CERTAIN PROPERTIES OF THE NIELSEN's β-FUNCTION

Kwara Nantomah

Abstract

By using some analytical techniques, we present some properties of the Nielsen's β-function. The results established are analogous to some known works involving the gamma and digamma functions.

1. Introduction

In 1974, Gautschi [3] presented an interesting inequality involving the classical Euler's Gamma function, $\Gamma(x)$. He proved that, for $x>0$, the harmonic mean of $\Gamma(x)$ and $\Gamma(1 / x)$ is always greater than or equal to 1 . That is,

$$
\begin{equation*}
1 \leqslant \frac{2 \Gamma(x) \Gamma(1 / x)}{\Gamma(x)+\Gamma(1 / x)}, \quad x>0 \tag{1.1}
\end{equation*}
$$

with equality if $x=1$. As a direct consequence of (1.1), the inequalities

$$
\begin{equation*}
2 \leqslant \Gamma(x)+\Gamma(1 / x), \quad x>0, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leqslant \Gamma(x) \Gamma(1 / x), \quad x>0 \tag{1.3}
\end{equation*}
$$

are obtained. Then recently, Alzer and Jameson [1] established a striking companion of (1.1) which involves the digamma function, $\psi(x)$. They proved that the inequality

$$
\begin{equation*}
-\gamma \leqslant \frac{2 \psi(x) \psi(1 / x)}{\psi(x)+\psi(1 / x)}, \quad x>0 \tag{1.4}
\end{equation*}
$$

[^0]holds, with equality if $x=1$, where $\gamma=0.57721, \ldots$ is the Euler-Mascheroni constant. In addition, they proved that
\[

$$
\begin{equation*}
P(x)=\psi(x)+\psi(1 / x) \tag{1.5}
\end{equation*}
$$

\]

is strictly concave on $(0, \infty)$ and that

$$
\begin{gather*}
\psi(x)+\psi(1 / x)<-2 \gamma, \quad x>0, x \neq 1 . \tag{1.6}\\
\psi(1+y) \psi(1-y)<\gamma^{2}, \quad y \in(0,1) . \tag{1.7}\\
\psi(x) \psi(1 / x)<\gamma^{2}, \quad x>0, x \neq 1 . \tag{1.8}
\end{gather*}
$$

Also, in [11], it was established among other things that the function

$$
\begin{equation*}
h_{1}=\psi\left(x+\frac{1}{2}\right)-\psi(x)-\frac{1}{2 x}, \tag{1.9}
\end{equation*}
$$

is strictly decreasing and convex on $(0, \infty)$. Motivated by the result (1.9), Mortici [6] proved that the generalized function

$$
\begin{equation*}
f_{a}=\psi(x+a)-\psi(x)-\frac{a}{x}, \quad a \in(0,1), \tag{1.10}
\end{equation*}
$$

is strictly completely monotonic on $(0, \infty)$.
Inspired by the above results, the purpose of this paper is to establish analogous results for the Nielsen's β-function.

2. Preliminary Definitions

The Nielsen's β-function may be defined by any of the following equivalent forms (see [2], [4], [7], [10]).

$$
\begin{align*}
\beta(x) & =\int_{0}^{1} \frac{t^{x-1}}{1+t} d t, \quad x>0 \tag{2.1}\\
& =\int_{0}^{\infty} \frac{e^{-x t}}{1+e^{-t}} d t, \quad x>0 \tag{2.2}\\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+x}, \quad x>0 \tag{2.3}\\
& =\frac{1}{2}\left\{\psi\left(\frac{x+1}{2}\right)-\psi\left(\frac{x}{2}\right)\right\}, \quad x>0 \tag{2.4}
\end{align*}
$$

where $\psi(x)=\frac{d}{d x} \ln \Gamma(x)$ is the digamma or psi function and $\Gamma(x)$ is the Euler's Gamma function. It is known to satisfy the properties:

$$
\begin{align*}
\beta(x+1) & =\frac{1}{x}-\beta(x), \tag{2.5}\\
\beta(x)+\beta(1-x) & =\frac{\pi}{\sin \pi x} . \tag{2.6}
\end{align*}
$$

Some particular values of the function are $\beta(1)=\ln 2, \beta\left(\frac{1}{2}\right)=\frac{\pi}{2}, \beta\left(\frac{3}{2}\right)=2-\frac{\pi}{2}$ and $\beta(2)=1-\ln 2$.

