BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 9(2019), 271-280 DOI: 10.7251/BIMVI1902271S

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

CONTRA \mathcal{I}_{wq} -CONTINUITY IN IDEAL SPACES

Sangeethasubha Vanangamudi, Prabakaran Thiruvalagu, Seenivasagan Narayanasamy, and Ravi Ochadevar

ABSTRACT. In this paper, the concepts of \mathcal{I}_{wg} -closed sets and \mathcal{I}_{wg} -open sets are introduced and they are used to define and investigate a new class of functions called contra \mathcal{I}_{wg} -continuous functions in ideal spaces. We discuss the relationships with some other related functions.

1. Introduction and Preliminaries

Throughout this paper, by a space X, we always mean a topological space (X, τ) with no separation properties assumed. Let H be a subset of X. We denote the interior, the closure and the complement of a subset H by int(H), cl(H) and $X \setminus H$ or H^c , respectively. The set of all open sets containing a point $x \in X$ is denoted by $\sum(x)$ ([5]).

DEFINITION 1.1. ([10]) A subset H of a space X is said to be preopen if $H \subseteq int(cl(H))$. The complement of a preopen set is called preclosed.

DEFINITION 1.2. ([8]) A space X is said to be regular if for each closed set F of X and each $x \notin F$, there exist disjoint open sets P and Q such that $x \in P$ and $F \subseteq Q$.

²⁰¹⁰ Mathematics Subject Classification. 54C10, 54C05.

Key words and phrases. \mathcal{I}_{wg} -closed set, \mathcal{I}_{wg} -continuity, contra \mathcal{I}_{wg} -continuity, contra w-continuity.

DEFINITION 1.3. ([12]) A space X is called locally indiscrete if every open set is closed.

DEFINITION 1.4. ([15]) A space X is called Urysohn if for every pair of points $x, y \in X, x \neq y$ there exist $U \in \sum(x), V \in \sum(y)$ such that $cl(U) \cap cl(V) = \emptyset$.

The collection of all clopen subsets of X will be denoted by CO(X). We set $CO(X, x) = \{V \in CO(X) | x \in V\}$ for $x \in X$ ([11]).

DEFINITION 1.5. ([13]) A space X is said to be

- (1) Ultra Hausdorff if for each pair of distinct points x and y in X there exist $U \in CO(X, x)$ and $V \in CO(X, y)$ such that $U \cap V = \emptyset$.
- (2) Ultra normal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

DEFINITION 1.6. ([5]) Let $f : (X, \tau) \to (Y, \sigma)$ be any function. Then the subset $G(f) = \{(x, f(x)) : x \in X\}$ of the product space $(X \times Y, \tau \times \sigma)$ is called the graph of f.

An ideal \mathcal{I} on a space X is a non-empty collection of subsets of X which satisfies (i) $P \in \mathcal{I}$ and $Q \subseteq P \Rightarrow Q \in \mathcal{I}$ and (ii) $P \in \mathcal{I}$ and $Q \in \mathcal{I} \Rightarrow P \cup Q \in \mathcal{I}$. Given a space X with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(\cdot)^* : \wp(X) \to \wp(X)$, called a local function [9] of H with respect to τ and \mathcal{I} is defined as follows: for $H \subseteq X$, $H^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap H \notin \mathcal{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local functions [[7], Theorem 2.3] without mentioning it explicitly. Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology, finer than τ , is defined by $cl^*(H) = H \cup H^*(\mathcal{I}, \tau)$ [14]. When there is no chance for confusion, we will simply write H^* for $H^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. \mathcal{N} is the ideal of all nowhere dense subsets in (X, τ) . A subset H of an ideal space (X, τ, \mathcal{I}) is called \mathcal{I}_g -closed [4] if $H^* \subseteq U$ whenever $H \subseteq U$ and U is open.

DEFINITION 1.7. ([6]) A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is called \mathcal{I}_g -continuous if the inverse image of every closed set in Y is \mathcal{I}_g -closed in X.

