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THE EXACT AND THE SHARP UPPER BOUND

FOR MULTIPLICATIVE ZAGREB INDICES

OF GRAPH PRODUCT

R. Muruganandam, R. S. Manikandan and M. Aruvi

Abstract. In this paper, we determine the exact formula for the multiplica-

tive Zagreb indices of tensor product. Also we find the sharp upper bound for
the multiplicative first Zagreb index of strong product of two connected graphs
and using this result we compute the exact formula for the multiplicative first
Zagreb index of strong product of two complete graphs.

1. Introduction

In this paper, all graphs considered are simple and connected graphs. We
denote the vertex and the edge set of a graph G by V (G) and E(G), respectively.
dG(v) denotes the degree of a vertex v in G. The number of elements in the vertex
set of a graph G is called the order of G and is denoted by v(G). The number of
elements in the edge set of a graph G is called the size of G and is denoted by e(G).
A graph with order n and size m is called a (n,m)-graph. For any u, v ∈ V (G),
the distance between u and v in G, denoted by dG(u, v), is the length of a shortest
(u, v)-path in G. A graph G is complete, if every pair of its vertices are adjacent.
A complete graph on n vertices is denoted by Kn.

A topological index of a graph is a parameter related to the graph, it does
not depend on labeling or pictorial representation of the graph. In theoretical
chemistry, molecular structure descriptors (also called topological indices) are used
for modeling physicochemical, pharmacological, toxicological, biological and other
properties of chemical compounds [5]. Several types of such indices exist, especially
those based on vertex and edge distance. One of the oldest intensively studied
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topological indices is the Wiener index. In 1947, Wiener [9] introduced the first
distance-based topological index which is named as Wiener index and it is defined
as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u,v∈V (G)

dG(u, v).

Its chemical applications and Mathematical properties are well studied in [3].
There are some topological indices based on degrees known as the first and

second Zagreb indices of molecular graphs. The first and second kinds of Zagreb
indices are introduced by Gutman et al. in [4]. The first Zagreb index M1(G) and
the second Zagreb index M2(G) of a graph G are defined as

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)] =
∑

v∈V (G)

d2G(v).

M2(G) =
∑

uv∈E(G)

dG(u)dG(v)

In 2010, Todeschini et al. [7, 8] have proposed the multiplicative variants of ordi-
nary Zagreb indices, which are defined as follows:∏

1

=
∏
1

(G) =
∏

v∈V (G)

d2G(v),
∏
2

=
∏
2

(G) =
∏

uv∈E(G)

dG(u)dG(v).

Mathematical properties and applications of multiplicative Zagreb indices are re-
ported in [2].

The strong product [1] of graphs G1 and G2 is denoted by G1 � G2, and it
is the graph with vertex set V (G1) × V (G2) and two vertices (u1, u2) and (v1, v2)
are adjacent if (i)u1 = v1 and u2v2 ∈ E(G2), or u2 = v2 and u1v1 ∈ E(G1),
or (iii)u1v1 ∈ E(G1) and u2v2 ∈ E(G2). The tensor product of the graphs G1

and G2, denoted by G1 × G2, has the vertex set V (G1 × G2) and E(G1 × G2) ={
(u1, v1)(u2, v2)|u1u2 ∈ E(G1) and v1v2 ∈ E(G2)

}
.

Lemma 1.1 ([2]). Let x1, x2, ..., xn be non-negative numbers. Then

x1 + x2 + ...+ xn

n
> n

√
x1x2...xn.

Lemma 1.2 ([6]). (a) The degree of a vertex (ui, vj) of G1 ×G2 is given by

dG1×G2(ui, vj) = dG1(ui)dG2(vj).

(b) Let xij denote the vertex (ui, uj) of G�Kr. Now dG�Kr
(xij) = rdG(ui)+(r−1)

and

dG�Kr
(xij , xkp) =


1, i = k, j ̸= p

dG(ui, uk), i ̸= k, j = p

dG(ui, uk), i ̸= k, j ̸= p.

The degree of the vertex (ui, vj) of V (G1 �G2) is

dG1(ui) + dG2(vj) + dG1(ui)dG2(vj),
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that is
dG1�G2

(ui, vj) = dG1(ui) + dG2(vj) + dG1(ui)dG2(vj).

Lemma 1.3. Let G be a graph. Then∑
xy∈G

1 = 2e(G)

Proof. ∑
xy∈G

1 = 2
∑

xy∈E(G)

1 = 2e(G)

�

2. The Multiplicative Zagreb indices of G1 ×G2

In this section, we compute the multiplicative Zagreb indices of the tensor
product of graphs.

Theorem 2.1. Let G1 be a graph with n- vertices and G2 be a graph with
r-vertices. Then ∏

1

(G1 ×G2) =
[∏

1

(G1)
]r[∏

1

(G2)
]n

.