By differentiating n-times of (2.1), (2.2), (2.3), (2.4) and (2.5), one obtains

$$
\begin{align*}
\beta^{(n)}(x) & =\int_{0}^{1} \frac{(\ln t)^{n} t^{x-1}}{1+t} d t, \quad x>0 \tag{2.7}\\
& =(-1)^{n} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1+e^{-t}} d t, \quad x>0 \tag{2.8}\\
& =(-1)^{n} n!\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+x)^{n+1}}, \quad x>0 \tag{2.9}\\
& =\frac{1}{2^{n+1}}\left\{\psi^{(n)}\left(\frac{x+1}{2}\right)-\psi^{(n)}\left(\frac{x}{2}\right)\right\}, \quad x>0 \tag{2.10}\\
\beta^{(n)}(x+1) & =\frac{(-1)^{n} n!}{x^{n+1}}-\beta^{(n)}(x), \quad x>0 \tag{2.11}
\end{align*}
$$

where $n \in \mathbb{N}_{0}$ and $\beta^{(0)}(x)=\beta(x)$.
For additional information on this special function, one may refer to $[\mathbf{7}],[\mathbf{8}],[\mathbf{9}]$ and the related references therein.

3. Main Results

Lemma 3.1. The function $x \beta(x)$ is decreasing and convex on $(0, \infty)$. Consequently, the inequalities

$$
\begin{equation*}
\beta(x)+x \beta^{\prime}(x)<0, \quad x>0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \beta^{\prime}(x)+x \beta^{\prime \prime}(x)>0, \quad x>0 \tag{3.2}
\end{equation*}
$$

are satisfied.
Proof. In Theorem 3 of $[\mathbf{9}]$, the function $x\left|\beta^{(m)}(x)\right|, x>0, m \in \mathbb{N}_{0}$ was proved to be completely monotonic. Thus, $x \beta(x)$ (i.e. the case where $m=0$) is completely monotonic. Since every completely monotonic function is decreasing and convex [5], we conclude that $x \beta(x)$ is decreasing and convex. These give rise to inequalities (3.1) and (3.2).

Theorem 3.2. The function

$$
\begin{equation*}
Q(x)=\beta(x)+\beta(1 / x) \tag{3.3}
\end{equation*}
$$

is strictly convex on $(0, \infty)$.
Proof. By direct differentiation, and by applying (3.2), we obtain

$$
\begin{aligned}
Q^{\prime}(x) & =\beta^{\prime}(x)-\frac{1}{x^{2}} \beta^{\prime}(1 / x), \\
Q^{\prime \prime}(x) & =\beta^{\prime \prime}(x)+\frac{2}{x^{3}} \beta^{\prime}(1 / x)+\frac{1}{x^{4}} \beta^{\prime \prime}(1 / x) \\
& =\beta^{\prime \prime}(x)+\frac{1}{x^{3}}\left[2 \beta^{\prime}(1 / x)+\frac{1}{x} \beta^{\prime \prime}(1 / x)\right]>0
\end{aligned}
$$

which completes the proof.

Theorem 3.3. The inequality

$$
\begin{equation*}
\beta(x)+\beta(1 / x) \geqslant 2 \ln 2 \tag{3.4}
\end{equation*}
$$

holds for $x>0$.
Proof. Let $Q(x)$ be defined as in (3.3). Since $Q^{\prime \prime}(x)>0$, then $\left(Q^{\prime}(x)\right)^{\prime}>0$ which implies that $Q^{\prime}(x)$ is increasing. Then $Q^{\prime}(x) \leqslant Q^{\prime}(1)=0$ for $x \in(0,1]$ and $Q^{\prime}(x) \geqslant Q^{\prime}(1)=0$ for $x \in[1, \infty)$. These imply that $Q(x)$ is decreasing on $(0,1]$ and increasing on $[1, \infty)$. Therefore, in either case, we have $Q(x) \geqslant Q(1)=2 \ln 2$ which gives the desired result.

Theorem 3.4. The inequality

$$
\begin{equation*}
\beta(1+s) \beta(1-s) \geqslant(\ln 2)^{2}, \tag{3.5}
\end{equation*}
$$

holds for $s \in[0,1)$.
Proof. Since $\beta(x)$ is logarithmically convex (see [7]), then we have

$$
\begin{equation*}
\beta\left(\frac{x+y}{2}\right) \leqslant \sqrt{\beta(x) \beta(y)} \tag{3.6}
\end{equation*}
$$

for $x>0$ and $y>0$. Now, by letting $x=1+s$ and $y=1-s$ in (3.6), we obtain the desired result (3.5).