Let us say that $w \subseteq P$ is a weak structure (briefly WS) on X iff $\emptyset \in w$. Clearly each generalized topology and each minimal structure is a WS [2].

Each member of w is said to be w-open and the complement of a w-open set is called w-closed.

Let w be a weak structure on X and $H \subseteq X$. We define (as in the general case) $i_w(H)$ is the union of all w-open subsets contained in H and $c_w(H)$ is the intersection of all w-closed sets containing H [2].

REMARK 1.1 ([1]). If w is a WS on X, then $i_w(\emptyset) = \emptyset$ and $c_w(X) = X$.

THEOREM 1.1 ([2]). If w is a WS on X and $A, B \in w$ then

- (1) $i_w(A) \subseteq A \subseteq c_w(A)$,
- (2) $A \subseteq B \Rightarrow i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$,

(3)
$$i_w(i_w(A)) = i_w(A)$$
 and $c_w(c_w(A)) = c_w(A)$,

(4)
$$i_w(X - A) = X - c_w(A)$$
 and $c_w(X - A) = X - i_w(A)$

DEFINITION 1.8. ([1]) Let w be a WS on a space X. Then $H \subseteq X$ is said to be wg-closed if $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is w-open in X. The complement of a wg-closed set is called a wg-open set.

REMARK 1.2 ([1]). For a WS w on a space X, every w-closed set is gw-closed but not conversely.

2. Properties of Contra \mathcal{I}_{wq} -continuity

DEFINITION 2.1. Let w be a WS on a space X. Then X is said to be wg-normal if each pair of non-empty disjoint closed sets can be separated by disjoint wg-open sets.

EXAMPLE 2.1. (1) Let

 $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{a, b\}\} \text{ and } w = \{\emptyset, X, \{a\}, \{a, b\}\}.$

Then wg-open sets are $\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$. Clearly X is wg-normal. (2) Let

 $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\} \text{ and } w = \{\emptyset, X, \{a, b\}, \{b, c\}, \{a, c\}\}.$

Then wg-open sets are $\emptyset, X, \{a\}, \{a, b\}$ and $\{a, c\}$. Clearly X is not wg-normal.

DEFINITION 2.2. Let w be a WS on a space X. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (1) contra wg-continuous if for each open set V in (Y, σ) , $f^{-1}(V)$ is wg-closed in (X, τ) .
- (2) contra *w*-continuous if for each open set V in (Y, σ) , $f^{-1}(V)$ is *w*-closed in (X, τ) .
- (3) w-continuous if for each closed set V in (Y, σ) , $f^{-1}(V)$ is w-closed in (X, τ) .
- (4) contra continuous [3] if for each closed set V in (Y, σ) , $f^{-1}(V)$ is open in (X, τ) .

PROPOSITION 2.1. Every contra w-continuous function is contra wg-continuous.

PROOF. Let w be a WS on a space X. Let $f : (X, \tau) \to (Y, \sigma)$ be a contra w-continuous function and let V be any open set in Y. Then, $f^{-1}(V)$ is w-closed in X. Since every w-closed set is wg-closed, $f^{-1}(V)$ is wg-closed in X. Therefore f is contra wg-continuous.

However, converse need not be true as seen from the following Example.

EXAMPLE 2.2. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{c\}, \{a, b\}, X = Y\}$ and $w = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then w is a WS on a space X. Also the identity function $f : (X, \tau) \to (Y, \sigma)$ is contra wg-continuous but not contra w-continuous.

274V. SANGEETHASUBHA, T. PRABAKARAN, N. SEENIVASAGAN, AND O. RAVI

DEFINITION 2.3. Let w be a WS on a space X. A graph G(f) of a function $f:(X,\tau)\to (Y,\sigma)$ is said to be contra *wg*-closed in $(X\times Y)$ if for each $(x,y)\in$ $(X \times Y) \setminus G(f)$, there exist an $P \in wGO(X)$ containing x and a closed set Q of (Y,σ) containing y such that $f(P) \cap Q = \emptyset$ where wGO(X) denotes the family of all wg-open sets of X.

