BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 9(2019), 255-261 DOI: 10.7251/BIMVI1902255G

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

DOMINATION AND TOTAL DOMINATION NUMBER OF BLOCK-TRANSFORMATION GRAPH G¹⁰¹

Manjula C. Gudgeri, Jaishri B.Veeragoudar, Pallavi Sangolli

ABSTRACT. A set $S \subseteq V$ of vertices in a graph G = (V, E) is called a dominating set if every vertex $v \in V$ is either an element of S or adjacent to the element of S i.e. N[S] = V(G). The domination number $\gamma(G)$ of a graph is the minimum cardinality of a dominating set in G.

A set $S \subseteq V$ of vertices in a graph G = (V, E) is called a total dominating set if every vertex $v \in V$ there exists a vertex $u \in S$, $u \neq v$; u is adjacent to v. i.e. N(S) = V(G). The total domination number $\gamma_t(G)$ of a graph G is the minimum cardinality of a total dominating set. This concept was introduced by Cockayne, Dawes and Hedetniemi in [5]. In this paper, we determine domination as well as total domination number for block-transformation of some class of graphs.

1. Introduction

The graphs considered here are finite, undirected and without multiple loops or multiple edges. We follow $[\mathbf{1}, \mathbf{3}]$ for unexplained terminology and notation. Let V(G) and E(G) denote the vertex set and edge set of G respectively. A block is connected, nontrivial graph having no cut vertices. If B is a block of G with its vertex set $V(B) = \{u_1, u_2, \ldots u_r; r \ge 2\}$ then we say that u_i $(1 \le i \le r)$, and B are incident with each other. If two blocks B_i and B_j of G, have a common cutvertex, then we say that B_i and B_j are adjacent blocks of G. Let U(G) denote the block set of G and is the set $\{B_i : B_i \text{ is a block of } G\}$. The general concept of the block-transformation graph G was introduced in $[\mathbf{1}]$. Let G = (V(G), E(G))be a graph with block set U(G), and α, β, γ be three variables having the values 0 or 1. The block-transformation graph G is the graph having $V(G) \cup U(G)$, as

²⁰¹⁰ Mathematics Subject Classification. 05C69L.

Key words and phrases. Domination number, total domination number and Block - transformation graph.

²⁵⁵

its vertex set. For any two vertices x and y in $V(G) \cup U(G)$ we define α, β, γ as follows:

(i) Suppose x, y are in V(G). $\alpha = 1$ if x and y are adjacent in G. $\alpha = 0$ if x and y are not adjacent in G.

(ii) Suppose x, y are in U(G). $\beta = 1$ if x and y are adjacent in G. $\beta = 0$ if x and y are not adjacent in G.

(iii) Suppose $x \in V(G)$ and $y \in U(G)$. $\gamma = 1$ if x and y are incident in G. $\gamma = 0$ if x and y are not incident in G.

DEFINITION 1.1. The block-transformation graph G^{101} of a graph G is the graph with vertex set $V(G) \cup U(G)$ in which the vertices x and y are joined by an edge if one of the following conditions hold

(i) $x, y \in V(G)$, and x and y are adjacent in G.

(ii) $x, y \in U(G)$, and x and y are not adjacent in G.

(iii) One of x and y is in V(G) and the other is in U(G), and they are incident in G (see Figure 1).

FIGURE 1

In G^{101} , the light vertices correspond to the vertices of G and dark vertices correspond to the blocks of G. Without loss of generality, the vertices corresponding to a block B_i of G will be referred as the block-vertex B_i in G^{101} .

DEFINITION 1.2. A set $S \subseteq V$ of vertices in a graph G = (V, E) is called a dominating set if every vertex $v \in V$ is either an element of S or adjacent to the element of S i.e. N[S] = V(G). The domination number $\gamma(G)$ of a graph is the minimum cardinality of a dominating set in G.