Theorem 3.5. The inequality

$$
\begin{equation*}
\beta(x) \beta(1 / x) \geqslant(\ln 2)^{2}, \tag{3.7}
\end{equation*}
$$

holds for $x>0$.
Proof. If $x \geqslant 1$, then $0<1 / x \leqslant 1$. Also, if $0<x \leqslant 1$, then $1 / x \geqslant 1$. Hence it suffices to prove (3.7) for $x \geqslant 1$. For $x \geqslant 1$ and $s \in[0,1$), let $x=1+s$ and $1 / x=1-s$. Then by (3.5), we obtain

$$
\beta(x) \beta(1 / x)=\beta(1+s) \beta(1-s) \geqslant(\ln 2)^{2},
$$

which concludes the proof.
Theorem 3.6. For $x, y \in[1, \infty)$, the inequality

$$
\begin{equation*}
\frac{2 \beta(x) \beta(y)}{\beta(x)+\beta(y)} \leqslant \ln 2 \tag{3.8}
\end{equation*}
$$

is satisfied. In other words, for $x, y \in[1, \infty)$, the harmonic mean of $\beta(x)$ and $\beta(y)$ is at most $\ln 2$.

Proof. Note that for $v \in[1, \infty)$, we have $\beta(v) \leqslant \beta(1)=\ln 2$, since $\beta(v)$ is decreasing. Thus, $[\beta(v)]^{2} \leqslant(\ln 2) \beta(v)$ for all $v \in[1, \infty)$. Now, let $x, y \in[1, \infty)$. Then, we have

$$
2 \beta(x) \beta(y) \leqslant[\beta(x)]^{2}+[\beta(y)]^{2} \leqslant(\ln 2)[\beta(x)+\beta(y)],
$$

which gives the desired result.
In view of the harmonic mean inequalities (1.1) and (1.4), we give the following conjecture.

Conjecture 3.7. For $x \in(0, \infty)$, the inequality

$$
\begin{equation*}
\frac{2 \beta(x) \beta(1 / x)}{\beta(x)+\beta(1 / x)} \leqslant \ln 2 \tag{3.9}
\end{equation*}
$$

is satisfied, with equality if $x=1$.
Theorem 3.8. The double inequality

$$
\begin{equation*}
\frac{1}{x}-\ln 2<\beta(x)<\frac{1}{x} \tag{3.10}
\end{equation*}
$$

holds for $x \in(0, \infty)$.
Proof. As a a direct consequence of (2.5), we obtain

$$
\begin{equation*}
\beta(x)<\frac{1}{x} \tag{3.11}
\end{equation*}
$$

for $x \in(0, \infty)$. Also, by (2.5), we obtain the limit

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}}\left\{\frac{1}{x}-\beta(x)\right\}=\ln 2 \tag{3.12}
\end{equation*}
$$

Now, let $\theta(x)=\frac{1}{x}-\beta(x)$ for $x \in(0, \infty)$. Then by (2.11), we obtain

$$
\theta^{\prime}(x)=-\frac{1}{x^{2}}-\beta^{\prime}(x)<0
$$

which shows that $\theta(x)$ is decreasing. Hence

$$
\begin{equation*}
\frac{1}{x}-\beta(x)=\theta(x)<\lim _{x \rightarrow 0^{+}} \theta(x)=\ln 2 \tag{3.13}
\end{equation*}
$$

Then, by combining (3.11) and (3.13), we obtain the result (3.10).
Theorem 3.9. The limit

$$
\begin{equation*}
\lim _{z \rightarrow 0^{+}} \frac{1}{z}\left\{\frac{1}{\beta(1-z)}-\frac{1}{\beta(1+z)}\right\}=-\frac{\pi^{2}}{6(\ln 2)^{2}} \tag{3.14}
\end{equation*}
$$

is valid for $z \in(0,1)$.
Proof. It can be shown from relation (2.4) that $\beta^{\prime}(1)=-\frac{\pi^{2}}{12}$. Then by L'Hopital's rule, we obtain

$$
\begin{aligned}
\lim _{z \rightarrow 0^{+}} \frac{1}{z}\left\{\frac{1}{\beta(1-z)}-\frac{1}{\beta(1+z)}\right\} & =\lim _{z \rightarrow 0^{+}}\left\{\frac{\beta^{\prime}(1-z)}{[\beta(1-z)]^{2}}+\frac{\beta^{\prime}(1+z)}{[\beta(1+z)]^{2}}\right\} \\
& =-\frac{\pi^{2}}{6(\ln 2)^{2}}
\end{aligned}
$$

Theorem 3.10. For $a>0$ and $x \in(0, \infty)$, let f_{a} be defined as

$$
\begin{equation*}
f_{a}(x)=\beta(x+a)-\beta(x)-\frac{a}{x} \tag{3.15}
\end{equation*}
$$

Then $-f_{a}$ is strictly completely monotonic.