EXAMPLE 2.3. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c$ $\{b,c\}, X = Y\}$ and $w = \{\emptyset, \{a\}, \{b,c\}, X\}$. Let $f: (X,\tau) \to (Y,\sigma)$ be an identity function. Then w is a WS on a space X and G(f) is contra wg-closed in $X \times Y$.

DEFINITION 2.4. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A subset $H \subseteq X$ is said to be \mathcal{I}_{wq} -closed if $H^* \subseteq U$ whenever $H \subseteq U$ and U is w-open in X. The complement of an \mathcal{I}_{wg} -closed set is called \mathcal{I}_{wg} -open. The family of all \mathcal{I}_{wg} -open sets of (X, τ, \mathcal{I}) is denoted by $\mathcal{I}wGO(X)$.

DEFINITION 2.5. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be \mathcal{I}_{wq} -normal if each pair of non-empty disjoint closed sets can be separated by disjoint \mathcal{I}_{wq} -open sets.

EXAMPLE 2.4. (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, w = \{\emptyset, X, \{b, c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then $\mathcal{I}wGO(X) = P(X)$. Clearly (X, τ, \mathcal{I}) is \mathcal{I}_{wg} -normal.

(2) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}, w = \{\emptyset, X, \{a\}, \{a, c\}, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_{wg} -open sets are $\emptyset, X, \{a\}, \{a, b\}$ and $\{a, c\}$. Clearly (X, τ, \mathcal{I}) is not \mathcal{I}_{wg} -normal.

DEFINITION 2.6. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A function f: $(X,\tau,\mathcal{I}) \to (Y,\sigma)$ is said to be \mathcal{I}_{wg} -continuous if $f^{-1}(V)$ is \mathcal{I}_{wg} -closed in (X,τ,\mathcal{I}) for each closed set V in (Y, σ) .

DEFINITION 2.7. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A function f: $(X,\tau,\mathcal{I}) \to (Y,\sigma)$ is said to be contra \mathcal{I}_{wg} -continuous if $f^{-1}(V)$ is \mathcal{I}_{wg} -closed in (X, τ, \mathcal{I}) for each open set V in (Y, σ) .

PROPOSITION 2.2. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If $\tau \subseteq w$ then every \mathcal{I}_{wg} -closed set is \mathcal{I}_{g} -closed.

PROOF. The result follows immediately from the given condition.

However, converse need not be true as seen from the following Example.

EXAMPLE 2.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, w = \{\emptyset, \{a\}, \{b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\tau \subseteq w$. Also $\{b\}$ is an \mathcal{I}_q -closed set but not \mathcal{I}_{wq} -closed.

PROPOSITION 2.3. For a WS w on an ideal space (X, τ, \mathcal{I}) , every wg-closed set is \mathcal{I}_{wg} -closed.

PROOF. The proof follows immediately from the fact that $H^* \subseteq cl(H)$.

However, converse need not be true as seen from the following Example.

EXAMPLE 2.6. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{b, c, d\}, X\}, w = \{\emptyset, \{a, b, c\}, v\}$ X} and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{c\}$ is an \mathcal{I}_{wg} -closed set but not wg-closed.

PROPOSITION 2.4. Every contra wg-continuous function is contra \mathcal{I}_{wg} -continuous.

PROOF. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a contra wg-continuous function and let V be any open set in Y. Then, $f^{-1}(V)$ is wg-closed in X. Since every wg-closed set is \mathcal{I}_{wg} -closed, $f^{-1}(V)$ is \mathcal{I}_{wg} -closed in X. Therefore f is contra \mathcal{I}_{wg} -continuous.

However, converse need not be true as seen from the following Example.

EXAMPLE 2.7. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{a\}, X = Y\}, \mathcal{I} = \{\emptyset, \{a\}\}$ and $w = \{\emptyset, X, \{a\}, \{c\}\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wq} -continuous but not contra wg-continuous.

REMARK 2.1. The following two examples show that the concepts of \mathcal{I}_{wg} continuity and contra \mathcal{I}_{wg} -continuity are independent of each other.