Proof. Let V (G1) = {u0, u1, u2, ..., un−1}, V (G2) = {v0, v1, v2, ..., vr−1} and
wij = (ui, vj). ∏

1

(G1 ×G2) =
∏

wij∈V (G1×G2)

d2G1×G2
(wij)

=
n−1∏
i=0

r−1∏
j=0

[
dG1×G2(ui, vj)

]2
=

n−1∏
i=0

r−1∏
j=0

[
dG1(ui)dG2(vj)

]2
=

n−1∏
i=0

r−1∏
j=0

[
d2G1

(ui)d
2
G2

(vj)
]

=
[ n−1∏

i=0

d2G1
(ui)

]r [ r−1∏
j=0

d2G2
(vj)

]n
=

[∏
1

(G1)
]r [∏

1

(G2)
]n

�
Theorem 2.2. Let G1 be a graph with n- vertices and G2 be a graph with

r-vertices. Then∏
2

(G1 ×G2) =
[∏

2

(G1)
]2e(G2)[∏

2

(G2)
]2e(G1)



284 R. MURUGANANDAM, R. S. MANIKANDAN AND M. ARUVI

Proof. Let V (G1) = {u0, u1, u2, ..., un−1}, V (G2) = {v0, v1, v2, ..., vr−1} and wij =
(ui, vj). Then∏

2(G1 ×G2) =
∏

(wij ,wpq)∈E(G1×G2)
dG1×G2(wij)dG1×G2(wpq)

=
∏

(ui,up)∈E(G1)

∏
(vj ,vq)∈E(G2)

dG1×G2(wij)dG1×G2(wpq)dG1×G2(wpj)dG1×G2(wiq)

=
∏

(ui,up)∈E(G1)

∏
(vj ,vq)∈E(G2)

d2G1
(ui)d

2
G1

(up)d
2
G2

(vj)d
2
G2

(vq)

=
{∏

(ui,up)∈E(G1)
d2G1

(ui)d
2
G1

(up)
}e(G2)

{∏
(vj ,vq)∈E(G2)

d2G2
(vj)d

2
G2

(vq)
}e(G1)

=
{[∏

(ui,up)∈E(G1)
[dG1(ui)dG1(up)

]2}e(G2)
{[∏

(vj ,vq)∈E(G2)
dG2(vj)dG2(vq)

]2}e(G1)

=
[∏

2(G1)
]2e(G2)

[∏
2(G2)

]2e(G1)

. �

3. The Multiplicative Zagreb indices of G1 �G2

In this section, we compute the multiplicative first Zagreb index of G1 �G2.

Theorem 3.1. Let G1 be a graph with n- vertices and G2 be a graph with
r-vertices. Then∏

1

(G1 �G2) 6
{ 1

nr

[
rM1(G1) + nM1(G2) +M1(G1)M1(G2)

+ 8e(G1)e(G2) + 4M1(G1)e(G2) + 4M1(G2)e(G1)
]}nr

Proof. Let V (G1) = {u0, u1, u2, ..., un−1}, V (G2) = {v0, v1, v2, ..., vr−1} and
wij = (ui, vj).

∏
1(G1 �G2) =

∏
wij∈V (G1�G2)

d2G1�G2
(wij)

=
∏n−1

i=0

∏r−1
j=0 dG1�G2

((ui, vj))
2

=
∏n−1

i=0

∏r−1
j=0

[
dG1(ui) + dG2(vj) + dG1(ui)dG2(vj)

]2
=

∏n−1
i=0

∏r−1
j=0

[
d2G1

(ui) + d2G2
(vj) + d2G1

(ui)d
2
G2

(vj) + 2dG1
(ui)dG2

(vj)

+2d2G1
(ui)dG2(vj) + 2dG1(ui)d

2
G2

(vj)
]

6 Big[ 1
nr

{∑n−1
i=0

∑r−1
j=0

(
d2G1

(ui) + d2G2
(vj) + d2G1

(ui)d
2
G2

(vj) + 2dG1(ui)dG2(vj)

+2d2G1
(ui)dG2(vj) + 2dG1(ui)d

2
G2

(vj)
)}]nr

=
[

1
nr

{∑n−1
i=0 d2G1

(ui)
∑r−1

j=0 1 +
∑n−1

i=0 1
∑r−1

j=0 d
2
G2

(vj)

+
∑n−1

i=0 d2G1
(ui)

∑r−1
j=0 d

2
G2

(vj)

+2
∑n−1

i=0 dG1(ui)
∑r−1

j=0 dG2(vj) + 2
∑n−1

i=0 d2G1
(ui)

∑r−1
j=0 dG2(vj)

+2
∑n−1

i=0 dG1(ui)
∑r−1

j=0 d
2
G2

(vj)
}]nr

Thus

[3pt]
∏

1(G1 �G2) 6
{

1
nr

[
rM1(G1) + nM1(G2) +M1(G1)M1(G2)
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+8e(G1)e(G2) + 4M1(G1)e(G2) + 4M1(G2)e(G1)
]}nr

. �

Theorem 3.2. ∏
1

(Kn �Kr) = (nr − 1)2nr.

Proof. The degree of every vertex in Kn �Kr is

r(n− 1) + (r − 1) = (rn− 1).

Therefore Kn �Kr is a complete graph. Hence∏
1

(Kn �Kr) = (nr − 1)2nr.(3.1)

�

Remark 3.1. Using Theorem 3.2, we show that the upper bound in Theorem

3.1 is sharp. Clearly, M1(Kn) = n(n − 1)2, e(Kn) = n(n−1)
2 , when G1 = Kn

and G2 = Kr, the upper bound in Theorem 3.1 becomes∏
1(Kn �Kr) 6

{
1
nr

[
rM1(Kn) + nM1(Kr) +M1(Kn)M1(Kr)

+8e(Kn)e(Kr) + 4M1(Kn)e(Kr) + 4M1(Kr)e(Kn)
]}nr

=
{

1
nr

[
rn(n− 1)2 + nr(r − 1)2 + nr(n− 1)2(r − 1)2

+8 n(n−1)
2

r(r−1)
2 + 4n(n− 1)2 r(r−1)

2 + 4 n(n−1)
2 r(r − 1)2

]}nr

So, ∏
1

(Kn �Kr) 6 (nr − 1)2nr(3.2)

From (3.1) and (3.2), we conclude that the upper bound is sharp.
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