DEFINITION 1.3. A set $S \subseteq V$ of vertices in a graph G = (V, E) is called a total dominating set if every vertex $v \in V$ there exists a vertex $u \in S$, $u \neq v$; u is adjacent to v. i.e. N(S) = V(G). The total domination number $\gamma_t(G)$ of a graph G is the minimum cardinality of a total dominating set.

DEFINITION 1.4. A full binary tree T is a tree in which every node other than the leaves has two children.

DEFINITION 1.5. A thorny ring C_n^+ consists of 2n vertices where n vertices on the cycle are of degree three and remaining n vertices are pendant vertices.

DEFINITION 1.6. A thorny ring C_n^v consists of n(t-1) vertices of which n vertices are in cycle (each of degree t) and the remaining n(t-2) are pendent vertices.

DEFINITION 1.7. Thorn star $S_{k,t}$ is obtained from a k-arm star by attaching t-1 terminal vertices to each of the star arms.

THEOREM 1.1 ([5]). A dominating set S is a minimal dominating set if and only if for each $u \in S$, one of the following two conditions hold:

(a) u is an isolate of S,

(b) there exists a vertex $v \in V - S$ for which $N(v) \cap S = \{u\}$.

THEOREM 1.2 ([7]). A dominating set S is a minimal total dominating set if and only if for each $v \in S$, one of the following two conditions hold:

(a) There exists a vertex $w \in V - S$ such that $N(w) \cap S = \{v\}$

 $(b) < S - \{v\} > contains an isolated vertex.$

2. Domination number of block-transformation of some class of graphs

The following observations are immediate consequences of the definition of G^{101}

PROPOSITION 2.1. The following holds

- (i) For any cycle $C_n, n \ge 3$, we have $\gamma(C_n^{101}) = 1$.
- (ii) For any wheel W_n , n > 3, we have $\gamma(W_n^{101}) = 1$.
- (iii) For any complete graph $K_n, n \ge 2$, we have $\gamma(K_n^{101}) = 1$.
- (iv) For any complete bipartite graph $K_{m,n}$ with $m, n \ge 1$, we have $\gamma(K_{m,n}^{101}) = 1$.
- (v) For any star graph $K_{1,n}$ we have $\gamma(K_{1,n}^{101}) = 1$.

PROPOSITION 2.2. The following holds

 $\begin{array}{l} (\mathrm{i}) \ \gamma(P_2^{101}) = 1. \\ (\mathrm{ii}) \ \gamma(P_3^{101}) = 1. \\ (\mathrm{iii}) \ \gamma(P_4^{101}) = 2. \\ (\mathrm{iv}) \ \gamma(P_5^{101}) = 2. \end{array}$

THEOREM 2.1. For $G = (P_n^{101}), n \ge 6$ we have

$$\gamma\left(G\right) = \begin{cases} \left\lceil \frac{n}{3} \right\rceil, n \equiv 1 \pmod{3} \\ \left\lceil \frac{n}{3} \right\rceil + 1, n \not\equiv 1 \pmod{3} \end{cases}$$

PROOF. Let $V(Pn) = \{u_1, u_2, u_3, ..., u_n\}$ and let B_i joins u_i and u_{i+1} in P_n^{101} , $1 \leq i \leq n-1$. Hence $V(P_n^{101}) = \{u_1, u_2, u_3, ..., u_n\} \cup \{B_1, B_2, B_3, ..., B_{n-1}\}$. Let S be the dominating set of G.

To prove the results we consider the following cases.

Case 1: If $n \equiv 1 \pmod{3}$

We construct a set of vertices S as follows:

$$S = \{u_2, u_{3i+5} / 0 \le i \le \left\lfloor \frac{n}{3} \right\rfloor - 1\} \cup \{B_{n-1}\}$$