EXAMPLE 2.8. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{a\}, X = Y\}, \mathcal{I} = \{\emptyset, \{c\}\}$ and $w = \{\emptyset, \{a\}, \{a, c\}, X\}$. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be defined by f(a) = b, f(b) = a and f(c) = c. Since the inverse image of every open set of Y is \mathcal{I}_{wg} -closed in X, f is contra \mathcal{I}_{wg} -continuous. For the closed set $\{b, c\}$ of Y, $f^{-1}(\{b, c\}) = \{a, c\}$ is not \mathcal{I}_{wg} -closed in (X, τ, \mathcal{I}) . Therefore f is not \mathcal{I}_{wg} -continuous.

EXAMPLE 2.9. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X = Y\}, \mathcal{I} = \{\emptyset, \{a, c\}\}$ and $w = \{\emptyset, \{b\}, \{a, c\}, X\}$. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be defined by f(a) = a, f(b) = b and f(c) = c. Since the inverse image of every closed set of Y is \mathcal{I}_{wg} -closed in X, f is \mathcal{I}_{wg} -continuous. For the open set $\{b\}$ of $(Y, \sigma), f^{-1}(\{b\}) = \{b\}$ is not \mathcal{I}_{wg} -closed in (X, τ, \mathcal{I}) . Therefore f is not contra \mathcal{I}_{wg} -continuous.

PROPOSITION 2.5. If $\tau \subseteq w$, then every contra \mathcal{I}_{wg} -continuous function is contra \mathcal{I}_{q} -continuous.

PROOF. The proof follows immediately from Proposition 2.2.

However, converse need not be true as seen from the following Example.

EXAMPLE 2.10. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, \sigma = \{\emptyset, \{b\}, \{a, c\}, Y\}, w = \{\emptyset, X, \{a\}, \{a, c\}\} \text{ and } \mathcal{I} = \{\emptyset, \{c\}\}.$ Then the identity function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_g -continuous but not contra \mathcal{I}_{wg} -continuous.

THEOREM 2.1. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (1) f is contra \mathcal{I}_{wg} -continuous.
- (2) The inverse image of each closed set in Y is \mathcal{I}_{wg} -open in X.
- (3) For each point x in X and each closed set Q in Y with $f(x) \in Q$, there is an \mathcal{I}_{wq} -open set P in X containing x such that $f(P) \subseteq Q$.

PROOF. (1) \Rightarrow (2) Let G be a closed set in Y. Then Y - G is open in Y. By definition of contra \mathcal{I}_{wg} -continuity, $f^{-1}(Y - G)$ is \mathcal{I}_{wg} -closed in X. But $f^{-1}(Y - G) = X - f^{-1}(G)$. This implies $f^{-1}(G)$ is \mathcal{I}_{wg} -open in X.

 $(2) \Rightarrow (3)$ Let $x \in X$ and Q be any closed set in Y with $f(x) \in Q$. By (2), $f^{-1}(Q)$ is \mathcal{I}_{wg} -open in X. Set $P = f^{-1}(Q)$. Then there is an \mathcal{I}_{wg} -open set P in X containing x such that $f(P) \subseteq Q$.

 $(3) \Rightarrow (1)$ Let $x \in X$ and Q be any closed set in Y with $f(x) \in Q$. Then Y - Q is open in Y with $f(x) \in Q$. By (3), there is an \mathcal{I}_{wg} -open set P in X containing x such that $f(P) \subseteq Q$. This implies $P = f^{-1}(Q)$. Therefore, $X - P = X - f^{-1}(Q) =$ $f^{-1}(Y - Q)$ which is \mathcal{I}_{wg} -closed in X.

THEOREM 2.2. Let w be a WS on an ideal space (X, τ, \mathcal{I}) and let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \mu)$. Then the following properties hold:

- (1) If f is contra \mathcal{I}_{wg} -continuous and g is continuous then $g \circ f$ is contra \mathcal{I}_{wg} -continuous.
- (2) If f is contra \mathcal{I}_{wg} -continuous and g is contra continuous then $g \circ f$ is \mathcal{I}_{wg} -continuous.
- (3) If f is \mathcal{I}_{wg} -continuous and g is contra continuous then $g \circ f$ is contra \mathcal{I}_{wg} -continuous.