Proof. Recall that a function $f:(0, \infty) \rightarrow \mathbb{R}$ is said to be completely monotonic on $(0, \infty)$ if f has derivatives of all order and $(-1)^{n} f^{(n)}(x) \geqslant 0$ for all $x \in(0, \infty)$ and $n \in \mathbb{N}$. Let

$$
h_{a}(x)=-f_{a}(x)=\frac{a}{x}+\beta(x)-\beta(x+a) .
$$

Then by repeated differentiation and by using (2.8), we obtain

$$
\begin{aligned}
h_{a}^{(n)}(x)= & (-1)^{n} a \frac{n!}{x^{n+1}}+\beta^{(n)}(x)-\beta^{(n)}(x+a) \\
= & (-1)^{n} a \int_{0}^{\infty} t^{n} e^{-x t} d t+(-1)^{n} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1+e^{-t}} d t \\
& -(-1)^{n} \int_{0}^{\infty} \frac{t^{n} e^{-(x+a) t}}{1+e^{-t}} d t, \\
(-1)^{n} h_{a}^{(n)}(x)= & a \int_{0}^{\infty} t^{n} e^{-x t} d t+\int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1+e^{-t}} d t-\int_{0}^{\infty} \frac{t^{n} e^{-(x+a) t}}{1+e^{-t}} d t \\
= & \int_{0}^{\infty}\left[a+\frac{1-e^{-a t}}{1+e^{-t}}\right] t^{n} e^{-x t} d t>0,
\end{aligned}
$$

which completes the proof.
Corollary 3.11. The inequality

$$
\begin{equation*}
0<\beta(x)-\beta(x+a)+\frac{a}{x} \leqslant \ln 2+a-\frac{1}{a}+\beta(a), \tag{3.16}
\end{equation*}
$$

holds for $a>0$ and $x \in[1, \infty)$.
Proof. Since $h_{a}(x)$ is completely monotonic on $(0, \infty)$, then it is decreasing on $(0, \infty)$. Then for $x \in[1, \infty)$, we have

$$
\begin{aligned}
0=\lim _{x \rightarrow \infty} h_{a}(x)<h_{a}(x) \leqslant h_{a}(1) & =a+\beta(1)-\beta(1+a) \\
& =\ln 2+a-\frac{1}{a}+\beta(a),
\end{aligned}
$$

yielding the desired result.
REmARK 3.12. In particular, if $a=\frac{1}{2}$, we obtain the sharp inequality

$$
\begin{equation*}
0<\beta(x)-\beta\left(x+\frac{1}{2}\right)+\frac{1}{2 x} \leqslant \ln 2+\frac{\pi-3}{2}, \tag{3.17}
\end{equation*}
$$

for $x \in[1, \infty)$. If $x \in(0,1]$, then the right-hand sides of (3.16) and (3.17) are reversed.

References

1. H. Alzer and G. Jameson. A harmonic mean inequality for the digamma function and related results. Rend. Sem. Mat. Univ. Padova., 137(2017), 203-209.
2. D. F. Connon. On an integral involving the digamma function. arXiv:1212.1432 [math. GM].
3. W. Gautschi. A harmonic mean inequality for the gamma function. SIAM J. Math. Anal., 5(2)(1974), 278-281.
4. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, New York, 8th Edition, 2014.
5. M. Merkle. Completely monotone functions -a digest. In: Milovanovi G., Rassias M. (eds). Analytic Number Theory, Approximation Theory, and Special Functions (pp. 347-364). Springer, New York, NY, 2014.
6. C. Mortici. A sharp inequality involving the psi function. Acta Univ. Apulensis Math. Inform., 22(1)(2010), 41-45.
7. K. Nantomah. On some properties and inequalities for the Nielsen's β-function. SCIENTIA Series A: Mathematical Sciences, 28(2017-2018), 43-54.
8. K. Nantomah. Monotonicity and convexity properties and some inequalities involving a generalized form of the Wallis' cosine formula. Asian Research Journal of Mathematics, 6(3)(2017), 1-10.
9. K. Nantomah. Monotonicity and convexity properties of the Nielsen's β-function. Probl. Anal. Issues Anal., 6(24)(2)(2017), 81-93.
10. N. Nielsen. Handbuch der Theorie der Gammafunktion, First Edition, Leipzig : B. G. Teubner, 1906.
11. S.-L. Qiu and M. Vuorinen. Some properties of the gamma and psi functions, with applications. Math. Comp., 74(250)(2004), 723-742.

Received by editors 13.02.2018; Revised version 03.12.2018; Available online 17.12.2018.
Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana.

E-mail address: knantomah@uds.edu.gh

[^0]: 2010 Mathematics Subject Classification. 26A48, 26A51, 39B62.
 Key words and phrases. Nielsen's β-function, digamma function, harmonic mean, completely monotonic, inequality.