Then $|S| = \lfloor \frac{n}{3} \rfloor$. Clearly S is a dominating set of G as N[S] = V(G). Now for each $u \in S$ there exists a vertex $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.1, S is also the minimal dominating set. Hence

$$\gamma\left(G\right) = \left|S\right| = \left\lceil\frac{n}{3}\right\rceil$$

Case 2: Assume that $n \neq 1 \pmod{3}$. We construct a set of vertices S as follows: $S = \{u_2, u_{3i+5} \ / 0 \leq i \leq \lfloor \frac{n}{3} \rfloor - 1\} \cup \{B_1\}$ Then $|S| = \lceil \frac{n}{3} \rceil$. Clearly S is a dominating set of G as N[S] = V(G). Now for each $u \in S$ there exists a vertex $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then by Theorem 1.1, S is also the minimal dominating set. Hence $\gamma(G) = |S| = \lceil \frac{n}{3} \rceil + 1$

Illustration: In figure 2, the graph P_7^{101} is shown in which the set of solid square vertices form its dominating set of minimum cardinality, for case 1.

FIGURE 2

THEOREM 2.2. For $G = C_n^v$, we have $\gamma(C_n^v) = n$.

PROOF. Consider the set $S = \{u_1, u_2, u_3, ..., u_n\}$ of the vertices on the cycle. Then |S| = n. Clearly S is a dominating set of G. Now for each $u \in S$ there exists a vertex v which is a pendent vertex of G such that $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.1, S is also the minimal dominating set. Hence $\gamma(C_n^v) = n$.

Proposition 2.3. For $G = C_n^+$, we have $\gamma(C_n^+) = n$.

PROOF. Consider the set $S = \{u_1, u_2, u_3, ..., u_n\}$ of the vertices on the cycle. Then |S| = n. Clearly S is a dominating set of G. Now for each $u \in S$ there exists a vertex v which is a pendent vertex of G such that $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.1, S is also the minimal dominating set. Hence $\gamma(C_n^+) = n$.

258

THEOREM 2.3. For $G = S_{k,t}$, we have $\gamma(S_{k,t}) = k$.

PROOF. Consider the set $S = \{k_1, k_2, k_3, ..., k_n\}$ of the vertices on the cycle. Then |S| = n. Clearly S is a dominating set of G. Now for each $k \in S$ there exists a vertex v which is a pendent vertex of G such that $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.1, S is also the minimal dominating set. Hence $\gamma(S_{k,t}) = k$.

THEOREM 2.4. For any full binary tree T, we have

$$\gamma\left(T^{101}\right) = \begin{cases} \frac{4^{\left\lceil \frac{n}{2} \right\rceil} - 1}{3}, n = 2k - 1\\ \frac{2\left(2^n - 1\right)}{3}, n = 2k \end{cases}$$

PROOF. Consider the levels $L_0, L_1, L_2, ..., L_n$ each level L_i $(0 \le i \le n)$ has 2^i vertices. We discuss the following two cases:

Case 1: Let $n = 2k - 1, k \in N$.

Vertices in L_n will be labeled as 0, vertices in L_{n-1} will be labeled as 1, vertices in L_{n-2} will be labeled 0, vertices in L_{n-3} will be labeled as 1. Continuing in this way the root vertex is labeled 1. Let S be the set of vertices labeled 1. Clearly S is a dominating set. The vertices at levels $L_0, L_2, L_4, ..., L_{n-1}$ have been labeled 1. We see that for each vertex $u \in S$ there exists a vertex v which is a leaf node of T such that $N(v) \cap S = \{u\}$. Then from Theorem 1.1, S is also the minimal dominating set. Therefore,

$$|S| = |L_0| + |L_2| + |L_4| + \dots + |L_{(n-1)}| = 2^0 + 2^2 + 2^4 + \dots + 2^{(n-1)}.$$

which is a geometric series with a = 1, r = 4 and number of terms being $\left\lceil \frac{n}{2} \right\rceil$. Hence $|S| = \frac{1\left(4^{\left\lceil \frac{n}{2} \right\rceil} - 1\right)}{3}$ and $\gamma\left(T^{101}\right) = \frac{4^{\left\lceil \frac{n}{2} \right\rceil} - 1}{3}$

Cade 2: Let $n = 2k, k \in N$.