PROOF. (1) Let V be any closed set in Z. Since g is continuous, $g^{-1}(V)$ is closed in Y. Since f is contra \mathcal{I}_{wg} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathcal{I}_{wg} -open in X. Therefore $g \circ f$ is contra \mathcal{I}_{wg} -continuous.

(2) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is contra \mathcal{I}_{wg} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathcal{I}_{wg} -closed in X. Therefore $g \circ f$ is \mathcal{I}_{wg} -continuous.

(3) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is \mathcal{I}_{wg} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathcal{I}_{wg} -open in X. Therefore $g \circ f$ is contra \mathcal{I}_{wg} -continuous.

THEOREM 2.3. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wg} -continuous and Y is regular, then f is \mathcal{I}_{wg} -continuous.

PROOF. Let x be an arbitrary point of X and Q be an open set of Y containing f(x). Since Y is regular, there exists $R \in \tau$ such that $f(x) \in R \subseteq cl(R) \subseteq Q$. Since f is contra \mathcal{I}_{wg} -continuous, by Theorem 2.1, there exists an \mathcal{I}_{wg} -open set P containing x such that $f(P) \subseteq cl(R)$. Thus $f(P) \subseteq cl(R) \subseteq Q$. Hence f is \mathcal{I}_{wg} -continuous.

DEFINITION 2.8. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be an \mathcal{I}_{wg} -space if every \mathcal{I}_{wg} -open set of X is w-open in X.

EXAMPLE 2.11. (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, w = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a, c\}\}$. Then \mathcal{I}_{wg} -open sets are $\{a\}, \{b\}, \{a, b\}, \emptyset$ and X. Then (X, τ, \mathcal{I}) is \mathcal{I}_{wg} -space.

(2) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, w = \{\emptyset, \{b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a, c\}\}$. Then \mathcal{I}_{wg} -open sets are $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \emptyset$ and X. Then (X, τ, \mathcal{I}) is not \mathcal{I}_{wg} -space.

THEOREM 2.4. Let w be a WS on an \mathcal{I}_{wg} -space X. If a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wg} -continuous then f is contra continuous.

PROOF. Let V be any closed set in Y. Since f is contra \mathcal{I}_{wg} -continuous, $f^{-1}(V)$ is \mathcal{I}_{wg} -open in X. Since X is an \mathcal{I}_{wg} -space, $f^{-1}(V)$ is open in X. Therefore f is contra continuous.

DEFINITION 2.9. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be \mathcal{I}_{wg} - T_2 space if for each pair of distinct points x and y in (X, τ, \mathcal{I}) , there exist an \mathcal{I}_{wg} -open set P containing x and an \mathcal{I}_{wg} -open set Q containing y such that $P \cap Q = \emptyset$.

EXAMPLE 2.12. (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b, c\}, X\}, w = \{\emptyset, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset\}$. Then (X, τ, \mathcal{I}) is \mathcal{I}_{wg} - T_2 space.

(2) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, w = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then (X, τ, \mathcal{I}) is not \mathcal{I}_{wg} - T_2 space.

THEOREM 2.5. If w is a WS on an ideal space (X, τ, \mathcal{I}) and for each pair of distinct points x_1, x_2 in X, there exists a function f from (X, τ, \mathcal{I}) into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ and f is contra \mathcal{I}_{wg} -continuous at x_1 and x_2 , then X is \mathcal{I}_{wg} - \mathcal{I}_2 .

PROOF. Let x_1 and x_2 be any two distinct points in X. Then by hypothesis, there is a function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$, such that $f(x_1) \neq f(x_2)$. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since Y is Urysohn, there exist open neighbourhoods Q_{y_1} and Q_{y_2} of y_1 and y_2 respectively in Y such that $cl(Q_{y_1}) \cap cl(Q_{y_2}) = \emptyset$. Since f is contra \mathcal{I}_{wg} -continuous, there exists an \mathcal{I}_{wg} -open set P_{x_i} of x_i in X such that $f(P_{x_i}) \subseteq cl(Q_{y_i})$ for i = 1, 2. Hence we get $P_{x_1} \cap P_{x_2} = \emptyset$ because $cl(Q_{y_1}) \cap cl(Q_{y_2}) = \emptyset$. Thus X is \mathcal{I}_{wg} - T_2 .

