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CERTAIN PROPERTIES OF

THE NIELSEN’s β-FUNCTION

Kwara Nantomah

Abstract. By using some analytical techniques, we present some properties
of the Nielsen’s β-function. The results established are analogous to some
known works involving the gamma and digamma functions.

1. Introduction

In 1974, Gautschi [3] presented an interesting inequality involving the classical
Euler’s Gamma function, Γ(x). He proved that, for x > 0, the harmonic mean of
Γ(x) and Γ(1/x) is always greater than or equal to 1. That is,

(1.1) 1 6 2Γ(x)Γ(1/x)

Γ(x) + Γ(1/x)
, x > 0,

with equality if x = 1. As a direct consequence of (1.1), the inequalities

(1.2) 2 6 Γ(x) + Γ(1/x), x > 0,

and

(1.3) 1 6 Γ(x)Γ(1/x), x > 0,

are obtained. Then recently, Alzer and Jameson [1] established a striking com-
panion of (1.1) which involves the digamma function, ψ(x). They proved that the
inequality

(1.4) −γ 6 2ψ(x)ψ(1/x)

ψ(x) + ψ(1/x)
, x > 0,
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holds, with equality if x = 1, where γ = 0.57721, ... is the Euler-Mascheroni con-
stant. In addition, they proved that

(1.5) P (x) = ψ(x) + ψ(1/x),

is strictly concave on (0,∞) and that

(1.6) ψ(x) + ψ(1/x) < −2γ, x > 0, x ̸= 1.

(1.7) ψ(1 + y)ψ(1− y) < γ2, y ∈ (0, 1).

(1.8) ψ(x)ψ(1/x) < γ2, x > 0, x ̸= 1.

Also, in [11], it was established among other things that the function

(1.9) h1 = ψ

(
x+

1

2

)
− ψ (x)− 1

2x
,

is strictly decreasing and convex on (0,∞). Motivated by the result (1.9), Mortici
[6] proved that the generalized function

(1.10) fa = ψ(x+ a)− ψ(x)− a

x
, a ∈ (0, 1),

is strictly completely monotonic on (0,∞).

Inspired by the above results, the purpose of this paper is to establish analogous
results for the Nielsen’s β-function.

2. Preliminary Definitions

The Nielsen’s β-function may be defined by any of the following equivalent forms
(see [2], [4], [7], [10]).

β(x) =

∫ 1

0

tx−1

1 + t
dt, x > 0,(2.1)

=

∫ ∞

0

e−xt

1 + e−t
dt, x > 0,(2.2)

=
∞∑
k=0

(−1)k

k + x
, x > 0,(2.3)

=
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
, x > 0,(2.4)

where ψ(x) = d
dx ln Γ(x) is the digamma or psi function and Γ(x) is the Euler’s

Gamma function. It is known to satisfy the properties:

β(x+ 1) =
1

x
− β(x),(2.5)

β(x) + β(1− x) =
π

sinπx
.(2.6)

Some particular values of the function are β(1) = ln 2, β
(
1
2

)
= π

2 , β
(
3
2

)
= 2 − π

2
and β(2) = 1− ln 2.
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By differentiating n-times of (2.1), (2.2), (2.3), (2.4) and (2.5), one obtains

β(n)(x) =

∫ 1

0

(ln t)ntx−1

1 + t
dt, x > 0(2.7)

= (−1)n
∫ ∞

0

tne−xt

1 + e−t
dt, x > 0(2.8)

= (−1)nn!
∞∑
k=0

(−1)k

(k + x)n+1
, x > 0(2.9)

=
1

2n+1

{
ψ(n)

(
x+ 1

2

)
− ψ(n)

(x
2

)}
, x > 0(2.10)

β(n)(x+ 1) =
(−1)nn!

xn+1
− β(n)(x), x > 0(2.11)

where n ∈ N0 and β(0)(x) = β(x).
For additional information on this special function, one may refer to [7], [8], [9]
and the related references therein.

3. Main Results

Lemma 3.1. The function xβ(x) is decreasing and convex on (0,∞). Conse-
quently, the inequalities

(3.1) β(x) + xβ′(x) < 0, x > 0,

and

(3.2) 2β′(x) + xβ′′(x) > 0, x > 0,

are satisfied.

Proof. In Theorem 3 of [9], the function x
∣∣β(m)(x)

∣∣, x > 0, m ∈ N0 was
proved to be completely monotonic. Thus, xβ(x) (i.e. the case where m = 0) is
completely monotonic. Since every completely monotonic function is decreasing
and convex [5], we conclude that xβ(x) is decreasing and convex. These give rise
to inequalities (3.1) and (3.2). �

Theorem 3.2. The function

(3.3) Q(x) = β(x) + β(1/x),

is strictly convex on (0,∞).

Proof. By direct differentiation, and by applying (3.2), we obtain

Q′(x) = β′(x)− 1

x2
β′(1/x),

Q′′(x) = β′′(x) +
2

x3
β′(1/x) +

1

x4
β′′(1/x)

= β′′(x) +
1

x3

[
2β′(1/x) +

1

x
β′′(1/x)

]
> 0,

which completes the proof. �
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Theorem 3.3. The inequality

(3.4) β(x) + β(1/x) > 2 ln 2,

holds for x > 0.

Proof. Let Q(x) be defined as in (3.3). Since Q′′(x) > 0, then (Q′(x))′ > 0
which implies that Q′(x) is increasing. Then Q′(x) 6 Q′(1) = 0 for x ∈ (0, 1] and
Q′(x) > Q′(1) = 0 for x ∈ [1,∞). These imply that Q(x) is decreasing on (0, 1]
and increasing on [1,∞). Therefore, in either case, we have Q(x) > Q(1) = 2 ln 2
which gives the desired result. �

Theorem 3.4. The inequality

(3.5) β(1 + s)β(1− s) > (ln 2)2,

holds for s ∈ [0, 1).