Vertices in L_n will be labeled as 0, vertices in L_{n-1} will be labeled as 1, vertices in L_{n-2} will be labeled 0, vertices in L_{n-3} will be labeled as 1. Continuing in this way the root vertex is labeled 0. Let S be the set of vertices labeled 1. Clearly S is a dominating set. The vertices at levels $L_1, L_3, L_5, ..., L_{n-1}$ have been labeled 1. We see that for each vertex $u \in S$ there exists a vertex v which is a leaf node of T such that $N(v) \cap S = \{u\}$. Then from Theorem 1.1, S is also the minimal dominating set. Therefore,

$$|S| = |L_1| + |L_3| + |L_5| +, \dots, + |L_{(n-1)}| = 2^1 + 2^3 + 2^5 +, \dots, + 2^{(n-1)}$$

which is a geometric series with a = 2, r = 4 and number of terms being $\frac{n}{2}$. Hence

$$|S| = \frac{2\left(4^{\left(\frac{n}{2}\right)} - 1\right)}{3} = \frac{2(2^n - 1)}{3} \text{ and } \gamma\left(T^{101}\right) = \frac{2(2^n - 1)}{3}.$$

3. Total domination number of block-transformation of some class of graphs.

PROPOSITION 3.1. The following holds

- (i) For any cycle $C_n, n \ge 3$, we have $\gamma_t \left(C_n^{101} \right) = 2$.
- (ii) For any wheel $W_n, n > 3$, we have $\gamma_t (W_n^{101}) = 2$.
- (iii) For any complete graph $K_n, n \ge 2$, we have $\gamma_t \left(K_n^{101} \right) = 2$.
- (iv) For any complete bipartite graph $K_{m,n}$ with $m, n \ge 1$, we have

$$\gamma_t \left(K_{m,n}^{101} \right) = 2$$

(v) For any star graph $K_{1,n}$ we have $\gamma_t(K_{1,n}^{101}) = 2$.

PROPOSITION 3.2. The following holds: (i) $\gamma_t(P_2^{101}) = 2$. (ii) $\gamma_t(P_3^{101}) = 2$. (iii) $\gamma_t(P_4^{101}) = 2$. (iv) $\gamma_t(P_5^{101}) = 3$. (v) $\gamma_t(P_6^{101}) = 4$. (iv) $\gamma_t(P_7^{101}) = 4$.

Theorem 3.1. For $G = (P_n^{101}), n \ge 8$, we have

$$\gamma_t(P_n^{101}) = \begin{cases} 2\left\lfloor \frac{n}{2} \right\rfloor + 2, n \equiv 1 \pmod{4} \\ \frac{n}{2} + 1, n = 4k, k = 2, 3, 4, \dots \\ \left\lfloor \frac{n}{2} \right\rfloor + 1, otherwise \end{cases}$$

PROOF. Let $V(Pn) = \{u_1, u_2, u_3, ..., u_n\}$ and let B_i joins u_i and u_{i+1} in P_n^{101} , $1 \leq i \leq n-1$. Hence $V(P_n^{101}) = \{u_1, u_2, u_3, ..., u_n\} \cup \{B_1, B_2, B_3, ..., B_{n-1}\}$. Let S is total dominating set of G.

To prove the results we consider the following cases.

Case 1: Let $n \equiv 1 \pmod{4}$. We construct a set of vertices S as follows:

$$S = \{u_{4i+2}, u_{4i+3} \mid 0 \leq i < \left\lfloor \frac{n}{4} \right\rfloor \} \cup \{v_{n-1}\} \cup \{B_1\}$$

Then $|S| = 2 \lfloor \frac{n}{4} \rfloor + 2$. Clearly S is a total dominating set of G, as N(S) = V(G). Now for each $u \in S$ there exists a vertex $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.2 S is also the minimal total dominating set. Hence, $\gamma_t(G) = 2 \lfloor \frac{n}{4} \rfloor + 2$.