COROLLARY 2.1. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If f is a contra \mathcal{I}_{wg} -continuous injection of (X, τ, \mathcal{I}) into a Urysohn space (Y, σ) , then (X, τ, \mathcal{I}) is \mathcal{I}_{wg} - T_2 .

PROOF. Let x_1 and x_2 be any pair of distinct points in X. Since f is contra \mathcal{I}_{wg} -continuous and injective, we have $f(x_1) \neq f(x_2)$. Therefore by Theorem 2.5, X is \mathcal{I}_{wg} -T₂.

COROLLARY 2.2. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If f is a contra \mathcal{I}_{wg} -continuous injection of (X, τ, \mathcal{I}) into a Ultra Hausdorff space (Y, σ) , then (X, τ, \mathcal{I}) is \mathcal{I}_{wg} - T_2 .

PROOF. Let x_1 and x_2 be any two distinct points in X. Then since f is injective and Y is Ultra Hausdorff, $f(x_1) \neq f(x_2)$ and there exist two clopen sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Then $x_i \in f^{-1}(V_i) \in \mathcal{I}w$ GO(X) for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is \mathcal{I}_{wg} - T_2 .

THEOREM 2.6. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is a contra \mathcal{I}_{wg} -continuous, closed injection and Y is Ultra normal, then (X, τ, \mathcal{I}) is \mathcal{I}_{wg} -normal.

PROOF. Let G_1 and G_2 be disjoint closed subsets of X. Since f is closed and injective, $f(G_1)$ and $f(G_2)$ are disjoint closed subsets of Y. Since Y is Ultra normal, $f(G_1)$ and $f(G_2)$ are separated by disjoint clopen sets Q_1 and Q_2 respectively. Hence $G_i \subseteq f^{-1}(Q_i), f^{-1}(Q_i) \in \mathcal{I}w \text{GO}(X)$ for i = 1, 2 and $f^{-1}(Q_1) \cap f^{-1}(Q_2) = \emptyset$. Thus X is \mathcal{I}_{wq} -normal.

DEFINITION 2.10. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A graph G(f) of a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be contra \mathcal{I}_{wg} -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $P \in \mathcal{I}wGO(X)$ containing x and a closed set Q of (Y, σ) containing y such that $f(P) \cap Q = \emptyset$.

EXAMPLE 2.13. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X = Y\}, w = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, X\} \text{ and } \mathcal{I} = \{\emptyset, \{a\}\}.$ Let $f : (X, \tau, \mathcal{I}) \rightarrow (Y, \sigma)$ be an identity function. Then G(f) is contra \mathcal{I}_{wg} -closed in $X \times Y$.

THEOREM 2.7. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wg} -continuous and (Y, σ) is Urysohn, then G(f) is contra \mathcal{I}_{wg} -closed in $X \times Y$.

PROOF. Let $(x, y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$ and there exist open sets Q, R such that $f(x) \in Q, y \in \mathbb{R}$ and $cl(Q) \cap cl(\mathbb{R}) = \emptyset$. Since f is contra \mathcal{I}_{wg} -continuous there exists $P \in \mathcal{I}wGO(X)$ containing x such that $f(P) \subseteq cl(Q)$. Since $cl(Q) \cap cl(\mathbb{R}) = \emptyset$, we have $f(P) \cap cl(\mathbb{R}) = \emptyset$. This shows that G(f) is contra \mathcal{I}_{wg} -closed in $X \times Y$. \Box

REMARK 2.2. The following Example shows that the condition Urysohn on the space (Y, σ) in Theorem 2.7 cannot be dropped.

