}$
$=\prod_{i=0}^{n-1} \quad \prod_{j=0}^{r-1}\left[d_{G_{1}}\left(u_{i}\right)+d_{G_{2}}\left(v_{j}\right)+d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right]^{2}$
$=\prod_{i=0}^{n-1} \quad \prod_{j=0}^{r-1}\left[d_{G_{1}}^{2}\left(u_{i}\right)+d_{G_{2}}^{2}\left(v_{j}\right)+d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)+2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right.$
$\left.+2 d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)+2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right]$
$\leqslant \operatorname{Big}\left[\frac{1}{n r}\left\{\sum_{i=0}^{n-1} \quad \sum_{j=0}^{r-1}\left(d_{G_{1}}^{2}\left(u_{i}\right)+d_{G_{2}}^{2}\left(v_{j}\right)+d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)+2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)\right.\right.\right.$
$\left.\left.\left.+2 d_{G_{1}}^{2}\left(u_{i}\right) d_{G_{2}}\left(v_{j}\right)+2 d_{G_{1}}\left(u_{i}\right) d_{G_{2}}^{2}\left(v_{j}\right)\right)\right\}\right]^{n r}$
$=\left[\frac{1}{n r}\left\{\sum_{i=0}^{n-1} d_{G_{1}}^{2}\left(u_{i}\right) \quad \sum_{j=0}^{r-1} 1+\sum_{i=0}^{n-1} 1 \quad \sum_{j=0}^{r-1} d_{G_{2}}^{2}\left(v_{j}\right)\right.\right.$
$+\sum_{i=0}^{n-1} d_{G_{1}}^{2}\left(u_{i}\right) \quad \sum_{j=0}^{r-1} d_{G_{2}}^{2}\left(v_{j}\right)$
$+2 \sum_{i=0}^{n-1} d_{G_{1}}\left(u_{i}\right) \quad \sum_{j=0}^{r-1} d_{G_{2}}\left(v_{j}\right)+2 \sum_{i=0}^{n-1} d_{G_{1}}^{2}\left(u_{i}\right) \quad \sum_{j=0}^{r-1} d_{G_{2}}\left(v_{j}\right)$
$\left.\left.+2 \sum_{i=0}^{n-1} d_{G_{1}}\left(u_{i}\right) \quad \sum_{j=0}^{r-1} d_{G_{2}}^{2}\left(v_{j}\right)\right\}\right]^{n r}$
Thus
$[3 \mathrm{pt}] \prod_{1}\left(G_{1} \boxtimes G_{2}\right) \leqslant\left\{\frac{1}{n r}\left[r M_{1}\left(G_{1}\right)+n M_{1}\left(G_{2}\right)+M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)\right.\right.$
$\left.\left.+8 e\left(G_{1}\right) e\left(G_{2}\right)+4 M_{1}\left(G_{1}\right) e\left(G_{2}\right)+4 M_{1}\left(G_{2}\right) e\left(G_{1}\right)\right]\right\}^{n r}$.
Theorem 3.2.

$$
\prod_{1}\left(K_{n} \boxtimes K_{r}\right)=(n r-1)^{2 n r}
$$

Proof. The degree of every vertex in $K_{n} \boxtimes K_{r}$ is

$$
r(n-1)+(r-1)=(r n-1)
$$

Therefore $K_{n} \boxtimes K_{r}$ is a complete graph. Hence

$$
\begin{equation*}
\prod_{1}\left(K_{n} \boxtimes K_{r}\right)=(n r-1)^{2 n r} \tag{3.1}
\end{equation*}
$$

Remark 3.1. Using Theorem 3.2, we show that the upper bound in Theorem 3.1 is sharp. Clearly, $M_{1}\left(K_{n}\right)=n(n-1)^{2}, e\left(K_{n}\right)=\frac{n(n-1)}{2}$, when $G_{1}=K_{n}$ and $G_{2}=K_{r}$, the upper bound in Theorem 3.1 becomes
$\prod_{1}\left(K_{n} \boxtimes K_{r}\right) \leqslant\left\{\frac{1}{n r}\left[r M_{1}\left(K_{n}\right)+n M_{1}\left(K_{r}\right)+M_{1}\left(K_{n}\right) M_{1}\left(K_{r}\right)\right.\right.$
$\left.\left.+8 e\left(K_{n}\right) e\left(K_{r}\right)+4 M_{1}\left(K_{n}\right) e\left(K_{r}\right)+4 M_{1}\left(K_{r}\right) e\left(K_{n}\right)\right]\right\}^{n r}$
$=\left\{\frac{1}{n r}\left[r n(n-1)^{2}+n r(r-1)^{2}+n r(n-1)^{2}(r-1)^{2}\right.\right.$
$\left.\left.+8 \frac{n(n-1)}{2} \frac{r(r-1)}{2}+4 n(n-1)^{2} \frac{r(r-1)}{2}+4 \frac{n(n-1)}{2} r(r-1)^{2}\right]\right\}^{n r}$
So,

$$
\begin{equation*}
\prod_{1}\left(K_{n} \boxtimes K_{r}\right) \leqslant(n r-1)^{2 n r} \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), we conclude that the upper bound is sharp.

References

[1] R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory (second edition). Springer, New York, 2012.
[2] K. C. Das, A. Yurttas, M. Togan, I. N. Cangul and A. S. Cevik. The multiplicative Zagreb indices of graph operations. J. Inequal. Appl. 2013, 2013:90, 14 pp.
[3] A. A. Dobrynin, R. Entringer and I. Gutman. Wiener index of trees: Theory and applications. Acta. Appl. Math., 66(3)(2001), 211-249.
[4] I. Gutman and N. Trinajstić. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 17(4)(1972), 535-538.
[5] I. Gutman and O. E. Polansky. Mathematical concepts in orgnic chemistry. Springer-verlag, Berlin, 1986.
[6] K. Pattabiraman, S. Nagarajan and M. Chendrasekharan. Zagreb indices and coindices of product graphs. Journal of Prime Research in Mathematics, 10(2014), 80-91.
[7] R. Todeschini, D. Ballabio and V. Consonni. Novel molecular descriptors based on functions of new vertex degrees. In I. Gutman and B. Furtula (Eds.). Novel Molecular Structure Descriptors - Theory and Applications, I (pp. 73-100). Kragujevac: University of Kragujevac, 2010.
[8] R. Todeschini and V. Consonni. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem., 64(2010), 359-372.
[9] H. Wiener. Structural determination of the paraffin boiling points. J. Am. Chem. Soc., 69 (1)(1947), 17-20.

Received by editors 06.02.2018; Revised version 16.12.2018; Available online 24.12.2018.
R. Muruganandam: Department of Mathematics, Government Arts College, Tiru Chirappalli, India

E-mail address: muruganraju1980@gmail.com
R.S. Manikandan: Department of Mathematics, Bharathidasan University Constituent College, Lalgudi, Tiruchirappalli, India

E-mail address: manirs2004@yahoo.co.in
M.Aruvi: Department of Mathematics, Anna University, Tiruchirappalli, India

E-mail address: aruvi.aut@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C35, 05C07, 05C40.
 Key words and phrases. The multiplicative Zagreb indices, strong product and tensor product.