Case 2: Let n = 4k, k = 2, 3, 4, We construct a set of vertices S as follows:

$$S = \{u_{4i+2}, u_{4i+3}/0 \leqslant i < \frac{n}{4}\} \cup \{B_1\}.$$

Then $|\mathbf{S}| = \frac{n}{2} + 1$. Clearly S is a total dominating set of G, as N(S) = V(G). Now for each $u \in S$ there exists a vertex $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.2 S is also the minimal total dominating set. Hence, $\gamma_t(P_n^{101}) = \frac{n}{2} + 1$

Case 3: Let other than Case 1 and Case 2. We construct a set of vertices S as follows:

$$S = \{u_{4i+2}, u_{4i+3}/0 \leqslant i < \left\lfloor \frac{n}{4} \right\rfloor\} \cup \{v_{n-1}\} \cup \{B_{n-1}\}.$$

260

Then $|S| = \lfloor \frac{n}{2} \rfloor + 1$. Clearly S is a total dominating set of G, as N(S)= V(G). Now for each $u \in S$ there exists a vertex $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.2 S is also the minimal total dominating set. Hence, $\gamma_t(P_n^{101}) = \lfloor \frac{n}{2} \rfloor + 1$

THEOREM 3.2. For $G = C_n^v$, we have $\gamma_t(C_n^v) = n$.

PROOF. Consider the set $S = \{u_1, u_2, u_3, \dots, u_n\}$ of the vertices on the cycle. Then |S| = n. Clearly S is a total dominating set of G. Now for each $u \in S$ there exists a vertex v which is a pendent vertex of G such that $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.2, S is also the minimal total dominating set. Hence, $\gamma_t(C_n^v) = n$.

PROPOSITION 3.3. For $G = C_n^+$, we have $\gamma_t(C_n^+) = n$.

PROOF. Consider the set $S = \{u_1, u_2, u_3, \dots, u_n\}$ of the vertices on the cycle. Then |S| = n. Clearly S is a total dominating set of G. Now for each $u \in S$ there exists a vertex v which is a pendent vertex of G such that $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.2, S is also the minimal total dominating set. Hence, $\gamma_t (C_n^+) = n$.

THEOREM 3.3. For $G = S_{k,t}$, we have $\gamma_t(S_{k,t}) = k$.

PROOF. Consider the set $S = \{k_1, k_2, k_3, \dots, k_n\}$ of the vertices on the cycle. Then |S| = n. Clearly S is a total dominating set of G. Now for each $k \in S$ there exists a vertex v which is a pendent vertex of G such that $v \in V - S$ for which $N(v) \cap S = \{u\}$. Then from Theorem 1.2, S is also the minimal total dominating set. Hence, $\gamma_t(S_{k,t}) = k$.

References

- B. Basavanagoud, H. P. Patil and J. B. Veeragoudar. On the block-transformation graphs, graph-equations and diameters. *International Journal of Advances in Science and Technology*, 2(2)(2011), 62–74.
- [2] E. Cockayne, R. M. Dawes and S. T. Hedetniemi. Total domination in graphs. Networks, 10(3)(1980), 211-219.
- [3] F. Harary. Graph Theory. Addison-Wesley, Reading Mass, 1969.
- [4] O. Ore. Theory of Graphs. Amer. Math. Soc. Colloq. Publ., No. 38, 1962.
- [5] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York, 1998.
- [6] V. R. Kulli. The semi-total block graph and total-block graph of a graph. Indian J. Pure. appl. Math, 7(6)(1976), 625–630.
- [7] D. B. West. Introduction to Graph Theory, Prentice Hall of India, 1999.

Receibed by editors 24.05.2018; Revised version 01.12.2018; Available online 10.12.2018.

Department of Mathematics, KLE Dr. M S Sheshgiri College of Engineering and Technology,, Belagavi, Karnatak, India

E-mail address: gudgeri_manjula@rediff.com

Department of Mathematics, KLE Dr. M S Sheshgiri College of Engineering and Technology,, Belagavi, Karnatak, India

E-mail address: jaishriv150gmail.com

PALLAVI SANGOLLI BELAGAVI, KARNATAK, INDIA E-mail address: pallavisangolli87@gmail.com