EXAMPLE 2.14. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{a\}, X = Y\}, w = \{\emptyset, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then Y is not a Urysohn space. Also the identity function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wq} -continuous but not contra \mathcal{I}_{wq} -closed.

COROLLARY 2.3. Let w be a WS on a space X. If $f : (X, \tau) \to (Y, \sigma)$ is contra wg-continuous function and (Y, σ) is a Urysohn space, then G(f) is contra-wgclosed in $X \times Y$.

PROOF. The proof follows from the Theorem 2.7 if $\mathcal{I} = \{\emptyset\}$.

REMARK 2.3. The following Example shows that the condition Urysohn on the space (Y, σ) in Corollary 2.3 cannot be dropped.

EXAMPLE 2.15. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{c\}, \{a, b\}, X = Y\}$, and $w = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then Y is not a Urysohn space. Also the identity function $f : (X, \tau) \to (Y, \sigma)$ is contra *wg*-continuous but not contra *wg*-closed.

DEFINITION 2.11. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be \mathcal{I}_{wg} -connected if (X, τ, \mathcal{I}) cannot be expressed as the union of two disjoint non-empty \mathcal{I}_{wg} -open subsets of (X, τ, \mathcal{I}) .

EXAMPLE 2.16. (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, c\}, \{a, b\}, X\}, w = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_{wg} -open sets are $\{a\}, \{a, b\}, \{a, c\}, \{a, c\}, \emptyset$ and X. Then (X, τ, \mathcal{I}) is \mathcal{I}_{wg} -connected.

(2) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, w = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_{wg} -open sets are $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \emptyset$ and X. Then (X, τ, \mathcal{I}) is not \mathcal{I}_{wg} -connected.

THEOREM 2.8. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then a contra \mathcal{I}_{wg} -continuous image of a \mathcal{I}_{wg} -connected space is connected.

PROOF. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a contra \mathcal{I}_{wg} -continuous function of an \mathcal{I}_{wg} -connected space (X, τ, \mathcal{I}) onto a space (Y, σ) . If possible, let Y be disconnected. Let M and N form a disconnection of Y. Then M and N are clopen and $Y=M\cup N$ where $M\cap N=\emptyset$. Since f is contra \mathcal{I}_{wg} -continuous, $X = f^{-1}(Y) = f^{-1}(M \cup N) = f^{-1}(M) \cup f^{-1}(N)$, where $f^{-1}(M)$ and $f^{-1}(N)$ are nonempty \mathcal{I}_{wg} -open sets in X. Also $f^{-1}(M) \cap f^{-1}(N) = \emptyset$. Hence X is not \mathcal{I}_{wg} -connected. This is a contradiction. Therefore Y is connected.

DEFINITION 2.12. Let w be a WS on a space (X, τ) . Then (X, τ) is said to be wg-connected if (X, τ) can not be expressed as the union of two disjoint non-empty wg-open subsets of (X, τ) .

EXAMPLE 2.17. (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{b, c\}, X\}$ and $w = \{\emptyset, \{b, c\}, \{a, b\}, X\}$. Then (X, τ) is wg-connected.

(2) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{a, c\}, X\}$ and $w = \{\emptyset, \{a\}, \{c\}, \{a, b\}, X\}$. Then (X, τ) is not wg-connected.

COROLLARY 2.4. Let w be a WS on a space X. Then a contra wg-continuous image of a wg-connected space is connected.

PROOF. The proof follows from the Theorem 2.8 if $\mathcal{I} = \{\emptyset\}$.

LEMMA 2.1. For a WS w on an ideal space (X, τ, \mathcal{I}) , the following are equivalent:

(1) X is \mathcal{I}_{wg} -connected.

(2) The only subset of X which are both \mathcal{I}_{wg} -open and \mathcal{I}_{wg} -closed are the empty set \emptyset and X.

PROOF. (1) \Rightarrow (2). Let G be an \mathcal{I}_{wg} -open and \mathcal{I}_{wg} -closed subset of X. Then X - G is both \mathcal{I}_{wg} -open and \mathcal{I}_{wg} -closed. Since X is \mathcal{I}_{wg} -connected, X can be expressed as union of two disjoint non-empty \mathcal{I}_{wg} -open sets X and X - G, which implies X - G is empty.