Proof. Since β(x) is logarithmically convex (see [7]), then we have

(3.6) β

(
x+ y

2

)
6

√
β(x)β(y),

for x > 0 and y > 0. Now, by letting x = 1 + s and y = 1 − s in (3.6), we obtain
the desired result (3.5). �

Theorem 3.5. The inequality

(3.7) β(x)β(1/x) > (ln 2)2,

holds for x > 0.

Proof. If x > 1, then 0 < 1/x 6 1. Also, if 0 < x 6 1, then 1/x > 1. Hence
it suffices to prove (3.7) for x > 1. For x > 1 and s ∈ [0, 1), let x = 1 + s and
1/x = 1− s. Then by (3.5), we obtain

β(x)β(1/x) = β(1 + s)β(1− s) > (ln 2)2,

which concludes the proof. �
Theorem 3.6. For x, y ∈ [1,∞), the inequality

(3.8)
2β(x)β(y)

β(x) + β(y)
6 ln 2,

is satisfied. In other words, for x, y ∈ [1,∞), the harmonic mean of β(x) and β(y)
is at most ln 2 .

Proof. Note that for v ∈ [1,∞), we have β(v) 6 β(1) = ln 2, since β(v) is
decreasing. Thus, [β(v)]2 6 (ln 2)β(v) for all v ∈ [1,∞). Now, let x, y ∈ [1,∞).
Then, we have

2β(x)β(y) 6 [β(x)]2 + [β(y)]2 6 (ln 2) [β(x) + β(y)] ,

which gives the desired result. �
In view of the harmonic mean inequalities (1.1) and (1.4), we give the following

conjecture.
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Conjecture 3.7. For x ∈ (0,∞), the inequality

(3.9)
2β(x)β(1/x)

β(x) + β(1/x)
6 ln 2,

is satisfied, with equality if x = 1.

Theorem 3.8. The double inequality

(3.10)
1

x
− ln 2 < β(x) <

1

x
,

holds for x ∈ (0,∞).

Proof. As a a direct consequence of (2.5), we obtain

(3.11) β(x) <
1

x
,

for x ∈ (0,∞). Also, by (2.5), we obtain the limit

(3.12) lim
x→0+

{
1

x
− β(x)

}
= ln 2.

Now, let θ(x) = 1
x − β(x) for x ∈ (0,∞). Then by (2.11), we obtain

θ′(x) = − 1

x2
− β′(x) < 0,

which shows that θ(x) is decreasing. Hence

(3.13)
1

x
− β(x) = θ(x) < lim

x→0+
θ(x) = ln 2.

Then, by combining (3.11) and (3.13), we obtain the result (3.10). �

Theorem 3.9. The limit

(3.14) lim
z→0+

1

z

{
1

β(1− z)
− 1

β(1 + z)

}
= − π2

6(ln 2)2
,

is valid for z ∈ (0, 1).

Proof. It can be shown from relation (2.4) that β′(1) = −π2

12 . Then by
L’Hopital’s rule, we obtain

lim
z→0+

1

z

{
1

β(1− z)
− 1

β(1 + z)

}
= lim

z→0+

{
β′(1− z)

[β(1− z)]2
+

β′(1 + z)

[β(1 + z)]2

}
= − π2

6(ln 2)2
.

�

Theorem 3.10. For a > 0 and x ∈ (0,∞), let fa be defined as

(3.15) fa(x) = β(x+ a)− β(x)− a

x
.

Then −fa is strictly completely monotonic.
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Proof. Recall that a function f : (0,∞) → R is said to be completely mono-
tonic on (0,∞) if f has derivatives of all order and (−1)nf (n)(x) > 0 for all
x ∈ (0,∞) and n ∈ N. Let

ha(x) = −fa(x) =
a

x
+ β(x)− β(x+ a).

Then by repeated differentiation and by using (2.8), we obtain

h(n)a (x) = (−1)na
n!

xn+1
+ β(n)(x)− β(n)(x+ a)

= (−1)na

∫ ∞

0

tne−xt dt+ (−1)n
∫ ∞

0

tne−xt

1 + e−t
dt

− (−1)n
∫ ∞

0

tne−(x+a)t

1 + e−t
dt,

(−1)nh(n)a (x) = a

∫ ∞

0

tne−xt dt+

∫ ∞

0

tne−xt

1 + e−t
dt−

∫ ∞

0

tne−(x+a)t

1 + e−t
dt

=

∫ ∞

0

[
a+

1− e−at

1 + e−t

]
tne−xt dt > 0,

which completes the proof. �

Corollary 3.11. The inequality

(3.16) 0 < β(x)− β(x+ a) +
a

x
6 ln 2 + a− 1

a
+ β(a),

holds for a > 0 and x ∈ [1,∞).

Proof. Since ha(x) is completely monotonic on (0,∞), then it is decreasing
on (0,∞). Then for x ∈ [1,∞), we have

0 = lim
x→∞

ha(x) < ha(x) 6 ha(1) = a+ β(1)− β(1 + a)

= ln 2 + a− 1

a
+ β(a),

yielding the desired result. �

Remark 3.12. In particular, if a = 1
2 , we obtain the sharp inequality

(3.17) 0 < β(x)− β

(
x+

1

2

)
+

1

2x
6 ln 2 +

π − 3

2
,

for x ∈ [1,∞). If x ∈ (0, 1], then the right-hand sides of (3.16) and (3.17) are
reversed.
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