(2) \Rightarrow (1). Suppose $X = P \cup Q$ where P and Q are disjoint non-empty \mathcal{I}_{wg} -open subsets of X. Then P is both \mathcal{I}_{wg} -open and \mathcal{I}_{wg} -closed. By assumption either $P=\emptyset$ or X which contradicts the assumption that P and Q are disjoint nonempty \mathcal{I}_{wg} -open subsets of X. Therefore X is \mathcal{I}_{wg} -connected. \Box

DEFINITION 2.13. Let w be a WS on a space X. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is called w-preclosed if f(V) is preclosed in Y for each w-closed set V of X.

THEOREM 2.9. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a surjective w-preclosed contra \mathcal{I}_{wg} -continuous function. If X is an \mathcal{I}_{wg} -space, then Y is locally indiscrete.

PROOF. Suppose that Q is open in Y. Since f is contra \mathcal{I}_{wg} -continuous, $f^{-1}(Q) = P$ is \mathcal{I}_{wg} -closed in X. Since X is an \mathcal{I}_{wg} -space, P is w-closed in X. Since f is w-preclosed, then Q is preclosed in Y. Now we have $cl(Q) = cl(int(Q)) \subseteq Q$. This means that Q is closed and hence Y is locally indiscrete. \Box

References

- A. Al-Omari and T. Noiri. A unified theory of generalized closed sets in weak structures. Acta Math. Hungar., 135(1-2)(2012), 174-183.
- [2] Á. Császár. Weak Structures. Acta Math. Hungar., 131(1-2)(2011), 193-195.
- [3] J. Dontchev. Contra-continuous functions and strongly S-closed spaces. Int. J. Math. Math. Sci., 19(2)(1996), 303-310.
- [4] J. Dontchev, M. Ganster and T. Noiri. Unified operation approach of generalized closed sets via topological ideals. *Math. Japan.*, 49(1999), 395-401.
- [5] T. Hussain. Topology and Maps. Plenum press, New York, 1977.
- [6] V. Inthumathi, S. Krishnaprakash and M. Rajamani. Strongly-*I*-locally closed sets and decompositions of *-continuity. Acta Math. Hungar., 130(4)(2011), 358-362.
- [7] D. Janković and T. R. Hamlett, New topologies from old via ideals. Amer. Math. Monthly, 97(4)(1990), 295-310.
- [8] J. L. Kelly. General Topology. Van Nostrand, New York, 1955.
- [9] K. Kuratowski. Topology, Vol. 1, Academic Press, New York, 1966.
- [10] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [11] O. Nethaji, R. Premkumar and O. Ravi. \mathcal{I}_{g} - \star -closed sets. (Submitted).
- [12] T. Nieminen. On ultra pseudo compact and related topics. Ann. Acad. Sci. Fenn. Ser. A.I. Math., 3(1977), 185-205.
- [13] M. Rajamani, V. Inthumathi and V. Chitra. On contra \mathcal{I}_g -continuity in ideal topological spaces. Journal of Informatics and Mathematical Sciences, **3**(3)(2011), 233-239.
- [14] R. Vaidyanathaswamy. Set topology, Chelsea Publishing Company, New York, 1946.
- [15] S. Willard. General Topology. Addison-Wesley, (1970).

Received by editors 03.06.2018; Revised version 05.12.2018; Available online 17.12.2018.

Research Scholar, Department of Mathematics, Bharathidasan University, Trichy, Tamil Nadu, India

E-mail address: sangeethasubha110gmail.com

Associate professor, Department of Mathematics, Latha Mathavan Engineering College, Madurai, Tamil Nadu, India

E-mail address: prabhakaran2611@gmail.com

Assistant Professor, Department of Mathematics, Govt Arts College for Women, Nilakottai, Tamil Nadu, India

E-mail address: vasagan2000@yahoo.co.in

Controller of Examinations, Madurai Kamaraj University, Madurai, Tamil Nadu, India